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Abstract: Urban flood-risk mapping is an important tool for the mitigation of flooding in view of
continuing urbanization and climate change. However, many developing countries lack sufficiently
detailed data to produce reliable risk maps with existing methods. Thus, improved methods are
needed that can help managers and decision makers to combine existing data with more soft semi-
subjective data, such as citizen observations of flood-prone and vulnerable areas in view of existing
settlements. Thus, we present an innovative approach using the semi-subjective Analytic Hierarchy
Process (AHP), which integrates both subjective and objective assessments, to help organize the prob-
lem framework. This approach involves measuring the consistency of decision makers’ judgments,
generating pairwise comparisons for choosing a solution, and considering criteria and sub-criteria to
evaluate possible options. An urban flood-risk map was created according to the vulnerabilities and
hazards of different urban areas using classification and regression-tree models, and the map can
serve both as a first stage in advancing flood-risk mitigation approaches and in allocating warning
and forecasting systems. The findings show that machine-learning methods are efficient in urban
flood zoning. Using the city Rasht in Iran, it is shown that distance to rivers, urban drainage density,
and distance to vulnerable areas are the most significant parameters that influence flood hazards.
Similarly, for urban flood vulnerability, population density, land use, dwelling quality, household
income, distance to cultural heritage, and distance to medical centers and hospitals are the most
important factors. The integrated technique for both objective and semi-subjective data as outlined in
the present study shows credible results that can be obtained without complicated modeling and
costly field surveys. The proposed method is especially helpful in areas with little data to describe
and display flood hazards to managers and decision makers.

Keywords: decision making; hazard; machine learning; risk; urban flood; vulnerability

1. Introduction

Among natural disasters, flooding is one of the most destructive hazards causing
severe economic damage, and climate change is expected to increase its severity in many
parts of the world [1,2]. Population growth, industrial expansion, and lack of space
for construction, especially in metropolitan areas, have caused drastic changes in the
morphologies of urban watersheds and increased the flooding in urban areas and risks of
losses of human lives and properties. From 1998 to 2017, more than two billion people were
affected by flooding throughout the world [3]. Iran has been severely affected by flooding
in recent years [4]. For instance, in March 2019, at least 28 out of 31 provinces of Iran were
affected by heavy floods for two weeks, causing infrastructure destructions of more than
USD 3.5 billion [5,6]. Due to the highly destructive impacts of floods, there is a great need for
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improved flood-risk mapping. However, the scarcity of available hydrological and land-use
data causes difficulties in managing flooding, especially in developing countries [7,8].

Common practices to evaluate urban flood risks involve hydrological and hydraulic pa-
rameterization methods to approximate flow and water levels at observation stations [9–13].
Lacking observations of rainfall and runoff increases the uncertainties and errors of these
estimates [9]. Recent studies indicated that flood-risk assessment requires more research
than an assessment of hydrological processes only. This is partly due to the fact that
urban areas are not homogeneous in terms of socioeconomic conditions [9,12,14]. Floods
have the most negative effects on vulnerable parts of the urban population [15]. To deal
with this problem, an indirect method using multi-criteria decision-making (MCDM) has
been proposed [16,17]. The analytic hierarchy process (AHP) is a kind of MCDM that has
recently been employed in flood studies [18,19] that integrates subjective and objective
assessments into one framework. This approach involves measuring the consistency of de-
cision makers’ judgments, generating pairwise comparisons for choosing a single solution,
and considering criteria and sub-criteria to evaluate options [16,18].

Recently, machine-learning (ML) methods [20–23]) have been applied to flooding
issues. Moreover, ML can be used to assess the risks that are not exclusively caused by
hydraulic factors [24,25]. Accordingly, recent studies have benefited from ML approaches
to estimate flood hazards using, e.g., classification and regression trees (CARTs) [26],
random forests (RFs) [27], boosted regression trees (BRTs) [28], multivariate adaptive
regression splines (MARSs) [29,30], multivariate discriminant analyses (MDAs) [31], and
support vector machines (SVMs) [27,32,33]. Due to the complexity of flood-risk assessment,
ML models offer specific advantages, e.g., the CART model appears to perform well for
heterogeneous data with a high non-linearity. Additionally, it can handle outliers [34,35].
The RF method performs predictions by taking the mean of the outputs from various
trees [36–38]. The BRT method can handle different predictor variables [39,40]. The MARS
method is more flexible than linear-regression models, and it is easy to interpret [29]. MDA
is derived from a linear combination of several variables that are best at differentiating
between pre-determined independent categories [31]. The advantages of SVMs involve
being effective in cases where the number of dimensions is greater than the number of
samples, being effective in highly dimensional spaces and being memory-efficient because it
uses a subset of training points in the decision function that are called support vectors [41].

