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Abstract: The goal of this research is to investigate an inventory model for degrading commodities
with linear selling prices and nonlinear green level-dependent demand for an item. The pre-payment
option with a one-time flat reduction on the product’s selling price is considered here. The governing
differential equations are used to mathematically define the model and solve numerically to optimize
the model’s average profit. After that, the model is tested using a numerical example, and sensitivity
analyses are run to see how changing inventory factors affects the best strategy. The concavity of the
objective function is shown graphically with the help of MATLAB software. Finally, some applications
of this approach and future scopes are discussed.

Keywords: inventory; price and green level dependent demand; advance payment; partial
backlogging; discount

1. Introduction

The best inventory policy has a tremendous influence on every aspect of company
management. Different inventory characteristics, such as demand rate, degradation rate,
preservation technology, ordering cost, holding cost, backlog parameter, greenness, and so
on, play a significant part in determining the best strategy.

The usage of various chemicals and preservatives in the manufacture of everyday
items is continually rising as manufacturing technologies of various credentials are en-
hanced. The majority of these chemicals and preservatives are dangerous to human health
and seem to be the root of several ailments. Customers’ attention has been attracted to
green goods and their advantages as a result of this reality. Green goods are described
as varieties of sustainable products that are meant to have the least possible effect on the
environment or human health over their entire life cycle, including after usage. Green
goods are primarily characterized by an indicator known as “green level”, which is based
on three key factors: (i) environmentally friendly manufacturing; (ii) items that are more
health-friendly; and (iii) the usage of these products generates little or no pollution. In
the present market context, there is a rising positive influence of green credentials on-
demand, i.e., the number of green product customers is fast expanding. Over the past
several decades, there has been a tremendous increase in studies concerning the impact
of green products on the market economy. A couple of these studies are detailed in this
article. Taleizadeh et al. [1] investigated the combined optimum policy of product selling
price and replenishment frequency in a green product manufacturing inventory model.
Hammami et al. [2] investigated the impact of carbon emissions in a multi-echelon green
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product manufacturing inventory model. Khatua and Maity [3] also looked at the impact
of product greenness on demand and the link between profit and pollution in an imperfect
production inventory system. Golari et al. [4] investigated a multistage optimization issue
for a production model using intermittent renewable green energy sources. Saxena et al. [5]
developed a fuzzy logic-based eco-friendly green inventory model. Yavari and Geraeli [6]
proposed a heuristic solution for handling the green-supply chain’s resilient optimization
challenge. Sana [7] then looked at the pricing rivalry between green and non-green items
made by a socially responsible company. Sarker et al. [8] then looked at the environmental
and economic sustainability of a green product manufacturing company. Paul et al. [9]
developed a green buying model that took into account the impact of carbon taxes. Green
investment was examined by Jauhari and Wangsa [10] in a manufacturer-retailer supply
chain model.

An item’s demand rate might be either constant or changing. Variable demand is
influenced by a variety of factors, such as the selling price, supply level, product greenness,
time, and so on. The variable demand rate may increase or decrease as a consequence
of various variables. The demand rate and other inventory costs were assumed to be
constant in Harris’s basic EOQ model [11]. Several academics examined numerous forms
of requests in their suggested inventory models after that time. Here, are some of the
most fascinating pieces among them. Ritchie [12] used a linear growing demand model to
investigate an EOQ model. Pal and Chaudhuri [13] looked into deterministic inventory
with stock-linked demand. Wee [14] investigated a model with price-dependent demand
and its replenishment strategy. A two-warehouse inventory model with a time-dependent
demand rate was developed by Lee and Ying [15]. Miranda and Garrido [16] investigated a
random demand inventory issue. Maihami and Kamalabadi [17] looked at a joint pricing in-
ventory model with a time and price-dependent demand rate. Abdul Rahim et al. [18] used
stochastic demand to address the multi-period inventory routing issue. Nagaraju et al. [19]
looked at a two-echelon inventory model with a demand that was price dependent.
Sarkar et al. [20] investigated a preservation technology-based inventory model for degrad-
ing products with stock-dependent demand rates. Pervin et al. [21], Shaikh et al. [22], Mon-
dal et al. [23], Rahman et al. [24], and others have recently published papers in this field.

