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Abstract: The importance of supporting agricultural mechanization in agri-food supply chains
to achieve agricultural and rural development has been comprehensively recognized. There has
been a surge in the attention given to Sustainable Agricultural Mechanization (SAM) in the context
of developing countries. However, it is important to address the major challenge of studying
the important factors and the influencing path of SAM. As a representative province of China’s
agricultural development, Hubei has developed significantly in terms of agricultural mechanization
in the past 20 years. Therefore, using a literature review, representative field survey data, and
statistical analytical approaches, 28 relevant factors related to SAM were extracted, and the main
influencing factors of SAM were determined by building an integrative conceptual framework
and using the corresponding structural equation model based on partial least squares (PLS-SEM).
The relationships and influencing paths between the factors were analyzed, and a confirmatory
measurement model and a structural model of the effects on sustainable agricultural mechanization
were constructed. The results show that (1) the PLS-SEM model fits the experimental data well
and can effectively reflect the relationships among factors in this complex system; (2) within the
factors influencing the development level of SAM in Hubei, China, the economic factors have the
greatest weight, whereas government policy factors are the core elements promoting development,
and environmental factors are the most noteworthy outcome factors; and (3) economic and policy
factors play a very obvious role in promoting SAM through the influencing paths of agricultural
production and agricultural machinery production and sales. Ultimately, corresponding suggestions
have been put forward for decisions regarding the implementation of SAM for similar countries
and regions.

Keywords: sustainable; agricultural mechanization; structural equation model (SEM); partial least
square (PLS); affecting factors; agri-food supply chain

1. Introduction

Mechanization is a crucial input for agricultural crop production and one that his-
torically has been neglected in the context of developing countries [1], especially in sub-
Saharan Africa, Southeast Asia, South Asia, and Latin America. Mechanization contributes
significantly to the development of food supply chains through improved agricultural
practices for increased production and enhanced food security. It eases and reduces hard
labor, relieves labor shortage, and improves the productivity and timeliness of agricultural
operations [2,3].

The issue of Sustainable Agricultural Mechanization (SAM) has received considerable
critical attention in recent years. The research of SAM continues the typical paradigm
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of sustainable agriculture [4], wherein SAM can be described as mechanization that is
economically viable, environmentally sensitive, and socially acceptable [3]. The United Na-
tions (UN) Food and Agriculture Organization (FAO) SAM website noted that sustainable
mechanization is important, as farmers who have access to improved agricultural tools and
powered technologies can shift from subsistence farming to more market-oriented farming,
making the agricultural sector more attractive to rural youth [2]. SAM can improve the effi-
cient use of resources, enhance market access, and contribute to mitigating climate-related
hazards, as it has the potential to render producing, processing, and marketing activities
and functions more efficient, economically feasible, socially acceptable, and environmen-
tally friendly [5]. As the effects of climate change and natural resource depletion become
more visible, sustainable mechanization has adopted Conservation Agriculture principles,
and the “Save and Grow” paradigm-which aims to protect the soil, use less energy, and
encourage more efficient and precise use of inputs-will be essential to maintain and sus-
tainably improve food production and distribution. Analyses of SAM have to account
for not just the technical, economical, and engineering aspects, but also the linkages and
inter-dependencies with other sectors, such as social, environmental, cultural, and policy
aspects, and consider their role when contributing to the sustainable development of the
food and agriculture sector. Overcoming the environmental and social challenges of today
is not an isolated action but is part of a comprehensive view of agriculture that considers
efficiency and ecology [2].

As a representative of developing countries, the agricultural mechanization of China
has made remarkable achievements in the past 20 years. The comprehensive mechanization
rate of crop cultivation and harvesting in China has risen from 45.8% in 2008 to 71.3% in
2020, an average annual increase of about 2%. However, with the slowing of economic
growth and the “The New Normal” of agriculture, the development of agricultural mecha-
nization has recently faced many unsustainable problems [6]. The challenges to agricultural
machinery and equipment, production technology, and professional and technical person-
nel are structural shortages; issues with public service funding and an insufficient effective
supply of social service systems and policy support increase pressure on agricultural re-
sources, the ecological environment, and the cost of agricultural machinery [7]. Therefore,
this present research focuses on the role of the influencing factors, the development paths,
and the development mode of SAM.

The purpose of this study was to take Hubei, a typical region of China, as an example
for empirical analysis to estimate the effect of various factors and the development paths
of SAM in an integrated analytic framework. The results will enable us to understand
the mutual influence of SAM on agriculture, society, the economy, and the environment
and can be used to help policymakers and project implementers of agricultural machinery
purchase subsidy policies and further formulate and implement their policies’ strategy and
development path, thus promoting steady and efficient improvements in SAM.

2. Literature Review and Conceptual Framework
2.1. Literature Review

In line with new efforts and opportunities to promote mechanization, there is a
growing body of empirical research on the topic of SAM. Research on adaptation to SAM is
diverse but mainly focuses on two aspects: (1) the relationship between SAM and economic,
environmental, and social sustainability and policy factors; (2) the influencing factors of
mechanization development and effective implementation. These two aspects complement
each other.

