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Abstract: Population growth, increasing urbanization and industrialization, mismanagement, and
climate change are accountable for the rising depletion and pollution of groundwater worldwide.
Consequently, water security, food security, and environmental security are in jeopardy, leading to a
severe concern for the sustainable water supply on the Earth. The contamination of groundwater,
a complex and hidden resource, is difficult to detect and treat. Therefore, it is essential to evaluate
aquifer’s propensity for contamination to protect this precious resource. In this paper, a novel
approach integrating the GWQI (Groundwater Quality Index), AVI (Aquifer Vulnerability Index),
and geospatial modeling is proposed to explore aquifer susceptibility to contamination, applied to an
unconfined aquifer. The Groundwater Quality Index (GWQI) was developed by the conventional
method and the Analytic Hierarchy Process (AHP), whereas the Aquifer Vulnerability Index (AVI) was
developed using a modified DRASTIC model. It was found that the spherical semi-variogram along
with simple Kriging is suitable for interpolating concentrations of groundwater quality parameters.
Geospatial modeling indicated that the AHP-based GWQI map is more accurate than the conventional
method. The integration of the best GWQI and AVI resulted in an Aquifer Susceptibility Index (ASI)
map, which revealed that >80% of the study area falls under ‘severe’ to ‘very severe’ susceptible
zones, while about 20% of the area falls under ‘moderate’ or ‘minimum’ susceptible zones. The
validation results confirmed that the developed ASI map is reliable. The ASI map can serve as a
useful tool for planners and decision makers to devise sustainable aquifer management programs to
protect vital groundwater resources from contamination and ensure a safe and reliable water supply
under climate change.

Keywords: groundwater pollution; aquifer susceptibility index; groundwater quality index; aquifer
vulnerability index; geospatial modeling; AHP; modified DRASTIC

1. Introduction

A major share of freshwater comes from groundwater, which is a significant and reli-
able source for human consumption, supplying nearly half of the drinking water demand
in the world. Groundwater also supports irrigated agriculture, groundwater-dependent
ecosystems, and the socio-economic development of a country [1]. However, about 30%
of the world’s principal aquifers are under escalating stress due to over-exploitation of
groundwater [2]. As of 2010, two-thirds of the total global groundwater is abstracted in
Asia, with India, China, Pakistan, Iran, and Bangladesh being major consumers. India ranks
first in the world by abstracting 251 km3 of groundwater per year, which is over a quarter
of the total groundwater withdrawals in the world [3]. On the other hand, water quality is
another important aspect of sustainable water management. The indiscriminate dumping
of various solid wastes, improper disposal of liquid wastes from diverse industries, and
biomedical wastes from hospitals as well as the excessive use of chemical fertilizers and
pesticides in agricultural fields have led to the contamination of groundwater resources in
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several parts of the world (both developed and developing nations), which threatens the
sustainability of precious groundwater resources and ecosystems [1,4]. The decline in water
tables not only results in the depletion of groundwater resources but also induces leakage
from contaminated external sources [5], frequently leading to a higher concentration of
Arsenic [6], Fluoride [7,8], and other harmful/toxic chemicals in the groundwater. Accord-
ing to SoE [9], groundwater quality is poor in over 200 districts out of 707 districts spread
across 29 Indian states, causing serious health risks. Thus, the prevention of groundwater
contamination and groundwater depletion is indispensable for the sustainable utilization
and management of available groundwater resources.

Given the growing problem of groundwater contamination, it is essential to evaluate
the propensity of potential aquifer systems for contamination at a suitable scale using
modern tools and techniques. The concept of the Groundwater Quality Index (GWQI)
is very useful in overcoming the inherent difficulty in quantifying and expressing water
quality [10]. Stigter et al. [11] developed a groundwater quality index for Algarve, Portugal
based on multivariate analysis. They reported that the Nitrate contamination and salin-
ization of groundwater in these areas are mainly controlled by Nitrogen from agricultural
sources and groundwater recharge. Babiker et al. [12] proposed a modified GIS-based
GWQI approach and applied it in the Nasuno basin, Japan. The proposed GQI revealed
two gradients of groundwater quality in the basin. Thereafter, this GIS-based water quality
index approach was used by several researchers due to its lucidity and easy-to-use quality
for elucidating the spatial characteristics of water quality.

The past studies on groundwater quality indexing have used the default interpolation
technique available in GIS for integrating the concentration maps of different water quality
parameters [12–16] except for a very few studies [17,18]. In the recent past, limited studies
have employed a susceptibility index approach to assess the propensity of groundwater for
pollution [17,19,20]. Fritch et al. [19] assessed susceptibility of the Paluxy aquifer in North
Central Texas and concluded that 27% of the study area was under high susceptibility. Saidi
et al. [17] used the susceptibility index approach for the Chebba-Mellouleche aquifer in
Tunisia and formulated management criteria for irrigation and drinking water usage in
this region. Ncibi et al. [20] evaluated the susceptibility of the Sidi Bouzid basin in Central
Tunisia and indicated that 90% of the study area has a high susceptibility to pollution.