Deterioration/decay is a natural process in which things lose their freshness and qual-
itative attributes, such as vegetables, food, and beverages. Though the rate of decay cannot
be predicted precisely, many scholars assumed it to be either constant, time-dependent,
imprecise, random, or a combination of these. The researchers proposed preservation tech-
nology principles in the domain of inventory management since irresponsible degradation
might have a negative impact on the ideal strategy. In addition, there are other works
in the current literature that deal with this idea. Several relevant works are addressed
among them. Raafat [25] conducted a survey of the literature on inventory models with
continual degradation. Chang and Dye [26] investigated an inventory model for decaying
items with a reasonable amount of time to deteriorate. Bhunia and Shaikh [27] investigated
a deterministic inventory model for continuously decaying objects. In their suggested
paradigm for decaying goods, Hsieh and Dye [28] presented the notion of preservation
technology. For degrading objects under preservation technology, Rossetti et al. [29] inves-
tigated the impact of the demand of (r, q) inventory model. Tayal et al. [30] presented the
ideal strategy of a two-echelon inventory model. Dye and Yang [31] investigated the impact
of preservation investment on the best policy of a perishable commodities inventory model.
In the field of inventory management, Khan et al. [32], Shaikh et al. [33], Das et al. [34],
Rahman et al. [35,36], and others have recently submitted their work.

Advance payment is a sensible business approach for a businessman or a corporation
to limit the risk of their business. Customers must pay for order amounts in advance
under this policy. This approach is most often used when demand for a product is strong,
and the market is experiencing a crisis. This strategy might also be used with a discount
facility in typical market demand. There are many works on advanced payment and
discount facilities in the extant literature, including in their supply chain model. Chen [37]
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included an advanced payment mechanism to investigate the best policy. Cachon [38]
looked at the impact of advanced payment policies and discount facilities on a supply chain
model’s optimum policy. In their inventory model with a random lead time, Maiti et al. [39]
included an advanced payment policy. Taleizadeh et al. [40] looked at a discount inventory
system. Zhang et al. [41] developed a model for estimating economic order quantities with
advance payment. Teng et al. [42] investigated the lot-size rules for degrading products with
advance payments in an inventory issue. The advanced payment and discount services
were recently studied by Tavakoli and Taleizadeh [43], Soto et al. [44], Wu et al. [45],
Shaikh et al. [46], Khan et al. [47–49], Rahman et al. [50], Khan et al. [51], Duary et al. [52],
Manna et al. [53], Khan et al. [54], and others.

In inventory management, the cost of holding is a critical factor. To keep the product
in good condition up to the end of the business period, the retailer must invest some
money. As a result, the optimum strategy is heavily influenced by this cost. Other cost
considerations, such as ordering cost, purchase cost, shortfall cost, lost sale cost, and
so on, have a significant influence on the best lot size. These variables are assumed to
be constant in most cases. Several academics looked at several sorts of holding costs to
determine the best policy for the inventory model. Chang [55], Tripathy and Mishra [56],
Mishra et al. [57], Dutta and Kumar [58], Alfares and Ghaithan [59], Rastogi et al. [60],
Cárdenas-Barrón et al. [61], and Das et al. [62] are only a few of them.

After a deep survey of the literature, in this work, an EOQ model for decaying
commodities is developed, with selling price and nonlinear green level dependent. The
influence of greenness is taken into consideration in this formulation. Additionally, taken
into account is the ability to pay in advance as well as a one-time reduction in the product’s
price. The suggested model’s associated average profit is then solved mathematically with
the help of one numerical example and proved the optimality theoretically. The following
is how the paper is structured:

The issue definition, assumptions, and nomenclature are presented in Section 2. The
mathematical formulation of the model, as well as the solution technique are described
in Section 3. The numerical examples and sensitivity assessments are accomplished in
Section 4. Finally, in Section 5, the study is summarized and ended.