As a sub-element of sustainable development of agriculture, SAM is bound to interact
with multiple systems. Some scholars have tried to explore the agronomic, environmental,
and socioeconomic effects of mechanization, thereby revealing linkages and trade-offs. For
example, the economy has a driving effect on mechanization, which is a direct require-
ment for improving agricultural output; mechanization is bound to have an impact on
the environment, and the machinery industry can promote mechanization [8–12]. Some
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research has given a voice to the rural population in Africa regarding mechanization and
allowed researchers to identify causal impact chains [13]. Other scholars have researched
and analyzed the effects of policy formulation. Governments must create an enabling
environment to allow the multiple dimensions of SAM to develop. This policy environment
includes mechanization policy instruments, including appropriate short-term subsidies for
purchasing and leasing equipment [14,15], and law [16]. Sustainability requires the mecha-
nization pathways promoted through policies to be thought through carefully. Formulating
adaptation strategies or frameworks are the most common means used by governments to
carry out SAM actions, which can guide countries or regions [17]. According to different
national conditions, some countries have issued national promotion policies or laws to
guide practice, while others have issued action plans that match the strategies. Some
studies have also empirically analyzed the relationships of agricultural mechanization
with agricultural carbon emissions [18–20], green agricultural transformation [21–23], a
low-carbon economy, and food safety [24]. Table 1 lists various agricultural sustainability-
and SAM-related policies introduced by developing countries in the past two decades.

Table 1. Agricultural sustainability/SAM related policies.

Country/Region/
International Organization Policy Year Literature

Source

China China’s Agricultural Mechanization Promotion Law 2004 [14]

Tanzania Tanzania Agricultural Mechanization Strategy 2006 [16]

Mexico MasAgro program of a government public policy framework 2009 [15]

Bangladesh Cereal Systems Initiative for South Asia—Mechanization and
Irrigation (CSISA-MI) project 2013 [15]

India National Agricultural Extension and Technology Mission
(NMAET), Sub Mission on Agricultural Mechanization (SMAM) 2014 [3]

Nepal Agricultural Mechanization Promotion Policy (AMPP) 2014 [17]

Ethiopia Ethiopia National Agricultural Mechanization Strategy 2014 [16]

Kenya National Agricultural Mechanization Policy 2016 [16]

FAO and AUC Sustainable Agricultural Mechanization for Africa 2018 [16]

With the continuous deepening of SAM research, scholars have begun to pay attention
to the influencing factors of SAM. Few previous studies have looked at the potential effects
of mechanization empirically but rather have mostly focused on yields and labor alone [13].
However, the factors involved in SAM are likely to be more complex. However, because of
the differences in the research objects, research perspectives, or sample selection, the con-
clusions of the different studies are different. In China, the research related to SAM can be
roughly divided into three categories: (1) qualitative policy analysis [7]; (2) mechanization
as a sub-element of agricultural sustainability [10,25]; and (3) a discussion of factors related
to SAM, including the environment [11,21,22], agricultural carbon emissions [19,20,23],
mechanization level [14,26,27], agricultural machinery industry [18], etc. However, there is
a lack of quantitative and systematic research on SAM in China.

This study focused on the interactions among SAM factors and undertook an overall
and systematic quantitative empirical study to make up for the shortcomings in the existing
literature. At the same time, an analysis system covering education and training, science
and technology, and other influencing factors was constructed, which expanded the scope
of influencing factors and the path of research by including the ecological environment in
the influencing factors of agricultural mechanization. This part of the research is an impor-
tant complement to the existing literature on SAM. These two aspects are the important
innovation points of this study, which are different from those in previous studies.
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2.2. Analysis of the Influencing Factors of SAM

There is a wide range of factors affecting SAM. Each country has different land con-
ditions, planting bases, and climate backgrounds, and there are great differences in the
mechanization process. Therefore, research on the development mode mechanization and
appropriate strategies should ensure the application of mechanization theory at the decom-
position level. The types of strategies needed to promote the development of SAM must
account for the conditions of specific sites, each of the factors and the mechanisms, and the
extent to which these influence SAM will vary from country to country, potentially even
within countries. According to investigation and research, literature reviews, and policy
analyses, combined with the actual situation in different regions, it can be concluded that the
factors affecting the SAM include those summarized in Table 2. Of course, one should not
ignore that there are potentially several adverse propositions that have emerged from using
agricultural mechanization, such as “mechanization leads to unemployment” or “small-
holders cannot benefit from mechanization” (particularly in developing countries) [3,28].
Such topics also can affect policies and programs regarding mechanization.

Table 2. Influencing factors of SAM.

Country/Area, Continent Influencing Factors Literature Source

Benin, Kenya, Nigeria, and
Mali, Africa

Soil, terrain and rainfall, institutional environments
Social objectives of societies, labor shortages, timeliness

Land preparation, higher yields, soil fertility, deforestation
[13,28]

Eleven countries, Africa

Size of the household, gender of the household, participation in off-farm
economic activities, farm size, land tenure, distance to the input and

output markets, type of farming system, access to extension services, use of
fertilizer and pesticides

[29]

Ghana, Africa Population pressure, better market access [30]

Ethiopia, Africa Rising rural wages, working animal costs [31]

Africa Education level, area cropped, access to land,
access to credit and agroecological zone [32]

Asia Household assets, credit availability, electrification, road density,
substantial capital investment, purchases and rental services [33]

Nepal, Asia Land consolidation, business mergers, more intensive cropping,
labor displacement [17]

India, Asia Irrigation, access to institutional credit, size of land holdings,
age-old customs [34]

Bangladesh/South Asia, Asia Male headship, access to credit and extension services, economic status,
training positively, rental services, educational level [35,36]

Myanmar, Asia Structural transformation, timeliness, speed, drudgery, risk, yields,
financing and machinery prices, policies and interventions [37]