Though a few studies have reported the application of a ‘susceptibility index’ for
evaluating aquifer’s vulnerability to contamination, none of the studies has adopted an
integrated approach of selecting appropriate methods for computing Groundwater Quality
Index (GWQI) and Aquifer Vulnerability Index (AVI) in a given hydrogeologic setting.
Almost all the past studies on groundwater quality indexing have used the entire available
water quality data, i.e., both ‘safe’ water quality parameters (concentrations within the
acceptable limits for drinking) and ‘critical’ water quality parameters (concentrations close
to or more than the permissible limits for drinking). Such a lumped approach for assessing
water quality is not technically sound and hence not reliable. Also, it is essential to avoid
duplication of water quality parameters in such studies. Therefore, only ‘critical’ and
dissimilar water quality parameters should be considered for the computation of GWQI to
ensure reliable and useful results. This study addresses these research gaps by adopting an
integrated and technically sound approach for the analysis of aquifer susceptibility. Besides
considering only ‘critical’ and dissimilar water quality parameters, the best-fit interpolation
techniques for individual water quality parameters and the most suitable methods for
calculating GWQI and AVI have been employed. The validation of the developed Aquifer
Susceptibility Index (ASI) map was carried out by using a realistic approach, which is also
unique in this study. Thus, the present study is the first of its kind as far as the GIS-based
analysis of aquifer susceptibility is concerned.

2. Overview Study Area

The study area is located in the Middle Cauvery River Basin of Tamil Nadu, India
(Figure 1) with a population of 2,722,290 (2011 Census). It spans from 10◦16′ to 11◦22′ North
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Latitude and 78◦15′ to 79◦16′ East Longitude encompassing a geographical area of about
4403.83 km2. It falls in the sub-tropical climate zone and is comprised of 14 administrative
units (locally called ‘blocks’). The temperature ranges from 38.5 ◦C to 29.3 ◦C. The average
annual rainfall in the study area is 820 ± 80 mm, with a majority of the rainfall received
from the northeast monsoon. The topography is gently sloping towards the East with a few
residual hillocks in the extreme north and south portions of the study area, with elevations
100 m above the mean sea level.
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Figure 1. Location map of the study area.

The geology of the study area predominantly consists of granite and gneiss in the
northern and southern parts of the study area, and alluvium in the middle part of the study
area along the Cauvery River. Apart from this, minor compositions of shale, limestone, and
charnockite also occur in this region. Groundwater in the study area occurs in unconfined
aquifers at depths of 2 to 20 m and in confined aquifers at depths of 20 to 40 m [21]. Ap-
proximately 69% of the study area is under irrigated agriculture, while the remaining area
is under rainfed cultivation. Irrigated agriculture predominantly depends on groundwater,
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a major share of which is from the unconfined aquifers. Therefore, it is of the greatest
importance to develop efficient strategies for the sustainable management of groundwater
quantity and quality in the study area.

3. Methodology
3.1. Data Collection

For the assessment of groundwater quality, groundwater quality data for the 46 observation
wells were acquired from the Institute of Water Studies, Chennai, Tamil Nadu. The obtained
groundwater quality data consisted of 12 major anions and cations. Out of these parameters,
seven critical parameters, i.e., Total dissolved solids (TDS), Nitrate (NO3

−-N) (as Nitrogen),
Sodium (Na+), Chloride (Cl−), Fluoride (F−), Sulphate (SO4

2−), and Total Hardness (TH
measured as CaCO3) were selected for groundwater quality indexing. Though increasing
the number of groundwater quality parameters improves the prediction of GW quality
in the study area, it may also add to the uncertainty and computation power needed.
Therefore, the concentration of parameters exceeding the permissible limits for drinking
water during the past ten years was identified as ‘critical’ parameters. These critical
parameters are listed by the World Health Organization (WHO, 2004) either under the
category of chemically derived contaminants that alter the taste, odor, or appearance of
water (TDS, TH, NO3

−-N, Na+, Cl−, F−, SO4
2−) or under the category of chemicals that

might induce potential health risk (NO3
−-N, and F−). Table 1 summarizes the statistics of

seven parameters and the corresponding threshold concentrations, based on the BIS and
WHO guidelines.

Table 1. Standards used for evaluating potable water quality.

Sl. No. Water Quality
Parameter

International: WHO [22] National: BIS (2012) [23]

Threshold Value or * Guideline
Value Acceptable Limit Permissible Limit

1 TDS (mg/L) 600 500 2000

2 Ca2+ (mg/L) 100 75 200

3 Cl− (mg/L) 250 250 1000

4 * F− (mg/L) 1.5 1 1.5

5 * NO3
− (mg/L) 50 45 No Relaxation

6 SO4
2− (mg/L) 250 200 400

7 TH (mg/L) 200 200 600

Note: Threshold Value: The minimum concentration at which taste or odor sensitivity to a particular constituent in
water can be perceived; * Guideline Value: A numerical value that represents the concentration of the constituents
in water that does not result in any significant risk to human health under life-long consumption.

For the assessment of aquifer vulnerability, the groundwater level and litholog data
were collected from the Institute for Water Studies, Chennai, Tamil Nadu. These data were
used to prepare thematic maps of ‘depth to groundwater’, ‘aquifer media’, and ‘vadose-
zone’ media. The soil map was prepared using the soil texture data obtained from the
European Digital Archive of Soil Maps. The topographic elevation data, obtained from
Shuttle Radar Topographic Mission (SRTM) DEM, were used to prepare the topographic
slope map of the study area. The pumping test data collected from the CGWB, Chennai
were used to prepare the thematic layers of recharge and hydraulic conductivity of the
study area. To delineate a thematic layer of ‘lineament density’, geomorphology data of the
study area were obtained from the Geological Survey of India. Furthermore, the Landsat-8
satellite imagery of 2012 was used to prepare a land use/land cover map of the study area
using a supervised classification technique in the ArcGIS environment.
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3.2. Development of the Aquifer Susceptibility Index Map