2. Description of Problem, Notation, and Assumptions
2.1. Description

Consider a scenario in which the seller offers an early payment discount. In this case,
the customer pays for the items in installments before receiving them. Then, at the time of
prepayment, he or she receives a set percentage, say µ% a discount, off the entire purchase
price. It goes without saying that in order to benefit from the early payment discount,
customers must have adequate cash on hand. Furthermore, some clients operate their
businesses with limited cash reserves and must take a bank loan at a certain interest rate.
Buyers must prepare for payment before receiving products under the advanced payment
method. The purchasers’ capital is made up of this payable money. This money is not
always readily accessible to the purchasers. In this circumstance, purchasers will need
to borrow money via bank loans or other financial organizations along with terms and
conditions in order to keep the firm functioning smoothly. This is in addition to their capital
cost. When a customer prepays, he or she receives a discount on the total purchase cost of
the items (a specified percentage) immediately in cash. To maintain his or her consumers,
the vendor accepts the buyer’s proposal and gives a discount on the whole amount of the
purchase price paid in advance.

2.2. Notation

To study the model in a proper way, the notation and assumptions used are given in
Appendix A.
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2.3. Assumptions

1. Greenness is the most important issue in the current business scenario. Here, we
assumed a deteriorated green product whose demand is dependent on price and
nonlinear green level and it is mathematically represented as D(p, g) = a− bp + cgλ

where a, b, c, λ > 0 and the value of green level (g) is measured within the interval
(0,1). For analysis of this nonlinear model, we may refer the works of Grabinski and
Klinkova [63] and Klinkova and Grabinski [64];

2. The rate of decaying δ(0 < δ << 1) is fixed (Khan et al. [32] and Shaikh et al. [33]);
3. Replenishment rate is infinite and lead time is M (Shaikh et al. [46], Khan et al. [32],

Rahman et al. [50], Khan et al. [47,48], Duary et al. [52], Manna et al. [53]);
4. During the time under consideration, there is no replacement or repair for degraded items;
5. The total inventory planning horizon is infinite;
6. When a buyer pays his or her purchase price before receiving the items at time M, he

or she receives a percentage µ reduction off the total purchase price at the moment
of prepayment.

3. Model Formulation and Solution Procedure

In this situation, the consumer buys the items in advance by paying the whole purchase
price before receiving the lot. At first, a customer buys items, Q units, by paying the entire
purchase price before receiving the products from a seller that offers an early payment
discount. The inventory level is depleted due to the joint effect of demand D(p, g), as well
as the deterioration, and at time t = T stock becomes zero. Thus, the proposed model
satisfied the given differential equation

dI(t)
dt

+ δI(t) = −D(p, g), 0 ≤ t ≤ t1 (1)

with the boundary conditions I(0) = Q and I(T) = 0.
Solving Equation (1) with the help of boundary condition I(T) = 0, we have

I(t) =
D(p, g)

δ

{
eδ(T−t) − 1

}
(2)

Using the condition I(0) = Q, the highest stock is as:

Q =
D(p, g)

δ

{
eδT − 1

}
(3)

Thus, the total ordering quantity is (Q) units. Therefore, the total purchasing cost for
the buyer is calculated with c(Q). Since the buyer prepays the full purchasing cost at the
time M before receiving a lot, he/she obtains a certain percentage µ% discount of the total
purchasing cost for prepaying amount. As a consequence, the lower purchase price and the
accompanying loan cost are calculated as (1− µ)c(Q) and Ie M(1− µ)c(Q), respectively.

The components of the total cost are:

a. Ordering cost: Ko
b. Purchasing cost (PC): (1− µ)c(Q)

c. Holding cost (HC): ch

T∫
0

I(t)dt = ch
D(p,g)

δ2

{
eδT − δT − 1

}
d. Cost of loan (COL): Ie M(1− µ)c(Q)
e. Greening cost (GC)=ηgT

f. Sales revenue (SR)=p
T∫
0

D(p, g)dt = p
T∫
0

(
a− bp + cgλ

)
dt= p

(
a− bp + cgλ

)
T

The total profit is given by:

TP = SR− K0 − PC− HC− COL− GC (4)
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Hence, the total profit per unit time is:

π(p, g, T) =
TP
T

. (5)

i.e.,

π(p, g, T) =
1
T

p
(

a− bp + cgλ
)

T −

 K0 + (1− µ)cp
(a−bp+cgλ)

δ

{
eδT − 1

}
+

ch(a−bp+cgλ)
δ2

{
eδT − δT − 1

}
+Ie M(1− µ)cp

(a−bp+cgλ)
δ

{
eδT − 1

}
+ ηgT


 (6)

The corresponding optimization problem can be written as

Maximize π(p, g, T)
subject to p > 0, T > 0

(7)

Now, it is observed that problem (7) is highly nonlinear in nature along with four
decision variables. To show the problem optimality analytically is quite a complicated task.
For this reason, the proposed model is solved with the help of MATHEMATICA software.

