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Abstract: Drought is one of the most devastating natural disasters, especially in China. In drought
assessment, the PDI has high robustness, is easier to obtain than indices such as SPEI and PDSI, and is
more advantageous in regions with sparse stations. The present study employs the annual PDI with
the precipitation and temperature data from 830 meteorological stations to systematically study the
interannual variation characteristics of drought and humidity in China during 1970-2019. The results
showed the following: (1) 26.6% of the total statistics from meteorological stations showed significant
(p < 0.05) increases in annual PDI values throughout China during 1970-2019. (2) Air temperature
plays a more remarkable role than precipitation in assessing the drying trend with PDI throughout
China. (3) About 71% of stations experienced more drought events (PDI > 1) than humidity events
(PDI < —1), 14% of stations experienced more humidity events than drought events. (5) All stations
experienced drought events (PDI > 1) with a frequency range from 6% to 32% and humidity events
(PDI < —1) with a frequency range from 8% to 36%. Most of the stations experienced extreme
drought events (PDI > 3) with a frequency range from 2% to 10%, while only 177 stations experienced
extreme humidity events (PDI < —3) with a frequency range from 2% to 4%. (6) More than 67% of
stations experienced drought conditions during both periods of 1972-1974 and 2000-2002 and even
exceeded 80% in the three years 1972, 2000, and 2001. Both periods of 1976-1983 and 1985-1999
can be considered to be a humidity period throughout China. In conclusion, the PDI successfully
expresses the interannual variation characteristics of drought and humidity events throughout China
previously captured by other prominent, recommended drought indices.

Keywords: Pedj Drought Index (PDI); drought; humidity; China

1. Introduction

Drought is one of the most devastating natural disasters [1-3] and is directly associated
with geographical location, altitude, and the distance from each big river system. The term
drought is differently characterized according to research characteristics [4]. Drought is
generally defined a significant shortage of natural freshwater supplies over a long period
of time due to changes in precipitation and temperature patterns [5]. In recent years, the
increasing human activities and climate warming have resulted in a change in the spatial
distribution pattern of drought [6,7]. Several drought indices have already been adopted to
evaluate various drought characteristics [8]. The more common drought indices are Palmer
Drought Severity Index (PDSI) (Palmer, 1965), Standardized Precipitation Evapotranspi-
ration Index (SPEI) [9], Standardized Precipitation Index (SPI) [10], Reclamation Drought
Index (RDI) [11], Moisture Anomaly Index (Z-index) [12], and Precipitation Anomaly Index
(RAI) [13]. Precipitation is the only indispensable input hydrometeorological variable in
these indices.
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China is located in eastern Eurasia, the Pacific west bank, and has a monsoon climate.
The precipitation has obvious seasonal change, which leads to differences in the spatiotem-
poral distribution of drought. For the past few years, the rapid spread of drought has
occurred in southwest China. The extreme drought events that happened in southwest
China during 2009-2010 were significantly associated with a significantly high temperature
and scarce rainfall [14-17]. Zou et al. [18] calculated the Palmer Drought Severity Index
(PDSI) with the monthly temperature and rainfall data during 1951-2003 and discovered
that the drought areas in North China had significantly increased since the late 1990s. The
research of Lu et al. [19-21] (2008; 2013; 2016) demonstrated that, in the past few decades,
the Liaohe Plain, the Haihe Plain, the Loess Plateau, the Szechwan Basin, and the Yunnan—
Guizhou Plateau formed a serious drying strip, with increasing drought frequency, which
is closely related to the decrease of precipitation. Moreover, severe and extreme droughts
have become more serious since the late 1990s for all of China, with the dry area increasing
by 3.72% per decade, especially in North China, Northeast China, and western Northwest
China [3]. Meanwhile, Xu et al. [22] analyzed the drought characteristic in China during
1960-2012 with a three-dimensional clustering method. The result shown that, in the past
half century, the most severe drought occurred during 1962-1963 and 2010-2011 with a
widely drought affected area. Ma et al. [23] analyzed all meteorological drought events in
China from 1961 to 2017 using the Standard Precipitation Evapotranspiration Index (SPEI),
which revealed that the frequency of drought events in the eastern monsoon area of China
is high, the duration is short, and the intensity is weak, while this was reversed in the
northwest arid region.