In view of the above, there is a need to explore alternative methods for flood-risk
estimation due to the heterogeneous vulnerability of urban infrastructures and inhabitants.
Thus, the objective of this study is not to assess traditional flood risks with hydrology
and hydraulic factors but to identify flood risks using vulnerability and hazard indicators.
The traditional approach to preparing flood-risk maps is to use engineering methods with
hydrological and hydraulic calculations, the probabilities of precipitation and runoff, and
water inflow–outflow relationships with water-level estimations. A novel approach is
suggested that can be advantageous for, e.g., developing countries, where data are lacking
or uncertainties and errors need to be combined with subjective observations. Since risk is a
function of hazard and vulnerability [42], the integration of efficient methods for assessing
both these items is needed. This is the main objective of this research. The partial objectives
are to compare ML models, such as CART, RFs, BRT, MDA, MARS, and SVMs, to create
an urban flood-risk map by identifying the most important indicators for hazards of and
vulnerability to flooding. The resulting flood-risk map should have the potential to be used
as a decision-making tool for flood managers and urban decision makers.

2. Materials and Methods
2.1. Study Area

Rasht is one of the largest cities in Gilan Province in Northern Iran. It has an area of
about 95 km2 and is located between longitude 49◦27′42′′ and 49◦55′18′′ east and latitude
37◦00′30′′ and 37◦27′20′′ north (Figure 1). The elevation varies between 14 and 255 m
above mean sea level. It has a long coast to the Caspian Sea, with a population of about
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632,000 persons [43]. The region has a Mediterranean climate with average annual pre-
cipitation and temperature of about 1337 mm and 10 ◦C, respectively (2000–2019). The
Gohar and Zarjoub Rivers pass through Rasht from south to north and then discharge
into the Anzali Lagoon [44]. Due to the climatic conditions with heavy and sudden rain-
fall, the city is exposed to frequent and severe flooding because of improper drainage,
impermeable areas, and continuing decline of vegetated surfaces [45]. Destructive floods
(Figure 2) that occurred on 25 March 2019 and 2 April 2019 (with peak flows of 132 and
169.4 m3/s, respectively) caused widespread damage to infrastructure, bridges, roads, and
dwellings [6].

Sustainability 2022, 14, 4483 3 of 23 
 

2. Materials and Methods 
2.1. Study Area 

Rasht is one of the largest cities in Gilan Province in Northern Iran. It has an area of 
about 95 km2 and is located between longitude 49°27′42″ and 49°55′18″ east and latitude 
37°00′30″ and 37°27′20″ north (Figure 1). The elevation varies between 14 and 255 m above 
mean sea level. It has a long coast to the Caspian Sea, with a population of about 632,000 
persons [43]. The region has a Mediterranean climate with average annual precipitation 
and temperature of about 1337 mm and 10 °C, respectively (2000–2019). The Gohar and 
Zarjoub Rivers pass through Rasht from south to north and then discharge into the Anzali 
Lagoon [44]. Due to the climatic conditions with heavy and sudden rainfall, the city is 
exposed to frequent and severe flooding because of improper drainage, impermeable ar-
eas, and continuing decline of vegetated surfaces [45]. Destructive floods (Figure 2) that 
occurred on 25 March 2019 and 2 April 2019 (with peak flows of 132 and 169.4 m3/s, re-
spectively) caused widespread damage to infrastructure, bridges, roads, and dwellings 
[6]. 

 

Figure 1. Location of Rasht City in Iran. 
Figure 1. Location of Rasht City in Iran.