Aquifer Susceptibility Index (ASI) provides a typical view of the existing groundwater
quality scenario by the integration of the hydrochemical condition (Groundwater Quality
Index) and the hydrogeologic condition (Aquifer Vulnerability Index) of the study area.
An integrated approach is employed in this study to calculate the susceptibility to aquifer
(groundwater) contamination by integrating two indices: Groundwater Quality Index
(GQWI) and Aquifer Vulnerability Index (AVI), as illustrated in Figure 2. This approach is
applied for the first time in this study by integrating the most accurate GWQI map and AVI
map to produce an Aquifer Susceptibility Index (ASI) map on a macro scale.
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3.2.1. Computation of the Groundwater Quality Index

The overall quality of groundwater at a practical scale (e.g., basin or sub-basin scale)
is difficult to assess owing to the significant spatial variability of water quality parameters.
The water quality index provides a single, dimensionless value representing the overall
water quality of a water source based on the presence of several desirable and undesirable
constituents in the water [10]. In this study, the GIS-based Groundwater Quality Index
(GWQI) model was developed using the groundwater quality data of 46 observation wells,
tapping the unconfined aquifer for 2012; the locations of observation wells are shown in
Figure 1. The year 2012 was chosen because it represents a ‘normal’ rainfall year (i.e., annual
rainfall within ±10% of its long-period average) in the recent past. Firstly, the available
groundwater quality data were evaluated for their suitability for drinking based on the
standard guidelines [22]. Thereafter, only salient groundwater quality parameters, having
concentrations greater than their permissible limits for drinking, were finally selected for
this study. This removal of duplicate parameters is necessary to avoid bias in the analysis.
The groundwater quality parameters are shown in Table 1.

For the computation of the GWQI, a systematic and technically sound approach
considering geostatistical and geospatial modeling was adopted in this study. The geo-
statistical modeling involved testing whether the groundwater quality parameters follow
a normal distribution, followed by the selection of the best-fit semi-variogram and the
interpolation technique for individual parameters to understand the spatial distribution of
groundwater quality parameters. The geospatial modeling involved assignment of weights
to the groundwater quality parameters by two methods: (i) the conventional method
(proposed by Babiker et al. [12]), and (ii) the Analytic Hierarchy Process (AHP) technique,
followed by the computation of GWQI based on these methods and the generation of GWQI
maps. The procedures of geostatistical modeling and geospatial modeling are succinctly
described below.

Geostatistical Modeling

There are a variety of interpolation techniques, which can be classified into two
broad groups [24]: (a) deterministic interpolation methods (i.e., linear, polynomial, spline,
inverse distance weighted, and natural neighbour), and (b) stochastic interpolation methods
(i.e., ordinary Kriging, simple Kriging, universal Kriging, indicator Kriging, disjunctive
Kriging, and lognormal Kriging). In this study, Kriging was employed for geostatistical
interpolation of water quality parameters due to its salient merits. It reveals the measure of
uncertainty or accuracy of the predicted surface and generates a predicted surface from a
scattered set of points [25]. In addition, Kriging is generally considered as the Best Linear
Unbiased Estimation (BLUE) method of point data [26] since the observation points can be
correctly re-estimated. Suitable types of Kriging for each groundwater quality parameter
was identified following five steps: (i) spatial correlation analysis; (ii) normal distribution
checking; (iii) semi-variogram modeling; (iv) evaluation of interpolation techniques; and
(v) cross-validation of semi-variograms and interpolation techniques. The descriptions of
these steps can be found in Kitanidis [24].

Geospatial Modeling of Groundwater Quality Parameters

GWQI maps were generated following an automated workflow using the model
builder in ArcGIS 10.1, as shown in Figure 3. Concentration maps were generated for each
parameter using the best-fit semi-variogram model and interpolation technique identified
for individual groundwater quality parameters. The interpolated concentration values
were normalized by relating the regional concentration data to the WHO recommended
limits for drinking water. For each pixel ‘i’ in the concentration map, the Normalized Index
values were calculated as follows [12]:

NIi =
Ci
′ − Ci

Ci′+ Ci
(1)
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where Ci denotes the interpolated concentration value of each parameter and Ci
′ denotes

their recommended limits proposed by WHO for the respective parameter. Using these
values, the Normalized Index map for each parameter was developed. The resulting
Normalized Index (NIi) values were obtained from Equation (1) in the range of −1 to 1.
Furthermore, the normalized indices were ranked from 1 to 10 using the following equation
(Babiker et al. [12]) that signifies their level of impact on the groundwater quality:

ri =
(

0.5× NIi
2
)
+ (4.5× NIi) + 5 (2)
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The rank ‘1′ represents the least impact, while ‘10′ represents the highest impact of
the parameter on the groundwater quality. Finally, Groundwater Quality Index (GWQI)
values were computed from the rank values obtained by Equation (2) using the following
equation:

GWQIi = 100−
[

r1w1 + r2w2 . . . + rnwn

n

]
(3)

where ‘r’ denotes the rank and ‘w’ denotes the weight of a groundwater quality parameter
map. In the conventional method, ‘w’ is estimated as the mean value of the ranks for
individual water quality parameters.
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Apart from the conventional method, the Analytic Hierarchy Process (AHP) was also
applied to evaluate the groundwater quality in the study area. The AHP method is a widely
used Multi-Criteria Decision Analysis (MCDA) technique. In the case of the AHP method,
the groundwater quality parameters were weighted based on the number of observation
wells in the study area with concentrations exceeding the recommended values over the
past ten years. The assigned weights were normalized using the pairwise comparison
technique to reduce uncertainties during the weight assessment process. The normalized
weights were then added as an attribute to each groundwater quality parameter and all
seven parametric maps were integrated using a Weighted Linear Combination (WLC)
method to estimate the groundwater quality index values of the study area. The detailed
procedure of weight assignment using the AHP technique can be found in Jenifer and
Jha [27].