In previous studies, different drought indices, such as the Palmer Drought Severity
Index (PDSI), Standard Precipitation Index (SPI), Standard Precipitation Evapotranspiration
Index (SPEI), Percent of Normal (PN), Standardized Precipitation Index (SPI), China-Z
Index (CZI), and Declines Index (DI), were widely used to evaluate the drought charac-
teristic in China [3,21,23,24]. Each has its own characteristics and has achieved fruitful
results in drought/humidity research in China. The ability of a drought index to assess
drought severity involves robustness, tractability, transparency, sophistication, extendibil-
ity, and dimensionality, among which robustness and treatability are the most basic and
important abilities [1]. The robustness and treatability include not only the spatiotemporal
comparability of the drought index but also the manageability of the practical aspects of
drought index. Furthermore, drought indices should be calculated using readily available
data as much as possible to reflect drought conditions most intuitively [25]. Hence, SPI
was recommended for evaluating drought characteristics due to its acceptable robustness
and treatability for detecting drought [1,22]. Although readily available and popular, the
sensitivity of the SPI in assessing drought is closely related to the soil moisture and ground-
water. Meanwhile, the assessment ignores temperature, an important meteorological factor.
These factors greatly reduce the SPI's ability to assess droughts in regions with extensive
arid and semi-arid areas [4,26,27].

In contrast, the Pedj Drought Index (PDI) is sensitive to both precipitation and tem-
perature, with high performance for assessing the onset of drought over extended periods
(annual) [25]. In previous research, the PDI has been reported to identify drought events in
a similar way to the well-known United Nations Environment Programme [28] Drought
Index (AI) [25,29]. Another bright feature of the PDI is its outstanding ability to eval-
uate drought characteristics in regions with sparse meteorological stations and poorly
recorded data [29]. In summary, the PDI has high robustness in drought assessment and
is easier to obtain than SPEI, PDS], etc., and has more advantages in drought assessment
in regions with sparse stations. Therefore, the PDI is efficient and reliable in assessing
drought characteristics. However, the adaptability of the PDI in spatiotemporal drought
variability research throughout China is yet to be reported. The present article aims to fill
this research gap.

The present article employs the annual PDI with the precipitation and temperature
data from 830 meteorological stations to systematically study the interannual variation
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characteristics of drought and humidity in China during 1970-2019. The specific objectives
are as follows: (1) identify the drought and humidity severities of stations with statistically
significant (p < 0.05) trends in the past 50 years in China; (2) analyze the impacts of
temperature and precipitation changes on such significant trends; (3) calculate the frequency,
longest duration, and spatial extent of both drought and humidity events throughout China.

2. Study Area and Data
2.1. Study Area

The People’s Republic of China is located in the east of the Asian continent and on
the west coast of the Pacific Ocean, with a land area of 9.6 million km?, extending from
latitude of about 3°51’ N to 53°33’ N and from longitude of about 73°33" E to 135°05’ E. The
proportion of the landforms in China is as follows: mountain area 33.3%, plateau area 26%,
basin area 18.8%, plain area 12%, and hilly area 9.9%, which makes it complex and diverse.

China has a vast territory, spanning five climatic zones from south to north: tropical
zone, subtropical zone, warm temperate zone, middle temperate zone, and cold temperate
zone [18]. There are multiple climate types in China, e.g., temperate monsoon climate, sub-
tropical monsoon climate, tropical monsoon climate, tropical rain forest climate, temperate
continental climate, and plateau mountain climate. Since the East Asian monsoon climate
zone covers the vast majority of continental China, which is wet in summer and dry in
winter, the annual distribution of precipitation is obviously different and the interannual
variation is very significant [3,30]. Meanwhile, there is a significant negative correlation
between precipitation and temperature [22].

Due to differences in precipitation (data of 830 meteorological stations during 1970-2019),
China is divided into three main regions: humid region, transition region (sub-humid and
semi-arid region), and arid region (Figure 1), accounting for 47%, 29%, and 24% of the total
area, respectively. Because it is deeply influenced by the East Asian monsoon, southeastern
China (humid region) is dominated by a warm and humid climate and has a relatively
wetter climate, with annual precipitation ranging from 800 to 2200 mm and temperature
ranging from 12.5 to 22 °C [18]. In the transition region, the precipitation (400 to 800 mm)
is reduced compared with that in the humid region due to the weakening of the monsoon’s
influence, and the temperature is also reduced (5 to 16 °C). In the northwest of China, the
cold and arid climate dominates much of the region, with annual precipitation ranging
from 50 to 400 mm and temperature ranging from —2 to 8 °C. It should be emphasized that
precipitation and temperature show a significant negative correlation with the distance
from the ocean [22].
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Figure 1. Geographical location, DEM, weather station, and sub-regions of the study area.