China, Asia

Scale of farmland management, agricultural labor transfer, farmers’ income
level, the development level of the agricultural machinery industry, the

cost of using agricultural machinery products
Agricultural equipment level, regional economic development, land

resources, policy, environment
Economic development, scale of farmland, agricultural planting structure

[7,14,21,25–27]
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From the analysis above, it can be seen that the factors affecting the sustainable devel-
opment of agricultural mechanization mainly include economics, society, the population
and labor force, agricultural production, land resources, industrial technology develop-
ment, education, the energy environment, ecology, and policies and regulations. There are
many corresponding component indicators with each aspect. The relationships are also
more complicated, and the mutually influencing relationship paths are often not clear, so
traditional methods of research are more difficult. Therefore, this article focused on the use
of structured statistical research methods to comprehensively and quantitatively analyze
the relationships among the influencing factors of agricultural mechanization and the path
and intensity, as well as to quantitatively verify the conclusions of the qualitative analysis.
According to the analysis above and index-selection principles, 28 representative indicators
were finally selected from the different categories (socioeconomic, environmental, pro-
duction and land resource, agricultural machinery industry and technology, agricultural
mechanization status and policy support, etc.).

3. Materials and Methods
3.1. Research Area and Data Sources

The regional area of Hubei Province (185,900 km2) is equivalent to that of a medium-
sized developing country, such as Uganda, Ghana, or Cambodia. The terrain includes
plains, hills, mountains, and lakes. There are various agricultural planting operations, and
they have been dominated by small farmers and small business owners for a long time.
The development strategy of SAM is highly typical of quite a few developing countries.
The original data of Hubei Province collected in this article came from China Statistical
Yearbook, China Agricultural Machinery Industry Yearbook, Hubei Statistical Yearbook,
Hubei Rural Statistical Yearbook, and some field investigations. For some of the missing
data and unreasonable data, we estimated the missing values through mean replacement
and regression interpolation, then completed data preprocessing and finally obtained
392 valid data for the 28 measurement indicators used in this article. The descriptive
statistical results of indicators data are shown in Table A1 (see in Appendix A).

To eliminate the effects of the different orders of magnitude and dimensions of different
variables, the data of all variables were standardized. The method used for standardization
of the variables was the Min-Max standardization method [14]. That is, all variables were
transformed linearly. If MinX and MaxX are the minimum and maximum values of variable
X, after standardization, X’ = (X −MinX)/(MaxX −MinX). It is also difficult to deal with
the complexity of SAM via traditional methods. Furthermore, in this study, there were
several latent influencing variables (latent variables) of practical significance for agricultural
mechanization, and there were also several different observation variables or manifest
variables for each latent variable, which may have also affected other latent variables. These
can be influenced by the internal and external relationships of SAM within the model, and it
was necessary to evaluate the influencing relationships and size from different aspects. The
six aspects of the influencing factors can be regarded as latent variables, and the influencing
factors themselves can be regarded as manifest variables. This article established the
latent variables as economic and population factors (EP), agricultural production (AP),
the agricultural mechanization development level (AMDL), the agricultural machinery
industry and agricultural technology (AMIAT), policies (P), and the environment (E). The
final results are shown in Table 3.
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Table 3. Impact factors of SAM.

Latent
Variable

Manifest
Variable

Variable
Codes

Latent
Variable

Manifest
Variable

Variable
Codes

EP Gross Domestic Product of
the region s1 AMDL Machine farming area s15

EP Agricultural investment in
fixed assets s2 AMDL Machine collecting area s16

EP
Number of employees in

agriculture, forestry, animal
husbandry, and fishery

s3 AMDL Total power of
agricultural machinery s17

EP
The proportion of rural labor
force with junior high school

education or above
s4 AMDL

Comprehensive operation rate
of main crops cultivation

and harvesting
s18

AP The sown area of food crops s5 AMDL Number of farm
machinery households s19

AMIAT The sales output value of
agricultural machinery industry s6 EP The original value of

agricultural machinery s20

AMIAT
The contribution rate of
agricultural science and

technology progress
s7 EP Total profit of

agricultural machinery s21

AMIAT Informationization level s8 EP Per capita net income of farmers s22

EP Total investment in agricultural
mechanization s9 AP Per capita food production s23

EP Farm machinery purchase cost s10 AP Agricultural output value s24

EP Fixed base price index of
mechanized farm tools s11 E Agricultural diesel consumption s25

AMDL Number of service organizations
of agricultural mechanization s12 E Agricultural carbon emissions s26

AMDL Number of trainees in
agricultural mechanization s13 P

Government Agricultural
Machinery Policy

Subsidies—National
s27

AMDL Machine sowing area s14 AMDL
Number of agricultural

mechanization technology
promotion agencies

s28

3.2. Basic Hypotheses

Our research set the first-level indicators, divided their corresponding explicit vari-
ables, and established the causal relationships among latent variables. Since the assignment
of indicators and the setting process of causality are subjective and referential, the set con-
struction and adjustment process relied on the overall assumptions of the model described
in the following hypotheses:

Hypothesis 1. The correlation between the latent variable and its corresponding explicit variable
can be expressed by linear equations; the latent variables do not cross each other in the theoreti-
cal sense.

Hypothesis 2. According to the actual meaning of the selected indicators, the selected latent
variables are directly related to each other, and they may have indirect secondary path effects through
other latent variables.