Finally, the GWQI values estimated for all the pixels in the study area were sorted
in ascending order and divided into ten classes, with an equal number of pixels in each
class. The first class consists of the pixels with the smallest pixel (GWQI) values and the
subsequent classes are made up of the pixels with increasing pixel values [28]. This scheme
of classification was selected because it does not impose any arbitrary thresholds and also
helps in comparing the results obtained by the two methods. The pixels with low GWQI
values represent ‘poor’ quality of groundwater and the pixels with high GWQI values
represent ‘good’ quality of groundwater.

Appraisal of the Predicted GWQI Maps

The validation of GWQI maps is a difficult task and hence it is not a common practice
followed by researchers. However, it is necessary to assess the accuracy of the GWQI re-
sults. Hence, in this study, the measured concentrations of groundwater quality parameters
(groundwater samples collected from the observation wells installed in the unconfined
aquifer) were used for the validation of GWQI results obtained by the conventional method
and the AHP technique. The observation wells with the water quality parameter concen-
trations within their acceptable limits for drinking, based on the BIS [23] and WHO [22]
guidelines, were categorized as ‘Suitable’, while the wells with water quality parame-
ter concentrations exceeding the acceptable limits, but within the permissible limits for
drinking (Table 1), were categorized as ‘Acceptable’, while the wells with water quality
parameter concentrations greater than the permissible limits for drinking were categorized
as ‘Unsuitable’. It should be noted that this categorization of observation wells was made
considering the fact that the unacceptable concentration of one parameter can render the
groundwater unsuitable for drinking. The location map of observation wells was overlaid
with the two GWQI maps, and the number of wells falling in each class was identified.
Then, two curves were plotted using the number of wells on the x-axis and their predicted
groundwater quality classes based on the two methods on the y-axis.

Sensitivity Analysis of GWQI

The sensitivity analysis refers to the investigation of changes in the results due to
some induced variations in the input data. The main intent of this analysis for GWQI is to
identify the most sensitive water quality parameter in determining GWQI. The sensitivity
of a water quality parameter is expressed in terms of a variation index that is given as [29]:

S =

∣∣∣GWQIi
Ni
− GWQIi ′

Ni ′

∣∣∣
GWQIi

× 100 (4)

where S = sensitivity of the GWQI map, GWQIi = unaltered GWQI of the i-th polygon
computed using Ni number of parameter maps, and GWQIi

′ = altered GWQI of the i-th
polygon computed using Ni

′ number of parameter maps.
In the above equation, the term ‘Unaltered GWQI’ refers to the actual GWQI computed

using all the groundwater quality parameters under study, whereas the ‘Altered GWQI’
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refers to the GWQI computed after eliminating one parameter at a time. Sensitivity (S)
was estimated by eliminating individual groundwater quality parameters and calculating
the change in the groundwater quality index values. Greater variation indicates a higher
influence of a particular parameter on the overall groundwater conditions in the study area.

3.2.2. Computation of Aquifer Vulnerability Index (AVI)

The vulnerability of aquifer was assessed using the well-known overlay and index
model DRASTIC (Aller et al. [30]). However, the original DRASTIC model takes into
account only seven endogenous parameters viz., ‘Depth to water’, ‘net Recharge’, ‘Aquifer
media’, ‘Soil media’, ‘Topographic slope’, ‘Impact of vadose zone media’, and ‘hydraulic
Conductivity’ (abbreviated as “DRASTIC”). Considering the varied land utilization and
weathered rock condition in the study area, the original DRASTIC method/model was
modified by adding two exogenous parameters [‘land use/land cover’ (LU) and ‘lineament
density’ (LD)] and was termed as the modified DRASTIC model (i.e., DRASTIC-P-LDLU).
The Aquifer Vulnerability Index (AVI) was calculated as a linear additive combination
of weights of the above-mentioned model parameters and the corresponding ratings of
their features/classes. The vulnerability maps thus generated, based on the original and
modified DRASTIC models, were validated and the most suitable model was selected for
computing Aquifer Susceptibility Index (ASI). The detailed methodology for calculating
AVI can be found in Jenifer and Jha [31].

Moreover, the most suitable GWQI and AVI models were selected and the two maps
were converted into the raster format (grid size of 10 m × 10 m) and superimposed in the
ArcGIS environment to compute ASI as follows:

ASI = GWQI × AVI (5)

Thereafter, the ASI values were grouped into four classes/zones in the GIS environ-
ment to generate a map depicting the susceptibility of groundwater to contamination in
the study area.

3.3. Validation of Aquifer Susceptibility Index (ASI)

The ASI map developed in this study was validated to find out its accuracy and
reliability. To authenticate the obtained results, a novel method of contaminant source
identification has been adopted in this study. For this purpose, all the possible sources
of groundwater contamination present in the study area were identified. These sources
include settlements, solid waste disposal sites, wastewater treatment plants, graveyards,
gasoline stations, industries (Iron and steel, leather, paper, oil, chemical, and food), mining
areas, and recreation sites. A location map depicting these potential sources of groundwater
contamination was prepared using ArcGIS 10.1, which was overlaid onto the ASI map to
find out the percentage of contaminant sources in each zone.