Sustainability 2022, 14, 4483 4 of 22Sustainability 2022, 14, 4483 4 of 23 
 

 

  

Figure 2. Examples of the 2019 floods in Rasht (photos by Fereshteh Taromideh). 

2.2. Urban Flood Observations 
In total, data from 93 flooded observation points from 2009 to 2020 were used from 

the regional water company of Gilan Province and combined with field surveys. In addi-
tion, 93 non-flooded points were randomly chosen using ArcGIS 10.7 (Figure 1). The lo-
cations of flooded sites indicated which urban areas in Rasht are vulnerable to flooding. 

2.3. Urban Flood Vulnerability 
The vulnerability map shows susceptibility to the destructive impact of high water 

levels. In other words, it represents society’s sensitivity to flooding with potentially neg-
ative environmental, social, and economic effects [46]. Population density (PD), dwelling 
quality (DQ), household income (HI), distance to cultural heritage (DTCH), distance to 
medical centers and hospitals (DTMCH), and land use were selected as indicators or fac-
tors for vulnerability assessments of the urban flooding (Table 1 and Figure 3a–f). Ques-
tionnaires based on the analytical hierarchy process (AHP) were prepared to evaluate the 
urban flood vulnerability according to experts’ knowledge. The number of experts was 40 
people and included Ph.D. students, faculty members, and executive experts of the re-
gional water company of Gilan Province, Gilan Roads and Urban Development Office, 
Management and Planning Organization of Gilan, and Rasht City Authority. The AHP 
method applies a hierarchical structure to indicate a problem with users’ judgments to 
develop priorities for alternatives [47]. This method is performed in five steps [48] (Yalcin, 
2008): (i) division of the problem into component parameters, (ii) development of the hi-
erarchy, (iii) development of a paired comparison matrix according to subjective judg-
ments as described by Bidwai et al. [49], (IV) estimation of the relative weights of factors, 
and (V) assessment of inconsistencies in the subjective judgments. For more details on 
AHP, see Bidwai et al. [49] and Danumah et al. [19]. All allocated scores by experts were 
examined according to an inconsistency ratio of less than 0.1 on the Saaty scale [47]. Sub-
jective judgments were analyzed using SuperDecisions and AHP [19,49]. 

Figure 2. Examples of the 2019 floods in Rasht (photos by Fereshteh Taromideh).

2.2. Urban Flood Observations

In total, data from 93 flooded observation points from 2009 to 2020 were used from the
regional water company of Gilan Province and combined with field surveys. In addition,
93 non-flooded points were randomly chosen using ArcGIS 10.7 (Figure 1). The locations
of flooded sites indicated which urban areas in Rasht are vulnerable to flooding.

2.3. Urban Flood Vulnerability

The vulnerability map shows susceptibility to the destructive impact of high water lev-
els. In other words, it represents society’s sensitivity to flooding with potentially negative
environmental, social, and economic effects [46]. Population density (PD), dwelling quality
(DQ), household income (HI), distance to cultural heritage (DTCH), distance to medical
centers and hospitals (DTMCH), and land use were selected as indicators or factors for
vulnerability assessments of the urban flooding (Table 1 and Figure 3a–f). Questionnaires
based on the analytical hierarchy process (AHP) were prepared to evaluate the urban flood
vulnerability according to experts’ knowledge. The number of experts was 40 people and
included Ph.D. students, faculty members, and executive experts of the regional water
company of Gilan Province, Gilan Roads and Urban Development Office, Management
and Planning Organization of Gilan, and Rasht City Authority. The AHP method applies
a hierarchical structure to indicate a problem with users’ judgments to develop priorities
for alternatives [47]. This method is performed in five steps [48] (Yalcin, 2008): (i) division
of the problem into component parameters, (ii) development of the hierarchy, (iii) devel-
opment of a paired comparison matrix according to subjective judgments as described by
Bidwai et al. [49], (IV) estimation of the relative weights of factors, and (V) assessment of
inconsistencies in the subjective judgments. For more details on AHP, see Bidwai et al. [49]
and Danumah et al. [19]. All allocated scores by experts were examined according to an
inconsistency ratio of less than 0.1 on the Saaty scale [47]. Subjective judgments were
analyzed using SuperDecisions and AHP [19,49].
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After computing the weights of layers by using the AHP model, pixel values of
every layer were normalized according to the membership function (MF). Then the flood-
vulnerability map (FV) was created based on the raster-calculator tools in ArcGIS 10.7,
according to:

FV =
∑i=n

i=1 Wi × Ni

∑i=n
i=1 Wi

(1)

where FV is flood vulnerability, Wi is the weight of ith variable calculated by AHP, Ni is
the normalized layer of variable i, and n is the number of variables. Data for vulnerability
factors were collected from the National Statistics Center of Iran, Gilan Roads and Urban
Development Office, the Management and Planning Organization of Gilan, and Rasht City
Authority from 2016 to 2019.

High population density (PD) indicates a higher vulnerability to flooding (Figure 3a).
The PD data were collected with a pixel size of 12× 12 m and grouped into five classes: very
high, high, moderate, low, and very low. Very high PD, e.g., had a range of 200–250 people
per ha. Dwelling quality (DQ) indicates building conditions and was divided into five
classes: very high, high, moderate, low, and very low. It was assumed that buildings with
high DQ are more resistant to damage. Household income (HI) is the combined income of
all members of a household above 18. Floods tend to influence all income classes in an area;
however, it was assumed more affluent households need a shorter recovery time after a
disaster [50,51]. HI was also divided into five groups (very good, good, moderate, poor, and
very poor) according to information from the Ministry of Cooperatives, Labor, and Social
Welfare (2019). The distance to cultural heritage (DTCH; Figure 3d) describes where most
of the cultural heritage is located in the city. When the DTCH decreases, the vulnerability
increases. The distance to medical centers and hospitals (DTMCH) is another important
factor. An increase in DTMCH is directly linked to vulnerability. The Euclidean distance
tool in ArcGIS 10.7 was applied for preparing maps of DTCH and DTHMC. Land use is
another important indicator of flood vulnerability. Runoff varies to a great extent depending
on land use [6,18]. The land-use map was divided into seventeen categories (roads and
streets, agricultural areas, offices, educational venues, religious venues, commercial service
venues, urban facilities and equipment, sports venues, barren land, water bodies, tourist
places, medical services, green space, cultural heritage, animal husbandry, industrial areas,
and residential areas). Residential and agricultural areas occupied the largest areas and
about 34 and 25% of the city, respectively.

Table 1. Investigated vulnerability factors.

Factor Type Relationship with Vulnerability

Population density (PD) Social Higher number of people, higher vulnerability

Land use Physical Based on expert knowledge

Dwelling quality (DQ) Economic Higher dwelling quality, lower vulnerability

Household income (HI) Economic Higher income, lower vulnerability

Distance to cultural heritage
(DTCH) Social Higher DTCH, lower vulnerability

Distance to medical centers
and hospitals (DTMCH) Social Higher DTMCH, higher vulnerability



Sustainability 2022, 14, 4483 6 of 22
Sustainability 2022, 14, 4483 6 of 23 
 

 
 

 
  

Sustainability 2022, 14, 4483 7 of 23 
 

 
 

Figure 3. Vulnerability factors: (a) population density (PD), (b) dwelling quality (DQ), (c) household 
income (HI), (d) distance to cultural heritage (DTCH), (e) distance to medical centers and hospitals 
(DTMCH), and (f) land use. 

2.4. Urban Flood-Hazard Evaluation 
In total, eleven flood-conditioning parameters were considered, namely elevation, 

slope angle, aspect, rainfall, distance to rivers (DTR), distance to streets (DTS), soil hydrol-
ogy group (SHG), curve number (CN), distance to urban drainage (DTUD), urban drain-
age density (UDD), and land use (Figure 4a–k). For producing the urban flood-hazard 
maps, the flooded and non-flooded points were assigned values of 1 and 0, respectively. 
The datasets were randomly chosen for training the ML models (70% of data) and valida-
tion (30% of data). The same training and validation data sets were used for all ML mod-
els. 

2.4.1. Elevation 
A digital-elevation model (DEM) was applied with a pixel size of 12 × 12 m. The ele-

vation ranges from 14 to 255 m amsl (Figure 4a), which influences the flood depth and 
generation of surface-water flow. 