2.2. Data

Daily precipitation and air temperature data from 1970 to 2019 were acquired from
the National Meteorological Science Data Center of China (http://data.cma.cn, accessed
on 22 December 2021). The missing values in each station were filled with the mean values
of the nearest five stations calculated with the Tyson Polygon Method.

In order to adequately analyze the research results, China was divided into three major
regions: humid region (I), sub-humid and semi-arid region (II), and arid region (III), with
annual precipitation of >800 mm, 400-800 mm, and <400 mm, respectively. The regional
divisions were obtained based on the annual precipitation data from 830 meteorological
stations with the Inverse Distance Weighting Interpolation Method, the data were interpo-
lated intol km gridded data (see Figure 1). There were 383, 261, and 186 meteorological
stations in region I, II, and III, respectively (see Table 1).

Table 1. Distribution of meteorological stations selected by present research.

Region Climate Number of Stations Record Period
I Humid 383 1970-2019
1l Sub-humid and 261 1970-2019
semi-arid
I Arid 186 1970-2019

2.3. Calculation of PDI

The PDI developed by Pedj [31] was selected to identify drought periods and severity
with multiple spatial and temporal scales [25,29]. PDI is an indicator determined by both
temperature and precipitation. Hence, two standardized anomaly indices (SAls) need to be
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calculated with priority, i.e., mean temperature and precipitation, respectively. The SAl is
calculated as follows: B
x — X

SAI = 1)

where x is a particular year record, and x and s are the mean and the standard deviation of
all year records over the time period, respectively. Then PDI is calculated as

PDI = SAIy — SAIp @)

where SAIT and SAI, are the SAls of mean temperature and precipitation, respectively, on
the corresponding time scale. In the present study, the magnitudes of drought and humidity
were defined as nine types, and each standard of the PDI range is shown in Table 2.

Table 2. Classification standard of drought based on PDL

Drought/Humidity Classification Abbreviation PDI Range
Extreme drought Dy More than 3
Severe drought D3 2to3
Moderate drought D, 1to2
Light drought Dy Otol
Normal N 0
Light humidity H; —1to0
Moderate humidity H, —2to -1
Severe humidity Hj; —3to -2
Extreme humidity Hy Less than —3

2.4. Statistical Analysis Method

Sen’s slope estimator [32] was used to calculate the trends of PDI, SAlt, and SAIp time
series. The Spearman rank correlation test [33] was used to detect the pairwise correlation
between PDI, SAlt, and SAlp. The Spearman’s rank correlation coefficient evaluates the
linear relationship between two arrays, the coefficient is between —1 and +1, the negative
coefficient indicates decreasing trend and vice versa. Since the test is nonparametric,
the two sets of variables do not need to be normally distributed [29]. Additionally, the
nonparametric Mann-Kendall (MK) [34-36] test was applied for data significance testing.

3. Results

Trend analysis identified 221 meteorological stations with significant (p < 0.05) in-
creases in annual PDI values studied throughout China during 1970-2019, accounting
26.6% of total statistics stations. Regions I, II, and III had 121, 63, and 37 stations with
significant increases in annual PDI, accounting for 31.6%, 24.1%, and 19.9%, respectively,
of the number of statistical stations in their respective regions. Only 57 stations showed
significant (p < 0.05) decreases, accounting 6.9% of total statistics stations. Regions I, II, and
III had 13, 17, and 27 stations with significant decreases in annual PDI, accounting for 3.4%,
6.5%, and 14.5%, respectively, of the number of statistical stations in their respective regions
(see Table 3). Among the 221 stations with increased annual PDI trends, 216 (accounting for
97.7%) showed significant increases in annual SAlt, and 5 showed significant decreases in
annual SAIt. However, 204 (accounting for 92.3%, 204 out of 221) did not show significant
trends in annual SAI},, 14 showed significant increases in annual SAlp, and 3 showed sig-
nificant decreases in annual SAIp (see Figure 2a—c). Among the 57 stations with decreased
annual PDI trends, 31 (accounting for 54.4%, 31 out of 57) showed significant decreases
in annual SAlt, 14 showed significant increases in annual SAlt, and 12 did not show a
significant trend in annual SAlt. Of these 57 stations, 48 (accounting for 84.2%) showed a
significant increase trend in annual SAIp, while 9 did not show a significant trend in annual
SAlp (see Figure 2a—c).
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Table 3. Statistical table of stations with annual PDI trends in China selected by the presented research
during 1970-2019.