4. Results and Discussion
4.1. Identifying Best-Fit Semi-Variogram Models and Interpolation Techniques

The spatial correlation of the various water quality parameters, examined using
Moran’s I and Geary’s C ratio, are summarized in Table 2, which indicates that the values
range from 0.76 to 0.91 and 0.09 to 0.24, respectively. These findings suggest that the
groundwater quality parameters exhibit a strong positive correlation and hence are suitable
for geostatistical modeling. The results of the Kolmogorov–Smirnov test (Table 3) indicate
that the calculated values are less than the critical values for all the groundwater quality
parameters. Therefore, the groundwater quality datasets follow a normal distribution,
which in turn ensures the applicability of geostatistical modeling.
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Table 2. Results of spatial correlation analysis for different water quality parameters.

Sl. No. Groundwater Quality Parameter Moran’s-I Geary’s-C

1 Sodium 0.89 0.11

2 Chloride 0.83 0.13

3 Sulphate 0.88 0.12

4 Nitrate-Nitrogen 0.78 0.24

5 Fluoride 0.91 0.09

6 Total Hardness 0.76 0.15

7 Total Dissolved Solids 0.86 0.12

Table 3. Results of the normal distribution test for the groundwater quality parameters.

Sl. No. Groundwater Quality Parameter Value of K(Cal)
Value of K(Critical)

α = 0.05 α = 0.01

1 Sodium 0.103 0.273 0.227

2 Chloride 0.152 0.273 0.227

3 Sulphate 0.100 0.295 0.246

4 Nitrate-Nitrogen 0.175 0.295 0.246

5 Fluoride 0.190 0.418 0.314

6 Total Hardness 0.183 0.273 0.227

7 Total Dissolved Solids 0.183 0.273 0.227

The best-fit semi-variogram model and the interpolation techniques are identified based
on three goodness-of-fit criteria, which are summarized in Supplementary Tables S1–S7. It
can be seen from the supplementary tables that, in some cases, very little or no variation
in the values of goodness-of-fit criteria is found for all four semi-variogram models. In
such cases, the simplest semi-variogram model (i.e., spherical) was selected instead of the
complicated semi-variogram model (i.e., exponential). Thus, it is evident from Tables S1–S7
that a combination of simple Kriging and the ‘spherical’ semi-variogram model fits best for
all the groundwater quality parameters. However, there are some exceptions, such as the
‘Gaussian’ semi-variogram and the ‘circular’ semi-variogram models, found to be the most
suitable for F− and SO4

2− parameters, respectively (Table 4). It is noteworthy that, although
the type of semi-variogram model changes for these two groundwater quality parameters,
the most suitable interpolation technique (i.e., simple Kriging) remains the same.

In addition, the ratio of the nugget to sill [C0/(C0 + C)] was estimated in order to know
the spatial dependency of groundwater quality parameters. A relatively small nugget-to-
sill ratio indicates a higher accuracy of the geostatistical model in capturing major spatial
variation in the groundwater quality [32]. The values of range, nugget, and sill for each
parameter are summarized in Table 4. It is obvious from this table that there is ‘strong’
spatial dependence (ratio ≤ 25%) in Cl−, NO3

−-N, TH, and TDS. On the other hand,
‘moderate’ spatial dependence (ratio = 25–75%) can be seen in F− and Na+, and ‘weak’
spatial dependence (ratio ≥ 75%) in SO4

2−. The ‘weak’ spatial dependence of sulphate in
groundwater can be attributed to the higher spatial variation in sulphate concentration in
the zones where land use types are industrial, agricultural, and settlements [33].
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Table 4. Best-fit semi-variogram models and interpolation techniques for individual groundwater
quality parameters.

Sl. No. Parameter Semi-Variogram
Model

Interpolation
Technique Range (km) Nugget

(C0)
Partial Sill

(C)
C0 × 100/
(C + C0)

1 Na+ Spherical Model Simple Kriging 18.24 0.42 0.46 48%

2 Cl− Spherical Model Simple Kriging 17.63 0.13 0.63 17%

3 SO4
2− Circular Model Simple Kriging 18.47 0.94 0.12 77%

4 NO3
−-N Spherical Model Simple Kriging 17.08 0.17 0.54 19%

5 F− Gaussian Model Simple Kriging 17.72 0.81 0.91 47%

6 TH Spherical Model Simple Kriging 18.70 0.18 0.61 23%

7 TDS Spherical Model Simple Kriging 18.8 0.23 0.86 21%

4.2. Spatial Distribution of Water Quality Parameter Concentration

Concentration maps of the groundwater quality parameters were generated using
the best-fit semi-variogram models and the best-fit interpolation techniques, as identified
in the previous sub-section. The spatial distribution of the concentrations of the seven
groundwater quality parameters is illustrated in Figure 4a–g and their brief descriptions
are provided below.
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4.2.1. Sodium

The sodium concentration in groundwater Figure 4a varies from 8 to 557 mg/L in the
study area. Very high concentration of 500–557 mg/L is apparent in the Thiruverumbur
block, owing to numerous metal-processing industries located in this area, where sodium
is used as one of the cooling agents. This has also affected the areas around this block viz.,
Andanallur, Lalgudi, and Manikandam blocks where high sodium concentration is found
in the groundwater. The remaining blocks show low to medium sodium concentrations
(8–15 mg/L).