4. Theoretical Derivations

The concavity of the total profit function is discussed of Equation (6) some findings
from Cambini and Martein were utilized to analyse the model’s concavity (2009). The
function of the form is based on Cambini and Martein [65]’s Theorems 3.2.9 and 3.2.10.

∏(u) =
f (u)
g(u)

, u ∈ Rn

If f (x) is a negative, differentiable, and (strictly) concave function but g(x) is a positive,
differentiable, and concave function, it is (strictly) pseudo-concave. We can prove that the
total profit function (6) is a strictly pseudo-concave function of T using this approach, and
we can find the unique optimum solution T* that maximizes the total profit function (6).

Here, we need to investigate the concavity of the objective function π(p, g, T) with
respect to p, g and T

where

f (p, g, T) =

p
(

a− bp + cgλ
)

T −

 K0 + (1− µ)cp
(a−bp+cgλ)

δ

{
eδT − 1

}
+

ch(a−bp+cgλ)
δ2

{
eδT − δT − 1

}
+Ie M(1− µ)cp

(a−bp+cgλ)
δ

{
eδT − 1

}
+ ηgT


 (8)

and
g(p, g, T) = T (9)

Lemma 1. Total profit function π(p,g,T) is strictly pseudo-concave if

2bT

[
(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
+ chcλ(λ−1)gλ−1

δ2

{
eδT − δT − 1

}
+Ie M(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
]
> 2bT

(
pcλ(λ− 1)gλ−1T

)
+ λ2c2g2λ−2T2

Proof. Differentiate Equation (8) with respect to p and g, we obtain

∂ f (.)
∂p

=
(

a− bp + cgλ
)

T − bpT + (1− µ)cp
b
δ

{
eδT − 1

}
+

chb
δ2

{
eδT − δT − 1

}
+ Ie M(1− µ)cp

b
δ

{
eδT − 1

}
,
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∂ f (p, g, T)
∂g

= pcλgλ−1T − (1− µ)cp
cλgλ−1

δ

{
eδT − 1

}
− chcλgλ−1

δ2

{
eδT − δT − 1

}
− Ie M(1− µ)cp

cλgλ−1

δ

{
eδT − 1

}
− ηT,

∂2 f (.)
∂p∂g

= λcgλ−1T

and

∂2 f (p, g, T)
∂g2 =

[
pcλ(λ− 1)gλ−1T − (1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
− chcλ(λ−1)gλ−1

δ2

{
eδT − δT − 1

}
−Ie M(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
]

Second principal minor

|H22| = ∂2 f (.)
∂p2

∂2 f (.)
∂g2 −

(
∂2 f (.)
∂p∂g

)2
> 0 if

(−2bT)

[
pcλ(λ− 1)gλ−1T − (1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
− chcλ(λ−1)gλ−1

δ2

{
eδT − δT − 1

}
−Ie M(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
]
−
(
λcgλ−1T

)2
> 0

2bT

[
(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
+ chcλ(λ−1)gλ−1

δ2

{
eδT − δT − 1

}
+Ie M(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
]
> 2bT

(
pcλ(λ− 1)gλ−1T

)
+ λ2c2g2λ−2T2

�

Lemma 2. Total profit function π(p,g,T) is strictly pseudo-concave if


∂2 f (.)

∂p2
∂2 f (.)

∂g2
∂2 f (.)

∂T2 + ∂2 f (.)
∂p∂g

∂2 f (.)
∂g∂T

∂2 f (.)
∂p∂T

+ ∂2 f (.)
∂p∂T

∂2 f (.)
∂p∂g

∂2 f (.)
∂g∂T

 <


∂2 f (.)

∂p2
∂2 f (.)
∂g∂T

∂2 f (.)
∂g∂T + ∂2 f (.)