Insignificant Significant
Region Percentage Increase Decrease
Count 8 Count Percentage Count Percentage
I 249 65.0 121 31.6 13 3.4
I 181 69.3 63 24.1 17 6.5
I 122 65.6 37 19.9 27 14.5
Total 552 66.4 221 26.6 57 6.9
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Figure 2. Spatial distribution maps of trends in annual (a) PDI, (b) SAlt, and (c) SAlp at all
830 stations in China selected by the presented research during 1970-2019. (d) The top 5% of stations
with significant changes in annual PDI in each region of China selected by the presented research
during 1970-2019.

The top 5% of stations with significant changes in annual PDI in each region (see
Figure 2a) were selected for extreme stations” analysis (see Figures 3 and 4). The top 5%
of region I stations (6 out of 121) with significant increases in annual PDI had values of
0.0482, 0.0438, 0.0415, 0.0396, 0.0389, and 0.0386/year, respectively. The top 5% of region
IT stations (3 out of 63) with significant increases in annual PDI had values of 0.0671,
0.0437, and 0.0430/ year, respectively. The top 5% of region III stations (2 out of 37) with
significant increases in annual PDI had values of 0.0471 and 0.0462/year, respectively.
Extreme stations with significant increases in annual PDI of region I had more drought
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events after 2000 (see Figure 3a—f). Extreme stations of region II had more drought events
since the middle 1990s (see Figure 3g—i). The one extreme station of region III had more
drought events after 2000 (see Figure 3j), the other one had more drought events since the
1980s (see Figure 3k). The top 5% of region I, region II, and region III stations (1 out of 13,
1 out of 17, 1 out of 27) with significant decreases in annual PDI had values of 0.430, 0.471,
and 0.462/year, respectively. Extreme stations of region I, II, and III with significant
decreases in annual PDI had more humid years since the early 1990s (see Figure 4a), the
middle 1980s (see Figure 4b), and the early 1980s (see Figure 4c), respectively.

(a) Qingyuan _ Slope: 0.0482/year 4 (b) Nanao Slope: 0.0438/year
-2 -2
4 L 4L
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
(¢) Anshun Slope: 0.0415/year A (d) Guanyun | siope: 0.0396/year
0
-2
4 L 4 L
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
(e) Xiangyang | slope: 0.0389/year o (D) Tongcheng b siope: 0.0386/vear
) -2
4 4 L
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
;‘ (g) Luolong |y siope: 0.0671/year ar (h) Taigu Slope: 0.0437/year
0
-2
-4
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
5 (i) Taishan sSlope: 0.0430/year A (j) Jingyuan Slope: 0.0471/year
o b A Illl |I ||Ij[|
5
4 L
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
4r (k) Ejin Banner _sjope: 0.0462year
2t
0
-2
4

1970 1980 1990 2000 2010

— Drought s Humidity = eeeeeeee Liner trend line

Figure 3. Time series of top 5% stations with significant increases in annual PDI in (a—f) region I,
(g-i) region II, and (j—k) region III.
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Figure 4. Time series of top 5% stations with significant decreases in annual PDI in (a) region I,
(b) region I, and (c) region IIL

Annual PDI of 703 (85%, 703 out of 830) stations showed statistically significant corre-
lations with annual SAlt (see Figure 5a). Only five of them showed negative correlations,
all of which were in region I. The rest of them showed positive correlations, region I, II, and
III had 318 (83%, 318 out of 383), 222 (85%, 222 out of 261), and 158 (85%, 158 out of 186)
stations, respectively (see Figure 5a). Slightly dissimilarly, annual PDI showed statistically
significant negative correlations with annual SAlp at all stations (see Figure 5b). There were
651 (78%, 651 out of 830) stations that showed positive relationships between annual SAIt
and SAIp throughout China, but only at about 29% (188 out of 651) of them were significant
(p < 0.05) (see Figure 5c). There are 179 (22%, 179 out of 830) stations that showed negative
relationships between annual SAlt and SAlp, but only at about 4% (8 out of 179) of them
were significant (p < 0.05) (see Figure 5c).