According to the influencing factors and the related relationships analyzed in the
literature review, the following assumptions were put forward: The impact of agricultural
mechanization and agricultural economic development has a strong two-way positive effect.
Conversely, to promote the development of agricultural mechanization, capital investment
is indispensable. At the same time, the development of the agricultural machinery industry
is an important basic guarantee for the sustainable development of agricultural mecha-
nization. The development of agricultural mechanization and the agricultural machinery
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industry complement each other. In addition, making the input of agricultural machinery
produce real profits and increasing wealth by using production machinery is the only way
to encourage agricultural machinery users to further invest and expand production [38].
Thus, based on the above view, we hypothesize:

Hypothesis 2a. The agricultural mechanization development level (AMDL) is affected by economic
factors, agricultural production, policy, and the agricultural machinery industry and agricultural
technology (AMIAT) factor.

The healthy development of agricultural mechanization can directly increase the
output and efficiency of agricultural workers, directly increase labor income, and stimulate
the overall development of the agricultural economy [9]. Many studies have also discussed
the impact of policies and the agricultural machinery industry on the growth of agricultural
products [6–8,12]. Thus, based on the above view, we hypothesize:

Hypothesis 2b. Economic factors, policy factors, the AMDL, and AMIAT can promote agricul-
tural production.

With their rapid development, modern science and technology have become widely
used in agricultural production, including high-tech informatization and intelligent agri-
cultural machinery used in innovative crop production methods. Improved machinery
operation capabilities are used to implement precision production operations, saving labor
while improving efficiency. It is no doubt that science and technology play a key role in
the development of modern agricultural mechanization. At the same time, the agricultural
machinery industry must strive to improve its innovation and investment, which is an
important new growth point to realize the development of SAM for developing coun-
tries [39]. Moreover, the implementation of China’s Agricultural Mechanization Promotion
Law in 2004 and the subsidy policy for the purchase of agricultural machinery in 1998
played significant roles in improving the agricultural machinery industry and agricultural
mechanization [14]. Thus, based on the above view, we hypothesize:

Hypothesis 2c. AMIAT is positively correlated with economy and policy.

Physical limits to land and water availability within ecosystems are often worsened by
climate change. By including SAM in its projects, FAO promotes conservation agriculture
practices that contribute to soil conservation and water use efficiency [2]. The development
of SAM must be organically combined with energy-conservation technology, emission
control, and ecological protection, and must strive to achieve harmonious coexistence
between human activities and nature. To advocate for a green economy [11,19,20], there
needs to be active promotion by the government. We are sure that the change in the
environment must be the product of a comprehensive effect [16]. Thus, based on the above
view, we hypothesize:

Hypothesis 2d. Environmental factors are affected by economic factors, agricultural production,
AMIAT, AMDL, and policy factors at the same time.

Relevant national policies and regulations can ensure that capital investment and
subsidy policies can effectively reduce purchasing costs so that they can effectively pro-
mote the sound and rapid development of agricultural mechanization and the agricultural
machinery industry, which is one of the main ways to effectively promote the popular-
ization and extension of agricultural machinery [7]. Meanwhile, policies and regulations
can also manage and coordinate various development goals and promote the balanced
development of society. Therefore, national policies provide strong support and guarantee
the sustainable development of agricultural mechanization. Thus, based on the above view,
we hypothesize:
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Hypothesis 2e. Economic factors are affected by policy factors.

Based on these assumptions, this research first established an initial path graph struc-
ture in a fully connected form and then continuously made corrections based on the analysis
results to create the final improved model. In the establishment of the measurement model,
the corresponding relationships and influencing paths between the observed variables
and latent variables were set according to the actual meaning of the indicators. All the
indicators were then matched to the latent variables to achieve a causal equilibrium. The
initial hypothesis structure is shown in Figure 1.
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3.3. Statistical Modeling Methods

Traditional statistical analysis methods, such as linear regression and principal compo-
nent analysis, cannot effectively deal with these latent variables, but they can be studied
with the help of structural equations. Structural equation modeling (SEM) is a systematic
analysis method that integrates factor analysis and path analysis. SEM has the advantages
of simultaneously processing multiple dependent variables, allowing independent vari-
ables and dependent variables to contain measurement errors; estimating factor structures
and factor relationships; and estimating the fitting degree of the whole model [14]. It uses a
structure of linear equations to deal with the relationships between manifest variables and
latent variables and the relationships between latent variables.

SEM can be divided into two types according to the nature and relationship character-
istics of the variables. One is the measurement model, and the other is the structural model,
which uses a similar path-analysis method to establish the structural relationships between
latent variables. The following equations show the specific forms of the measurement
model and the structural model. The measurement model is [40]:
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x = Λxξ + δ (1)

y = Λyη + ε (2)

In Formula (1), x is a p × 1 dimensional vector formed by p exogenous manifest
variables, ξ is an m× 1 dimensional vector formed by m exogenous latent variables, Λx
is a p×m dimensional load matrix, and δ is a p× 1 dimensional vector composed of p
measurement errors. In Formula (2), y is a q× 1 dimensional vector formed by q exogenous
manifest variables, η is an n× 1 dimensional vector formed by n exogenous latent variables,
Λy is a q× n dimensional load matrix, and ε is a q× 1 dimensional vector composed of q
measurement errors.