4.2.2. Chloride

Chloride is generally conservative since it is chemically more stable than other ions
and it ranges from 84 to 660 mg/L in groundwater over the study area. Figure 4b shows
that the concentration of Cl− ions in groundwater exceeds the WHO prescribed taste
threshold in almost all the blocks except Thuraiyur and Uppilliapuram. The Cl− concen-
tration in groundwater is generally attributed to saltwater intrusion, the return flow from
irrigated land, and the pollutants originating from garbage dumps. Since the study area
is considerably far from the sea, the higher Cl− concentration in groundwater is mainly
due to anthropogenic sources. In addition to these sources, the effluents disposed of by
the two sugar factories are also responsible partially for the higher Cl− concentration in
groundwater. The use of saline groundwater for irrigation also increases Cl− concentration
in the already saline groundwater. Although there is no immediate health risk due to
higher Cl− concentration, the continuous consumption of drinking water containing high
chloride has serious negative health impacts such as colon cancer.

4.2.3. Nitrate–Nitrogen

Figure 4c shows that the NO3
−-N concentration in groundwater varies from 1.1 to

32.4 mg/L and exceeds the permissible limit for drinking in almost all the blocks. The
primary source of NO3

−-N in groundwater is the agricultural practices followed in the
study area (i.e., anthropogenic source). Nitrate can persist in groundwater for decades and
accumulate in high levels since more Nitrogen fertilizers are applied to the agricultural
fields every year. Other non-agricultural sources of Nitrate include seepage from septic
tanks and cesspools, heap of cattle dung, etc.

Moreover, airborne Nitrogen compounds emitted by industries and automobiles
are deposited on the land surface as dry particles, which infiltrate during precipitation.
Although Nitrate is not a public health threat to adults, its ingestion by infants through
drinking water can cause low oxygen levels in the blood—a potentially fatal condition called
‘Methemoglobinemia’ or ‘blue-baby’ syndrome. The Nitrogen loading from agricultural
sources can be managed by optimizing the quantity and frequency of chemical fertilizers
and pesticides with the help of precision farming techniques. Additionally, a paradigm
shift from chemical fertilizers to biofertilizers can minimize or avoid nitrate contamination
in the groundwater.

4.2.4. Fluoride

Fluoride concentration in groundwater in the study area varies from 0.2 to 1.9 mg/L,
as illustrated in Figure 4d. Its concentration exceeds the ‘guideline value’ prescribed by
WHO [22], mostly in the southern part of the study area. Fluoride is an important trace
element in groundwater, which is generally derived from natural minerals like Appetite,
Biotite, Cryolite, Fluorite, etc. The principal anthropogenic sources of F− in the study
area are the combustion of coal and the dumping of fly ash on the land surface by cement
industries, mining activities, and the application of Phosphate fertilizers. The burning
of coal causes the aerial emission of gases with particulate Fluoride, which percolates
during rainfall. Elevated F− intakes cause more serious effects like skeletal fluorosis (with
adverse changes in the bone structure) and crippling skeletal fluorosis, when drinking
water contains more than 3 mg and 10 mg of F− per liter, respectively [7].
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4.2.5. Sulphate

Sulphate is an essential component contributing to dissolved solids in groundwater.
The Sulphate concentration in groundwater is well within the recommended limits in
the study area, ranging from 12 to 201 mg/L, as shown in Figure 4e. However, in the
Thiruverumbur block and its peripheral regions, its concentration is comparatively high,
owing to the use of sulphuric acid and sulphate in metallurgical and glass manufacturing
industries located in this region. Also, the Sulphate concentration is increased by the
application of gypsum (CaSO4·2H2O) as a soil amendment to improve soil drainage [34].

4.2.6. TDS

TDS refers to the measure of dissolved inorganic substances dried at 105 ◦C and
expressed in mg/L units. The spatial distribution of TDS in groundwater, shown in
Figure 4f, almost mirrors the sodium and sulphate distribution in the study area. The
dissolved solids reduce with a decrease in the groundwater level. TDS values range from
about 341 to 1151 mg/L and they exceed the threshold limit for drinking in all the blocks of
the study area except Vaiyampatti and some parts of the Manapparai, Marungapuri, and
Uppilliapuram blocks. The TDS concentration of groundwater falls within 1000 mg/L in
all the blocks of the study area, which suggests that the groundwater is ‘freshwater’ [35].
However, the TDS of Thiruverumbur and some parts of the Lalgudi and Manikandam
blocks exceed 1000 mg/L, which indicates ‘brackish water’. Furthermore, although the
groundwater with TDS ranging from 1000 to 3000 mg/L is not suitable for domestic
purposes, it can be used for irrigation [36].

4.2.7. TH

Total hardness generally refers to the dissolved calcium and magnesium in water. The
TH values of groundwater range from 258 to 657 mg/L in the study area. However, they
are within the 600 mg/L (the permissible limit recommended by BIS [23]) and the water
is characterized as ‘very hard’, according to the classification suggested by Sawyer and
McCarty [37]. Figure 4g shows that ‘hard water’ is mainly found in the central and eastern
parts of the study area due to limestone deposits and high dissolved solids in these regions.
Although TH as such does not pose serious health effects, it causes limescale formation in
plumbing and water heaters, and poor performance of soaps and detergents.

4.3. Groundwater Quality Index Maps of the Study Area

Two Groundwater Quality Index (GWQI) maps, using the conventional method and
the AHP technique, are shown in Figure 5a,b, respectively. The GWQI, calculated using
the conventional method, shows that the groundwater is of ‘medium’ to ‘high’ quality
since the GWQI values are generally larger (>70). These values were then classified into
ten different classes at 10% areal interval. In Figure 5a, there is an apparent gradient in the
groundwater quality that decreases with the elevation from north to south since the shallow
water table enables faster percolation of contaminants, leading to poor groundwater quality.
In addition, in the northern part of the study area, there are relatively less developmental
activities (i.e., anthropogenic influence) and hence fewer potential sources of pollutants.