∂p∂g
∂2 f (.)
∂p∂g

∂2 f (.)
∂T2

+ ∂2 f (.)
∂p∂T

∂2 f (.)
∂g2

∂2 f (.)
∂p∂T


Proof. Let us consider the hessian matrix of the function f(p,g,T) is

H =


∂2 f (.)

∂p2
∂2 f (.)
∂p∂g

∂2 f (.)
∂p∂T

∂2 f (.)
∂p∂g

∂2 f (.)
∂g2

∂2 f (.)
∂g∂T

∂2 f (.)
∂p∂T

∂2 f (.)
∂g∂T

∂2 f (.)
∂T2


and the corresponding determinant value is

|H| =

∣∣∣∣∣∣∣∣∣
∂2 f (.)

∂p2
∂2 f (.)
∂p∂g

∂2 f (.)
∂p∂T

∂2 f (.)
∂p∂g

∂2 f (.)
∂g2

∂2 f (.)
∂g∂T

∂2 f (.)
∂p∂T

∂2 f (.)
∂g∂T

∂2 f (.)
∂T2

∣∣∣∣∣∣∣∣∣ < 0

Now, if we apply the rule of the determinant then

∂2 f (.)
∂p2

∣∣∣∣∣∣
∂2 f (.)

∂g2
∂2 f (.)
∂g∂T

∂2 f (.)
∂g∂T

∂2 f (.)
∂T2

∣∣∣∣∣∣− ∂2 f (.)
∂p∂g

∣∣∣∣∣∣
∂2 f (.)
∂p∂g

∂2 f (.)
∂g∂T

∂2 f (.)
∂p∂T

∂2 f (.)
∂T2

∣∣∣∣∣∣+ ∂2 f (.)
∂p∂T

∣∣∣∣∣∣
∂2 f (.)
∂p∂g

∂2 f (.)
∂g2

∂2 f (.)
∂p∂T

∂2 f (.)
∂g∂T

∣∣∣∣∣∣ < 0
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which follows that
∂2 f (.)

∂p2
∂2 f (.)

∂g2
∂2 f (.)

∂T2 + ∂2 f (.)
∂p∂g

∂2 f (.)
∂g∂T

∂2 f (.)
∂p∂T

+ ∂2 f (.)
∂p∂T

∂2 f (.)
∂p∂g

∂2 f (.)
∂g∂T

 <


∂2 f (.)

∂p2
∂2 f (.)
∂g∂T

∂2 f (.)
∂g∂T + ∂2 f (.)

∂p∂g
∂2 f (.)
∂p∂g

∂2 f (.)
∂T2

+ ∂2 f (.)
∂p∂T

∂2 f (.)
∂g2

∂2 f (.)
∂p∂T


�

Theorem 1. Total profit function π(p,g,T) is strictly pseudo-concave function with respect to p, g,
and T, hence π(p,g,T) archives the global maximum at the point p*, g*, T*.

Proof. Using Equations (8) and (9), we have

f (p, g, T) =

p
(

a− bp + cgλ
)

T −

 K0 + (1− µ)cp
(a−bp+cgλ)

δ

{
eδT − 1

}
+

ch(a−bp+cgλ)
δ2

{
eδT − δT − 1

}
+Ie M(1− µ)cp

(a−bp+cgλ)
δ

{
eδT − 1

}
+ ηgT




and
g(p, g, T) = T

According to Cambini and Martein [65]’s Theorems 3.2.9 and 3.2.10, we need to show
that f(p,g,T) is a negative, differentiable and (strictly) joint concave function with respect to
p, g and T.

Using Equation (8), we have

∂ f (.)
∂p

=
(

a− bp + cgλ
)

T − bpT + (1− µ)cp
b
δ

{
eδT − 1

}
+

chb
δ2

{
eδT − δT − 1

}
+ Ie M(1− µ)cp

b
δ

{
eδT − 1

}
,

∂2 f (.)
∂p2 = −bT − bT = −2bT,

∂2 f (.)
∂p∂g

= λcgλ−1T,

∂2 f (.)
∂p∂T

=
(

a− bp + cgλ
)
− bp + (1− µ)cpbeδT +

chb
δ

{
eδT − 1

}
+ Ie M(1− µ)cpbeδT ,

∂ f (p, g, T)
∂g

= pcλgλ−1T − (1− µ)cp
cλgλ−1

δ

{
eδT − 1

}
− chcλgλ−1

δ2

{
eδT − δT − 1

}
− Ie M(1− µ)cp

cλgλ−1

δ

{
eδT − 1

}
− ηT,

∂ f (p, g, T)
∂g∂T

= pcλgλ−1 − (1− µ)cpcλgλ−1eδT − chcλgλ−1

δ2

{
eδT − 1

}
− Ie M(1− µ)cpcλgλ−1eδT − η

∂2 f (p, g, T)
∂g2 =

[
pcλ(λ− 1)gλ−1T − (1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
− chcλ(λ−1)gλ−1