The structural model is:
η = Bη + Γξ + ζ (3)

where B is an n× n dimensional correlation coefficient matrix, which is used to reflect
the relationships among the various endogenous latent variables; Γ is an n× m dimen-
sional correlation coefficient matrix, which is used to reflect the relationship between the
exogenous latent variable ξ and the endogenous latent variable η; ζ is an n× 1 dimensional
vector composed of interpretation errors. The correlation coefficient is a standardized path
coefficient. This path coefficient is used to measure the degree of correlation between two
variables and is generally used to indicate reliability, under the premise that when the
significance of the path coefficient is larger, the indicator has a greater impact [41].

In a realistic structural model, the variables may be both dependent variables and
independent variables, and there may be not only direct but also indirect relationships
among the variables. Some causal variables will affect the result variable through one
or more intermediate variables, which are called indirect effects. The path coefficient of
the indirect path is the product of the direct path coefficient involved in each path. The
meaning of the total effect is the sum of the result variables affected by the causal variables,
which is expressed as the sum of the direct effects and indirect effects, which can be used to
verify the rationality of the hypothetical effect through path analysis.

Due to the number of samples collected, the maximum likelihood estimation method
was not used, but the partial least squares (PLSs) method based on nonparametric estima-
tion was used, as it has no strict assumptions about the sample size and sample distribution.
Using the PLSs method to solve the SEM can avoid the situation where the model cannot
be recognized because of a non-positive definite covariance matrix, and the method is more
extensive. In summary, the study finally conducted an empirical analysis of the factors
affecting the SAM by using the PLS-SEM method.

4. Results of the Case Study

In this study, Smart-PLS3 [42] was used to estimate Equations (1)–(3) based on the stan-
dardized data. Model evaluation and testing used multiple test statistical indicators to carry
out correlation reliability and validity tests, such as Cronbach’s alpha coefficient (Cron-
bach’s α) and composite reliability. Hair et al. stated that it is acceptable for Cronbach’s α
to be greater than 0.7 for verification purposes [43].

4.1. Model Specification Tests

The test results of the reliability and the goodness of fit of the model are shown in
Table 4. It can be seen from Table 4 that the model passed the reliability and validity test. The
outer loading of the measurement model and the path coefficient of the structural model
were calculated by the PLSs method. Then, the bootstrapping method was used to test and
evaluate the estimated results of the two coefficients, as shown in Tables A2 and A3.
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Table 4. Test result of reliability and goodness of model.

Latent
Variables

Average Variance
Extracted

Composite
Reliability R Square Cronbach’s

Alpha

AP 0.9611 0.9867 0.9796 0.9797
AMDL 0.8220 0.9442 0.9821 0.7682
AMIAT 0.9527 0.9837 0.9745 0.9751

P 1.0000 1.0000 1. 0000
E 0.9771 0.9884 0.9941 0.9766

EP 0.8442 0.9557 0.9642 0.7932

It can be seen from Table A2 that the loading of each path in the measurement model
passed the significance test. The general test passing standard is that the significance level
is 0.05, and the t-statistic is greater than 1.96. The parameter estimation results of the
structural model are shown in Table A3. In Table A3, the estimated values of the direct path
coefficients of four paths did not pass the significance test. As these direct relationships
were not supported by the test results, these four paths were excluded from the model.
Generally speaking, the path coefficient relates to the number, type, and nature of the
observed variables corresponding to the latent variables. An insignificant path coefficient
in the internal model does not prove that there is no causal relationship between these
latent variables. The current variables and model settings were not enough to prove their
relationship, and other latent variables can be used as intermediaries to supplement the
path. Since the model passed the best test, the significant initial variables used when
setting the measurement model did not change, but the causal relationships between the
latent variables in the structural model were adjusted, and several insignificant paths were
removed. The model was then tested again. The result was that in the revised structural
model, all of the path coefficients also passed the significance test, and therefore, the model
is desirable. The structural equation model obtained after the final adjustment is referred
to as Model B, as shown in Figure 2.
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4.2. Results of the First-Order PLS-SEM Model

The calculation results of measurement Model B are shown in Table A4. The factor
loadings in Table A4 indicate that most of the indicators have a higher explanatory degree,
reflecting that the selection of indicators is more representative and indicating that the
measurement model’s interpretation ability is good. The negative numbers reflect negative
correlations between the indicator and Sustainable Agricultural Mechanization (SAM).

According to measurement Model B, the latent variables of the original value of agri-
cultural machinery, GDP, and agricultural machinery profit were the three most important
economic factors, indicating that the overall economic environment and the economic con-
ditions of the agricultural machinery industry are important economic factors of SAM. The
agricultural machinery price index is negatively related to the economic factors, indicating
that the higher the price of agricultural machinery, the lower the market for agricultural ma-
chinery, in line with the actual situation. The relationship between the SAM and the number
of people in the labor force is also negatively related, consistent with theoretical analysis. It
is also worth noting that the degree of education (the proportion of the population educated
in junior high school) is about 0.78. Mechanization is related to the quality of workers,
but with the popularization of education, the degree of relevance of the impact of this
indicator is not particularly sensitive. The correlations of the three indicators of agricultural
production are high, which indicates that the benefits of agricultural mechanization are
obvious from the statistical point of view. It is noted that the correlations between several
indicators of the agricultural machinery industry and scientific and technological factors
are also strong, indicating that the contribution of scientific and technological input to SAM
is increasing, and the previous qualitative analysis is verified.