On the other hand, the GWQI map generated using the AHP method, shown in
Figure 5b, reveals that the absolute values of GWQI are slightly higher (>90), indicating
‘high’ quality of groundwater in the study area. Both the GWQI maps (obtained by the
conventional and AHP methods) depict similar gradients in the variation of groundwater
quality over the study area. However, the AHP method predicts a lesser area (30%) under
the ‘low’ groundwater quality class than the conventional method (42%). In contrast, the
area predicted by the AHP method under ‘medium’ groundwater quality class is greater
(52%) than that predicted by the conventional method (43%).
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4.4. Accuracy of Groundwater Quality Index Maps

The GIS-based GWQI maps were validated with the site-specific concentrations of
seven groundwater quality parameters, measured at 46 locations over the study area. It
is found that the AHP method shows a high correlation in the case of ‘low’ and ‘medium’
groundwater quality classes. However, the ‘high’ groundwater quality class is more
accurately delineated by the conventional method than the AHP method. Further, two
(conventional and AHP) curves were fitted to the points as shown in Figure 6, which
indicates that the area under the curve for the AHP method is larger than that obtained
for the conventional method. Thus, the performance of the AHP method is better than the
conventional method in evaluating groundwater quality, thereby indicating that the results
of the AHP method are more reliable than that of the conventional method.
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4.5. Sensitivity of Groundwater Quality Index Methods

The results of the sensitivity analysis are summarized in Table 5, which indicate
that TH is the most influential parameter in the case of the GWQI map based on the
conventional method, followed by TDS and NO3

−-N, while SO4
− is the least influential

parameter. However, the sensitivity of the GWQI is very small, ranging from 1.7 to 3.0%,
as the index was computed using the mean rank values. On the other hand, the results of
the sensitivity analysis reveal that the sensitivity of the GWQI based on the AHP method
is much less, compared to the conventional method, which could be due to the fact that
normalized weights are used in the AHP method for computing GWQI. Thus, the AHP
technique predicts more stable GWQI than that predicted by the conventional method,
thereby suggesting greater robustness and better technical capability of the AHP technique.
Furthermore, the GWQI computed using the AHP technique is highly sensitive to NO3

−-N,
followed by Cl− and F−, while it is least sensitive to TDS. Therefore, these water quality
parameters (i.e., NO3

−-N, Cl−, and F−) must be monitored regularly with the greatest
accuracy, compared to other water quality parameters.

Table 5. Statistical summary of map removal sensitivity analysis.

Sl. No. Groundwater Quality
Parameter

Values of GWQI for the Methods

Conventional Method AHP Method

Range Mean Range Mean

1 Sodium 2.63–2.82 2.73 2.39–2.45 2.41

2 Chloride 2.96–4.65 3.00 2.43–2.45 2.44

3 Sulphate 2.30–2.59 2.53 2.49–2.54 2.53

4 Nitrate-Nitrogen 1.67–1.91 1.78 2.47–2.53 2.50

5 Fluoride 2.60–2.81 2.68 2.71–2.75 2.73

6 Total Hardness 1.67–1.88 1.70 2.51–2.59 2.55

7 Total Dissolved Solids 2.20–2.32 2.25 2.42–2.46 2.44

4.6. Aquifer Vulnerability Index Map

The Aquifer Vulnerability Index map of the study area, generated by the modified
DRASTIC model (DRASTIC-P-LDLU), is shown in Figure 7. The AVI values of 99–281 were
categorized into four different vulnerability classes, viz., ‘very high’, ‘high’, ‘moderate’,
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and ‘low’ vulnerability of the aquifers. It is evident from Figure 7 that the zone with
‘low’ vulnerability is in the northern and southern parts of the study area, encompassing
about 7% of the area, while the ‘very high’ vulnerability zone, encompassing 21% of the
area, is concentrated around the central portion of the study area. ‘Moderate’ to ‘high’
vulnerability zones cover 72% of the total area and are spread throughout the study area.
This vulnerability map indicates that the hydrological settings prevalent in the study area
can induce surface contaminants to percolate into underlying aquifer systems, especially
unconfined aquifers.
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4.7. Aquifer Susceptibility to Contamination

The Aquifer Susceptibility Index (ASI) map of the study area is illustrated in Figure 8.
The values of ASI range from 194 to 396 (dimensionless values), based on which the
study area can be divided into four classes: (a) minimum (ASI = 194 to 257), (b) moderate
(ASI = 257 to 285), (c) severe (ASI = 285 to 309), and (d) very severe (ASI = 309 to 396). The
area covered under each class is presented in Table 6; the lowest index values refer to the
‘minimum’ susceptibility class, which indicates the least susceptibility of the aquifer to
contamination and occupies 1.56% of the total area, predominantly in the extreme northern
and southern portions of the study area. Two major reasons for the lower susceptibility in
these regions could be attributable to geogenic and anthropogenic factors. The geogenic
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factors relate to the hydrogeologic setting below the ground, which constitutes rocks made
of Anorthosite and Charnockites. These rocks lack primary porosity and therefore minimize
the percolation of surface contaminants into the aquifers. The anthropogenic factor in the
northern and southern parts of the study area is predominantly agriculture, which reduces
the chance of groundwater contamination compared to the regions with industries, mining
activities, and urban settlements. The ‘moderate’ susceptibility class covers 17.61% of the
study area and is mostly spread around the periphery of the ‘minimum’ susceptible zones
and partly along the Cauvery River in the middle portion of the study area (Figure 8). The
‘severe’ susceptibility class covers an area of 55.02% and the ‘very severe’ susceptibility
class encompasses an area of 25.81%, spread throughout the study area and are mainly
concentrated in the central portion of the study area. The main factors responsible for
the considerably high aquifer susceptibility to contamination in these regions are: (i) flat
topography, (ii) an alluvium type of geology that has high permeability and hence faster
movement of contaminants, and (iii) highly industrialized and urbanized areas. Thus, these
regions host several potential sources of contaminants (Figure 8) originating from different
anthropogenic activities.
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Table 6. Classes of aquifer susceptibility and the area under each class.