δ2

{
eδT − δT − 1

}
−Ie M(1− µ)cp

cλ(λ−1)gλ−1

δ

{
eδT − 1

}
]

,

∂ f (p, g, T)
∂T

= p
(

a− bp + cgλ
)
− (1− µ)cp

(
a− bp + cgλ

)
eδT −

ch
(
a− bp + cgλ

)
δ

{
eδT − 1

}
− Ie M(1− µ)cpcp

(
a− bp + cgλ

)
eδT − ηg

∂2 f (p, g, T)
∂T2 = −(1− µ)cpδ

(
a− bp + cgλ

)
eδT − ch

(
a− bp + cgλ

)
eδT − Ie M(1− µ)cpδ

(
a− bp + cgλ

)
eδT

Therefore, the hessian matrix of the function f(p,g,T) is given by

H =


∂2 f (.)

∂p2
∂2 f (.)
∂p∂g

∂2 f (.)
∂p∂T

∂2 f (.)
∂p∂g

∂2 f (.)
∂g2

∂2 f (.)
∂g∂T

∂2 f (.)
∂p∂T

∂2 f (.)
∂g∂T

∂2 f (.)
∂T2


First principal minor |H11| = ∂2 f (.)

∂p2 = −bT − bT = −2bT < 0
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Second principal minor

|H22| =
∂2 f (.)

∂p2
∂2 f (.)

∂g2 −
(

∂2 f (.)
∂p∂g

)2

> 0(using Lemma 1)

Similarly, we are able to show that |H| < 0 and, hence, the Hessian matrix of the func-
tion f (p, g, T) is negative definite with the help of Lemma 2. Hence, the function f (p, g, T)
is a negative, differentiable, and (strictly) concave function with respect to p, g and T. Ad-
ditionally, g(p, g, T) = T > 0 is affine. Therefore, the objective function is pseudo-concave
and it attains the global maximum at the point p∗, g∗ and T∗. �

According to the necessary condition, we have

∂π(p, g, T)
∂p

=
1
T

[(
a− bp + cgλ

)
T − bpT + (1− µ)c

b
δ

{
eδT − 1

}
+

chb
δ2

{
eδT − δT − 1

}
+ Ie M(1− µ)c

b
δ

{
eδT − 1

}]
= 0 (10)

∂π(p, g, T)
∂g

=
1
T

[
pcλgλ−1T −

(1− µ)cpcλgλ−1

δ

{
eδT − 1

}
− chcλgλ−1

δ2

{
eδT − δT − 1

}
− Ie M(1− µ)cp

cλgλ−1

δ

{
eδT − 1

}
− ηT

]
= 0 (11)

and

∂π(p, g, T)
∂T

= −TP
T2 +

1
T

[
p
(
a− bp + cgλ

)
− (1− µ)cp

(
a− bp + cgλ

)
eδT − ch(a−bp+cgλ)

δ

{
eδT − 1

}
−Ie M(1− µ)cp

(
a− bp + cgλ

)
eδT − ηg

]
= 0 (12)

Proposed Algorithm

In this section, a solution algorithm (see Algorithm 1) is proposed, and one numerical
example is considered to justify the reality of the proposed model.

Algorithm 1:

Step 1 : initialize all input parameters and set ε < 0.00001
Step 2 : set p = 5 , g = 1 solve Equation (12) and store the value of T
Step 3 : using the value of T and p = 5 solve Equation (11) and store the value of g
Step 4: using the updated value of T and g solve Equation (10) and store the value of p
Step 5 : repeat Step 2 to Step 4 until the termination criteria satisfied, i.e., pn+1 − pn < ε,
gn+1 − gn < ε and Tn+1 − Tn < ε

Step 6 : store the optimal value of p∗, g∗ & T∗ and obtained the optimal vale of the objective
function.
Step 7: Stop

5. Numerical Illustration

In order to validate the proposed model one numerical example is considered. The
values of the system parameters are given below and the solutions are presented in Table 1:

Table 1. Optimal results of Example.