In the indicator corresponding to the latent variable “agricultural level”, most of the
indicators’ factor loadings are relatively large. The correlation coefficient of the number
of households with agricultural machinery is about 0.76, which does not show a high
correlation, indicating that SAM has slowly reflected the trend of increasing through
quality and intensive development, rather than a simple absolute increase in quantity,
which may also be reflected by the two negatively related indicators of the number of
agricultural machinery service organizations and the number of agricultural technology
extension agencies. The results for social services and the use of agricultural machinery
technology to promote education suggest that the increase in agricultural mechanization in
itself is not through popularization in terms of head counts but has been a gradual process
of information dissemination regarding the precision and characteristics of SAM. The
results of the structural model are shown in Table 5. The influencing factors are presented
in Table 6, including the total effect of the change after considering the indirect effects.

Table 5. Causality and path coefficients of latent variables in SEM.

Path Path Factor t-Value

AP→ Environment −0.3868 8.5509
AMDL→ Environment 0.7745 25.1899

AMIAT→ AP 0.4656 9.0505
AMIAT→ Environment 0.4313 6.5283

Policy→ AP −0.3460 5.6425
Policy→ AMIAT −0.2000 2.3704

Policy→ Environment 0.1782 6.5167
Policy→ EP 0.9818 468.6016

EP→ AP 0.8638 10.3488
EP→ AMDL 0.9905 521.7642
EP→ AMIAT 1.1834 14.5986

Note: Economic and population factors (EP), agricultural production (AP), the agricultural mechanization
development level (AMDL), and the agricultural machinery industry and agricultural technology (AMIAT).
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Table 6. Total effect of SAM in Model B.

Path Total Path Coefficient t-Value

EP→ AP 1.4147 19.1034
EP→ Environment 0.7304 21.1399

AMIAT→ Environment 0.2512 5.1996
Policy→ AP 0.9496 162.2230

Policy→ AMIAT 0.9612 146.2765
Policy→ AMDL 0.9725 343.0872

Policy→ Environment 0.9787 378.2150
Note: Economic and population factors (EP), agricultural production (AP), the agricultural mechanization
development level (AMDL), and the agricultural machinery industry and agricultural technology (AMIAT).

The path coefficients in Tables 5 and 6 describe whether there is a causal relationship
between a pair of latent variables. If the path coefficient is small, the causal relationship
reflected by that path may not exist. Of course, the paths in Table 5 only show the direct
effects between the latent variable, that is, the direct impact of the cause variable on the
result variable. Table 6 reflects the combination of direct and indirect effects of some of the
latent variables.

4.3. Results of Hypothesis Testing

The results of the PLS-SEM analysis showed that agricultural mechanization is di-
rectly related to the six dimensions of economy, population, agricultural production, the
agricultural machinery industry and agricultural technology, the environment, and policies.
It can be seen from Figure 3 that the level of Agricultural Mechanization Development
Level (AMDL) is obviously promoted by the economic, population, and policy factors. The
economic and population factors are the most critical factors affecting SAM. The effect of
the agricultural machinery industry and agricultural technology (AMIAT) on SAM is not
statistically obvious.

Secondly, the effects of policy on agricultural machinery (mainly referring to the
agricultural machinery purchase subsidy policy) are not significant, but the path regression
coefficient of the overall impact of the effect is 0.9725, and that is a strong positive correlation.
In terms of agricultural production, the positive effect of economic factors on agricultural
production input and output is obvious. The direct effect of policy factors on agricultural
production is negatively correlated, but the total effect is still a relatively large positive
correlation. The effects of the agricultural machinery industry and agricultural science and
technology on agricultural production were also quantified in this article, showing a certain
degree of persuasive power. The impact of agricultural mechanization on agricultural
production is not significant. In terms of economic and population factors, apart from the
strong influence of policy factors, no other path of influence is significant. The factors of
the agricultural machinery industry and agricultural science and technology are similar to
agricultural production factors: economic factors and policy factors are significantly affected
by these factors. Finally, among the directly related factors, the two factors with the greatest
effect on the environment are the AMDL and AMIAT. The path regression coefficient of the
impact of agricultural mechanization on the environment is 0.7745, and it shows a strong
positive correlation. Although this is not very high, a certain significant correlation has
been shown, reflecting the increasing degree of the environmental impact of SAM. The
coefficient of the direct impact of the agricultural machinery industry and agricultural
science and technology on the environment is not particularly high, but the overall effect is
reduced because the impact of agricultural production itself has a relatively strong negative
correlation, indicating that when agricultural output is higher, the environmental impact
will improve. There is a certain harmony between the two factors. Statistically speaking,
this improvement (more than 40%) should be given sufficient attention.
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4.4. Discussion

(1) Sustainable Agricultural Mechanization (SAM) is directly affected by economic effects
to a high degree. The development of SAM needs the necessary economic input and
asset investment for its support. The cost of agricultural machinery and the efficiency
of output have a direct impact on farmers’ use, making these important factors. The
income level of farmers directly affects the farmers’ willingness and ability to purchase
agricultural machinery, so agricultural mechanization and economics form feedback
loops of mutual restriction and mutual promotion. This conclusion has also been
confirmed in sub-Saharan Africa, South Asia, and Latin America [12,15,17].

(2) Our results show that SAM requires policy investment support, and the indirect
incentives of policy-guided market regulation can still bring great vitality to SAM,
but the direct effect of the agricultural machinery policy subsidy on SAM has not
been very significant. However, through policy guidance, market regulation of in-
direct incentives can still bring great vitality to SAM. Policy factors are still the
leading factors promoting SAM, and our results corroborate several findings of prior
studies [12,38,44]. However, as the degree of marketization deepens and govern-
ment functions are gradually weakened, whether farmers’ willingness to purchase
agricultural machinery can be maintained for future development are unclear.