About 71% (592 out of 830) of stations studied in China experienced more drought
events (PDI > 1) than humidity events (PDI < —1) during 1970-2019, 14% (117 out of 830) of
stations experienced more humidity events than drought events, and 15% (121 out of 830)
of stations experienced equal events of drought and humidity (see Figure 6). Meanwhile,
70% (269 out of 383) of stations in region I experienced more drought events than hu-
midity events, 14% (53 out of 383) of stations experienced more humidity events than
drought events, 16% (61 out of 383) of stations experienced equal events of drought and
humidity. The corresponding data for region II and region III are 70% (184 out of 261),
16% (41 out of 261), and 14% (36 out of 261) and 75% (61 out of 186), 12% (23 out of 186),
and 13% (24 out of 186), respectively (see Figure 6).

The drought events (PDI > 1) were experienced at all stations studied, with a frequency
range from 6% to 32%. The highest number was seen at the Nanao station in region I,
Southeast China (see Figure 7a). In addition, all stations also experienced humidity events
with a frequency range from 8% to 36%. The highest number was seen at two stations,
the Anduo station in region II, West China, and the Luan station in region I, South China
(see Figure 7b). On the other hand, most of the stations experienced extreme drought
events (PDI > 3), with a range from 2% to 10%, except at all 43 stations with no historical
extreme drought experience. The highest number was seen at the Anduo station in region
II, West China (see Figure 7c). However, fewer stations experienced humidity events,
only 177 stations showed 2-4% frequency of humidity events (see Figure 7d).
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Figure 6. Comparison chart of drought and humidity events at all stations in China selected by the

presented research during 1970-2019.
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Figure 7. Frequency of (a) drought (PDI > 1), (b) humidity (PDI < -1), (c) extreme drought (PDI > 1),
and (d) extreme humidity (PDI < -3) at all stations in China selected by the presented research

during 1970-2019.

The longest drought (humidity) periods were determined based on the consecu-
tive annual PDI values permanently >1 (<—1) at all stations in China during 1970-2019
(see Figure 8). The longest drought duration was more than 5 years, observed at 13 stations
(see Figure 9), namely, Wuyiling (1970-1976), Balikun (1970-1975), Wutaishan (2000-2006),
Suide (2000-2006), Lishi (2000-2005), Taigu (2000-2007), Jiexiu (2000-2005), Kangding
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(1972-1976), Guangyuan (1970-1975), Fuyang (1972-1977), Hangzhou (2009-2014), Nanao
(2013-2018), and Dianbai (1972-1977). In addition, the longest humidity duration was
more than 5 years observed at 10 stations (see Figure 10), namely, Pulan (1984-1989),
Ruoergai (1986-1991), Luolong (1975-1984), Zuogong (1975-1980), Lushi (1986-1991),
Qijiang (1977-1982), Xishui (1978-1983), Xianyou (1989-1994), Zhongshan (1976-1982),
and Haikou (2014-2019).
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Figure 8. Longest year of (a) drought (PDI > 1) events and (b) humidity (PDI < —1) events at all
stations in China selected by the presented research during 1970-2019.
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Figure 9. Time series of the stations with the longest drought duration lasting more than 5 years.
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Figure 10. Time series of the stations with the longest humidity duration lasting more than 5 years.

The percentage of stations with annual PDI >1 and <—1 represent the spatial distri-
bution of drought and humidity events, respectively, throughout China during 1970-2019
(see Figure 11). More than 67% of stations experienced drought conditions during both
periods of 1972-1974 and 20002002, even exceeded 80% in the three years 1972, 2000, and
2001 (see Figure 11). None of the stations showed humidity in 1972, while drought events
occurred at very few stations during the period of 1989-1991 (see Figure 11). Moreover,
both periods of 1976-1983 and 1985-1999 can be considered to a humidity period (drought
percentage of stations less than 10%) throughout China (see Figure 11).
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Figure 11. Percentage of drought events and humidity events at all stations selected by the presented
research during 1970-2019.