Variables/Unknown Parameters Optimal Values

p $142.2302
T 2.2296
g 0.9167
π $3977.4117
Q 145.8497

Example 1. The values of the different inventory parameters associated with the proposed model
are given below.
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a = 150, b = 0.7, c = 3, λ = 0.08, δ = 0.2, M = 0.8/year, µ = 0.2, η = 1.8 Ko = $350/order
, cp = $50/unit, ch = $1.5/unit/year, Ie = $0.05/year, g = 1

In addition, the concavity of the objective function is shown graphically by taking
two decision variables at a time and one decision variable keeps the optimal value. All the
figures are drawn with the help of MATLAB software, and are shown in Figures 1–3.
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6. Sensitivity Analyses

To show the impact of the various inventory parameters on total cycle length (T),
initial stock level ‘Q’, maximum green level ‘g’, and the average profit ‘π’, the sensitivity
analyses are performed with respect to the numerical Example 1 by changing the values of
the parameters from −20% to +20%. The optimal results of these analyses are presented
graphically in Figures 4–10.
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From Figures 4–10, the average profit (π) is highly sensitive to the positive or negative
changes of the selling price (p), the location parameter of demand ‘a’, and the scaling
parameter ‘b’ but ‘π’ has the reverse effect with respect to ‘b’. The average profit (π) is less
sensitive to the positive or negative changes of ordering cost ‘Ko’, ‘µ’, and ‘ch’ whereas the
average profit (π) is insensitive to the positive or negative changes of ‘δ’ and ‘c’.
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From Figures 4–10, it is clear that the cycle length (T) is highly sensitive to the positive
or negative changes of demand parameter ‘b’. The cycle length (T) is mostly equally
sensitive to the positive or negative changes of ordering cost ‘Ko’ and the location parameter
of demand ‘a’, respectively. The cycle length (T) is also less sensitive to the positive or
negative changes of the selling price ‘p’, constant deterioration rate ‘δ’, and holding cost ‘ch’
but ‘δ’ and ‘ch’ have the reverse effect.

The initial stock level (Q) is mostly equally sensitive to the positive or negative changes
of ordering cost ‘Ko’. The initial stock level (Q) is less sensitive to the positive or negative
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changes of ‘θ’, ‘h’ and ‘a’, respectively, but ‘θ’ and ‘h’ are inversely affected. The initial stock
level (Q) is insensitive to the positive or negative changes of ‘α’, ‘b’ and ‘µ’, respectively.

7. Summary

In this work, an EOQ model, for deteriorating items, is formulated by considering
the demand rate depending on the linear selling price and nonlinear green level of goods.
Consideration of advanced payment with a flat discount facility and greenness-dependent
demand makes the model more realistic. Additionally, the green technology investment
cost increases the applicability of the proposed model. The concavity of the objective
function is shown graphically with the help of MATLAB software. From the sensitivity
analyses, it can be concluded that the average profit is significantly effective with respect
to the demand scaling parameter, location parameter, and selling price in both positive
and negative senses. Thus, a decision-maker/manager should take more care of these
parameters during decision-making. The concept of this model can be used in the business
sector involving food, vegetables, medicine, etc.

For future work, this model may be extended in imprecise environments (fuzzy, inter-
val, Type-2 interval (Rahman et al. [35]) by taking the uncertainty in the inventory parameters.
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Appendix A

Symbol Units Description
Ko $/order cost per order
cp $/unit unit purchase cost
ch $/unit/time unit carrying cost per unit per time unit
δ constant deterioration rate
M Time unit Prepayment time point
Ie $/time unit cost of loan rate
µ % discount rate
η constant green technology cost
Q units lot in each cycle

I(t) units level of inventory during 0 ≤ t ≤ T
π(p, g, T) $/time unit the total profit per unit time

Decision variables
T Time unit the length of cycle.
p $/unit selling price per unit
g – green level
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