(3) However, our findings are also in contrast with other research results [45]. Our study
confirms that the impact of agricultural mechanization on agricultural production is
not significant, indicating that, on the one hand, many factors affecting agricultural
output, such as climate, natural disasters, markets, and other factors, can strongly
affect production results, and that therefore more complex agricultural mechanization
is only one of the factors affecting production. On the other hand, one can also see
that the current development of mechanization in Hubei is not particularly balanced.
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Because of the many lakes in large areas, mechanization is only found in a few areas,
and only a few popular crops are grown. There is still a significant gap between Hubei
and the provinces and regions with a high degree of SAM, such as Heilongjiang,
Henan, and Jiangsu Provinces.

(4) Environmental factors are influenced by several other factors comprehensively. The
past period of high economic growth has been accompanied by high pollution and
high consumption issues, which can be seen very clearly here. Adjusting the relative
balance of agricultural development and the ecological environment, which must
be a non-negotiable part of SAM, requires attention. At the same time, our results
also show that through the improvement of agricultural machinery technology and
agricultural science and technology input, accompanied by the effective improvement
of agricultural output mode and processes, the environment can also play a significant
role in achieving the sustainable green development of agriculture [11].

So far, we have clarified the relationships, influence paths, and intensity of the interac-
tions among several factors affecting SAM, analyzed the factors influencing SAM within the
overall and structural relationships, and clearly showed the mechanisms and quantity of
the internal influencing relationships. Among these key elements of SAM, the total effect of
the two aspects of policy and economic factors is consistent with the actual situation [7], the
relationship between the level of agricultural mechanization and agricultural production is
worth exploring, and the environment is the result of comprehensive action. In addition,
we also suggest that we should focus on improving the system of laws and regulations
regarding agricultural mechanization and that we should standardize the production, sales,
use, and service of agricultural machinery. New studies should be pursued to actively
explore policies and measures to promote the development of agricultural mechanization,
strengthen administrative laws regarding agricultural machinery, and perfect the opera-
tion mechanism of regulatory supervision of agricultural machinery. Multiple measures
should be used to strengthen public legislation and education and to enhance the legislative
awareness and ideas of the public to meet the objective requirements of building a modern
agricultural system and sustainable development.

5. Conclusions

Although some studies have investigated the factors affecting agricultural mecha-
nization in China, relatively few have involved systematic and structured econometric
research. Based on historical data and the status quo of the development of agricultural
mechanization in Hubei, this study used a partial least squares–structural equation model
(PLS-SEM) framework to conduct a reasonable modeling analysis based on 28 measurement
indicators and determined the relationships and paths of the factors affecting Sustainable
Agricultural Mechanization (SAM) in Hubei. The measurement results provided solid
support for most of our hypotheses and effectively verified and supplemented the cor-
responding qualitative research: SAM is directly affected by economic effects to a high
degree, and environmental factors are comprehensively influenced by several other factors.
In addition, some influencing relationships are presented in the form of quantitative results
for the first time, such as the total effect of policy on the agricultural mechanization level
and the path coefficient of the impact of agricultural mechanization on the environment.

Our finding relies on data we collected. Different data-collection methods, data
facticity, and limitations of data may result in greater deviation from our results and the
interpretation of our results to formulate our conclusions. Therefore, future research that
could enrich our understanding of China’s SAM could potentially proceed with longer-term
empirical research. Meanwhile, the internet and big data technology can be used to monitor
SAM in real time to reflect instantaneous developments and changes in SAM in response
to different factors. These represent improvements that future studies can be undertaken
to develop a more in-depth understanding of other economic, policy, and environmental
factors impacting the adoption of Sustainable Agricultural Mechanization by producers in
China and beyond.
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Appendix A

Table A1. Descriptive statistics of the variables.

Variable Codes Variable N Minimum Maximum Mean Std. Deviation

s1 Gross Domestic Product of
the region 17 5633.24 45,828 23,168.34 13,167.26

s2 Agricultural investment in
fixed assets 17 46.24 650.49 293.2665 201.8406

s3
Number of employees in

agriculture, forestry, animal
husbandry, and fishery

17 863 1105 939.2941 88.02457

s4
The proportion of rural labor force
with junior high school education

or above
17 0.67 0.76 0.722941 0.024438

s5 The sown area of food crops 17 3817 4852 4346.647 353.1728

s6 The sales output value of
agricultural machinery industry 17 887 4735 2745.824 1202.251

s7
The contribution rate of
agricultural science and

technology progress
17 39.64 61 52.5288 6.2936

s8 Informationization level 17 1.09 34.32 16.8453 12.3385

s9 Total investment in agricultural
mechanization 17 9.1 54.9 35.1059 14.5315

s10 Farm machinery purchase cost 17 7.9 50.9 30.6 12.6586

s11 Fixed base price index of
mechanized farm tools 17 99.1 107.7 102.1765 2.3720

s12 Number of service organizations
of agricultural mechanization 17 3.4 219 45.3471 67.6336

s13 Number of trainees in agricultural
mechanization 17 98,832 560,816 381,649.5 181,420.3

s14 Machine sowing area 17 233.66 3362.6 1565.45 1085.071
s15 Machine farming area 17 2015.93 6127.6 4602.291 1526.089
s16 Machine collecting area 17 1263.46 4633.2 3227.768 1161.949

s17 Total power of
agricultural machinery 17 1768.6 4626.1 3541.795 924.7491
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Table A1. Cont.