4. Discussion

The annual PDI time series trend shows that a significant portion of the region has
become drier over the past 50 years, with a few areas getting wetter. Meanwhile, the
wetter region (region I) had a higher proportion of stations with significant increases in
annual PDI, and the drier region (region III) had a higher proportion of stations with the
significant decreases in annual PDI. This reveals that there is a tendency toward greater
wetness in arid areas, while the characteristics of climate change in humid areas were the
opposite throughout China. This is consistent with the drought analysis using SPEI [3].
It is generally believed that the increase in drought trend (annual PDI trend increases) is
associated with a significant increase in SAIt [25], which is consistent with the conclusion of
this paper. However, there is no significant correlation between this drought trend (annual
PDI trend increases) and SAIp throughout China. An important reason is that the change
of air temperature changes the regional water vapor flux [37,38], which partly suggests that
air temperature played a more remarkable role than precipitation in assessing the drying
trend. This is consistent with the global analysis of drought with SPEI [39]. Hence, in the
context of global warming, air temperature should be given priority in order to assess the
drying trend more objectively.

Severity, frequency, duration, and spatial distribution are the four most distinctive
features of drought [25,40]. Most regions experienced more drought events than humid-
ity events throughout China during 19702019, and the stations with high frequency of
drought events were mostly concentrated in the central and eastern regions, while the
stations with high frequency of humidity events were scattered. This confirms the results
of previous studies by some scholars [3,41-43]. From the results of the statistical analy-
sis, the long-duration drought of the stations was mainly concentrated in two periods,
the 1970s and after 2000, this is consistent with the conclusions in a recent report [44,45].
However, the long-duration humidity of stations mostly concentrated in the 1980s and
1990s, this is consistent with the global analysis of drought using SPEI [39]. Additionally,
China experienced extensive droughts during two periods, i.e., 1972-1974 and 2000-2002,
with a relatively wet period between them, which confirms the conclusions of some re-
search [46-48]. For the period after 2000, the present study indicates that a large part
of China has experienced drought that has lasted to this day, which has been shown in
recent research [24,39,49].

In present research, PDI was adopted to study the variation characteristics of drought
and humidity in China during 1970-2019, and was in good agreement with the results of
other drought indices [3,39,41,50]. Therefore, the present research shows that the PDI, like
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other drought indices, successfully expresses the interannual variation characteristics of
drought and humidity events throughout China and provides certain reference significance
for the research and early warning of drought and flood disasters in China.

5. Conclusions

The present article employs the annual PDI with the precipitation and temperature
data from 830 meteorological stations to systematically study the interannual variation
characteristics of drought and humidity in China during 1970-2019. The following major
conclusions were drawn:

(1) There were 26.6% of stations that showed significant increases in annual PDI values
throughout China during 1970-2019, the proportion of stations with significant in-
creases in region I (31.6%), II (24.1%), and III (19.9%) gradually decreased. Only 6.9%
of stations showed significant decreases throughout China, the proportion of stations
in region I (3.4%), 11 (6.5%), and III (14.5%) gradually increased.

(2) Air temperature played a more remarkable role than precipitation in assessing the
drying trend with PDI. Both precipitation and air temperature were important in
assessing the wetting trend, but the former occupied a more prominent position.

(8) Most stations (85%) showed significant positive correlations between annual PDI and
SAlt. PDI and SAIp were significantly negatively correlated at all stations. SAlt and
SAIp were positively correlated in some stations (23%) and negatively correlated in a
few stations (1%).

(4) Most stations (71%) experienced more drought events, and a few (14%) experienced
more wet events or humidity events over the past 50 years. The frequency of drought
events ranged from 6% to 32% and humidity events ranged from 8% to 36%. Most
stations (95%) experienced extreme drought events, with a frequency range from 2%
to 10%. A few (21%) experienced extreme humidity events, with a frequency range
from 2% to 4%.

(5) Most stations experienced drought conditions during both 1972-1974 and 2000-2002.
Drought events occurred at very few stations during the period of 1989-1991. Both periods
of 1976-1983 and 1985-1999 can be considered as humidity periods throughout China.
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