Class Range of Aquifer
Susceptibility Index Susceptibility Level Area Covered (%)

1 194–257 Minimum 1.56

2 257–285 Moderate 17.61

3 285–309 Severe 55.02

4 309–396 Very Severe 25.81

4.8. Validation Results of Aquifer Susceptibility Index Map

The validation of the developed Aquifer Susceptibility Index (ASI) map is shown
in Figure 8, wherein the locations of different sources of contaminants over the study
area are plotted. It is discernible from this figure that the area under the ‘minimum’
susceptible zone has the fewest contaminant sources (1.6%), while the ‘moderate’ zone has
17.6% of the contaminant sources. In contrast, the ‘severe’ and ‘very severe’ susceptibility
zones host 55% and 26% of the contaminant sources, thereby indicating a greater threat of
groundwater contamination in these zones. The current sources of contamination plotted in
Figure 8 coincide with the regions with ‘severe’ and ‘very severe’ susceptibility of aquifers
to contamination. Thus, this confirms that the aquifer susceptibility map developed in this
study accurately predicts the susceptibility of aquifers to contamination in the study area.

The aquifer susceptibility map developed in this study can be used by planners,
decision-makers, and practitioners to protect vital groundwater resources in the study
area in general, and highly susceptible zones in particular. The regions with ‘severe’ and
‘very severe’ susceptibility indices are under serious threat and hence the groundwater
of these regions must be safeguarded from contamination on a priority basis. In the
‘minimum’ and ‘moderate’ susceptibility zones as well, suitable management strategies
must be implemented for the protection and management of vital groundwater resources.
Appropriate remedial measures such as rainwater harvesting and artificial recharge of
groundwater, together with strict regulations for pollution control must be implemented to
ensure a sustainable water supply (both quantity and quality) in the study area.

5. Conclusions

This study presents a novel approach for assessing aquifer susceptibility to contami-
nation by adopting an integrated and technically sound approach. It was demonstrated
through a case study in an unconfined aquifer system underlying the Cauvery River
basin of Tamil Nadu, India. In this study, only critical water quality parameters, the best
GWQI map and the best AVI map, were employed to develop an Aquifer Susceptibility
Index (ASI) map of the study area. Finally, the developed ASI map was validated using a
realistic approach.

A combination of simple Kriging and a ‘spherical’ semi-variogram model was found
most suitable for interpolating the groundwater quality parameters. The AHP method was
found to be the most reliable for GIS-based groundwater quality evaluation in the study
area with weathered hard-rock aquifer systems. The GWQI map generated by the AHP
method was then integrated with the best AVI map, generated by the modified DRASTIC
model, to produce an ASI map of the study area. The ASI map revealed that more than 80%
of the study area falls under ‘severe’ to ‘very severe’ susceptible zones, which signify that
the groundwater present in these zones is at the highest risk of contamination. On the other
hand, about 20% of the study area is under ‘moderate’ (about 18%) and ‘minimum’ (about
2%) susceptible zones, which suggest that the groundwater of these zones is at moderate to
low risk of contamination. The validation results of the developed ASI map indicate that
the aquifer susceptibility to contamination predicted by the proposed integrated approach
is accurate and reliable.

The nexus between anthropogenic and geogenic factors provides a composite sus-
ceptibility index. The geology (including the vadose zone) of any region is a complex
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natural subsurface setting, which cannot be altered by human beings. However, a variety
of anthropogenic activities that significantly alter topography and land use/land cover
can be minimized, or avoided, to safeguard nature (ecosystems and biodiversity), which
in turn can reduce or eradicate human-induced sources of groundwater contamination.
Additionally, strict rules and regulations for pollution control/prevention, as well as for
hazardous waste disposal and sustainable waste management, are the need of the hour
in the study area/region. It is a well-known fact that preventive measures for protecting
nature, in general, and groundwater and surface water resources, in particular, are more vi-
able, cost-effective, and successful than remedial measures for several reasons (e.g., natural,
technical, and economic constraints). The ASI map developed in this study can serve as
a useful tool for planners and decision makers to formulate zone-specific mitigation and
adaptation strategies in order to protect scarce groundwater and surface water resources
in the study area/region. It is strongly recommended to initiate committed actions in the
‘severe’ and ‘very severe’ susceptible zones for protecting precious groundwater resources.
On the other hand, it is also essential to maintain the drinkable quality of groundwater in
the other two zones (‘moderate’ and ‘minimum’ susceptible zones) on a long-term basis.
Thus, aquifer susceptibility mapping is instrumental for the planning, decision making, and
implementation of policies/scientific strategies for sustainable groundwater management
at a large scale. The approach/methodology demonstrated in this study can easily be
replicated in diverse hydro-climatic and hydrogeologic regions of the globe.
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