Variable Codes Variable N Minimum Maximum Mean Std. Deviation

s18
Comprehensive operation rate of

main crops cultivation
and harvesting

17 42 71.3 58.2059 9.4999

s19 Number of farm
machinery households 17 94.6 237.3 211.5353 37.8286

s20 The original value of
agricultural machinery 17 98.57 550 319.9506 144.1551

s21 Total profit of
agricultural machinery 17 28.22 103.44 70.3544 23.7995

s22 Per capita net income of farmers 17 2890.01 16,390.86 8791.248 4666.718
s23 Per capita food production 17 349 500 426.7059 47.7417
s24 Agricultural output value 17 921.59 3492.54 2198.772 853.4645
s25 Agricultural diesel consumption 17 41.09 67.33 58.1059 9.3321
s26 Agricultural carbon emissions 17 1833 4598 3226.294 836.1836

s27
Government Agricultural

Machinery Policy
Subsidies—National

17 0.7 237.54 140.2788 86.7749

s28
Number of agricultural

mechanization technology
promotion agencies

17 670 1016 832.1765 103.1482

Table A2. Factor load estimation results of the measurement model.

Path
Original
Sample

Value (O)

T Statistic
(|O/STERR|) Significance Path

Original
Sample

Value (O)

T Statistic
(|O/STERR|) Significance

s1← EP 0.9810 345.5423 *** s2← EP 0.9258 106.6113 ***
s10← EP 0.9215 880.8130 *** s20← EP 0.9929 678.2270 ***
s11← EP −0.7261 17.9869 ** s21← EP 0.9740 202.7099 ***

s12←
AMDL −0.7505 26.1794 ** s22← EP 0.9599 217.1062 ***

s13←
AMDL 0.9712 255.6121 *** s23← AP 0.9943 1125.4639 ***

s14←
AMDL 0.9537 196.9908 *** s24← AP 0.9733 329.7788 ***

s15←
AMDL 0.9855 407.7759 *** s28←

AMDL −0.6921 14.8183 **

s16←
AMDL 0.9960 1594.6752 *** s3← EP −0.9494 132.5960 ***

s17←
AMDL 0.9891 1055.2473 *** s4← EP 0.7831 35.1248 **

s18←
AMDL 0.9924 1028.9101 *** s5← AP 0.9734 262.2697 ***

s19←
AMDL 0.7595 24.3129 ** s6← AMIAT 0.9834 372.2486 ***

s25← E 0.9885 511.9002 *** s7← AMIAT 0.9625 181.3262 ***
s26← E 0.9885 512.6484 *** s8← AMIAT 0.9821 359.1926 ***
s27← P 1.0000 s9← EP 0.9357 101.2481 ***

Note: (1) Economic and population factors (EP), agricultural production (AP), the agricultural mechanization de-
velopment level (AMDL), the agricultural machinery industry and agricultural technology (AMIAT), environment
(E), and policy (P). (2) *** indicates a significance level of 1%, ** indicates a significance level of 5%. (3) STERR
indicates standard error.
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Table A3. Estimation of path coefficients for structural model.

Path Original Sample
Value (O)

T Statistic
(|O/STERR|) Significance

AP→ Environment −0.3624 5.3331 *
AMDL→ AP −0.1030 0.9804 –

AMDL→ Environment 0.8246 12.7605 **
AMIAT→ AP 0.4739 8.8222 **

AMIAT→ AMDL 0.0514 0.7795 –
AMIAT→ Environment 0.4446 7.7764 **

Policy→ AP −0.3525 6.0133 **
Policy→ AMDL −0.0507 0.6018 –
Policy→ AMIAT −0.2062 2.2246 *

Policy→ Environment 0.2363 5.0714 *
Policy→ EP 0.9819 450.3113 ***

EP→ AP 0.9639 7.5819 **
EP→ AMDL 0.9900 7.9282 **
EP→ AMIAT 1.1889 13.3998 **

EP→ Environment −0.1449 1.1388 –
Note: (1) Economic and population factors (EP), agricultural production (AP), the agricultural mechanization
development level (AMDL), and the agricultural machinery industry and agricultural technology (AMIAT).
(2) *** indicates a significance level of 1%, ** indicates a significance level of 5%, and * indicates a significance level
of 10%, – indicates failed t-test. (3) STERR indicates standard error.

Table A4. Factor load of observed variables in measurement Model B.

Latent Variable Observation Variables Factor Load

EP

s1 0.9811
s2 0.9261
s9 0.9353

s10 0.9212
s11 −0.7265
s20 0.9929
s21 0.9738
s22 0.9601
s3 −0.9490
s4 0.7834

AP
s5 0.9734

s23 0.9943
s24 0.9733

AMIAT
s7 0.9625
s8 0.9821
s6 0.9834

s12 −0.7543
s13 0.9705
s14 0.9516

AMDL
s15 0.9864
s16 0.9957
s17 0.9895
s18 0.9923
s19 0.7627
s28 −0.6874

Environment
s25 0.9884
s26 0.9885

Policy s27 1
Note: Economic and population factors (EP), agricultural production (AP), the agricultural mechanization
development level (AMDL), and the agricultural machinery industry and agricultural technology (AMIAT).
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