2.4.2. Slope Angle 
The slope-angle map was created by using the slope tool in ArcGIS 10.7. It ranges 

from 0 to 8.4 degrees (Figure 4b). A slope increase directly leads to faster and increasing 
surface runoff that influences flood hazards. 

2.4.3. Aspect 
Slope aspect is one of the most important flood-hazard indicators and is defined as 

the direction of the maximum slope of the area surface. It was created by using the aspect 
tool in the DEM layer in ArcGIS 10.7 and put into nine categories: flat, north, northeast, 
east, southeast, south, southwest, west, and northwest (Figure 4c). 

2.4.4. Rainfall 
To create the rainfall layer, data from 15 precipitation stations (2000–2019) were taken 

from the Iranian Meteorological Organization (IRIMO). The annual rainfall of the region 
was created using the inverse distance weighting (IDW) tool in ArcGIS 10.7 (varying be-
tween 1227 and 1263 mm/year; Figure 4d). The use of annual precipitation is regarded as 

Figure 3. Vulnerability factors: (a) population density (PD), (b) dwelling quality (DQ), (c) household
income (HI), (d) distance to cultural heritage (DTCH), (e) distance to medical centers and hospitals
(DTMCH), and (f) land use.



Sustainability 2022, 14, 4483 7 of 22

2.4. Urban Flood-Hazard Evaluation

In total, eleven flood-conditioning parameters were considered, namely elevation,
slope angle, aspect, rainfall, distance to rivers (DTR), distance to streets (DTS), soil hydrol-
ogy group (SHG), curve number (CN), distance to urban drainage (DTUD), urban drainage
density (UDD), and land use (Figure 4a–k). For producing the urban flood-hazard maps,
the flooded and non-flooded points were assigned values of 1 and 0, respectively. The
datasets were randomly chosen for training the ML models (70% of data) and validation
(30% of data). The same training and validation data sets were used for all ML models.

2.4.1. Elevation

A digital-elevation model (DEM) was applied with a pixel size of 12 × 12 m. The
elevation ranges from 14 to 255 m amsl (Figure 4a), which influences the flood depth and
generation of surface-water flow.

2.4.2. Slope Angle

The slope-angle map was created by using the slope tool in ArcGIS 10.7. It ranges
from 0 to 8.4 degrees (Figure 4b). A slope increase directly leads to faster and increasing
surface runoff that influences flood hazards.

2.4.3. Aspect

Slope aspect is one of the most important flood-hazard indicators and is defined as
the direction of the maximum slope of the area surface. It was created by using the aspect
tool in the DEM layer in ArcGIS 10.7 and put into nine categories: flat, north, northeast,
east, southeast, south, southwest, west, and northwest (Figure 4c).

2.4.4. Rainfall

To create the rainfall layer, data from 15 precipitation stations (2000–2019) were taken
from the Iranian Meteorological Organization (IRIMO). The annual rainfall of the region
was created using the inverse distance weighting (IDW) tool in ArcGIS 10.7 (varying
between 1227 and 1263 mm/year; Figure 4d). The use of annual precipitation is regarded
as proper detail for the present investigation. The wet-season rainfall in the area is strongly
related to flooding problems. Since the annual precipitation is highly correlated to the
wet-season rainfall, it is sufficient for achieving an overall-susceptibility map.

2.4.5. Distance to Rivers (DTR)

The banks of the Gohar and Zarjoub Rivers are susceptible to flooding [44]. Thus,
distance to rivers (DTR) is an important parameter for hazard evaluation in Rasht. DTR
ranged from 0 to 5449 m, derived from using the Euclidean tool in ArcGIS (Figure 4e).

2.4.6. Distance to Streets (DTS)

Streets and roads are impermeable and quickly generate runoff or inundate during floods;
therefore, areas close to these are more likely to suffer from flooding (Figure 4f; [41,52]). DTS
maps were generated with the Euclidean distance tool in ArcGIS 10.7.

2.4.7. Soil Hydrological Group (SHG)

Soil hydrological groups show soil quality based on the smallest amount of water
infiltration rate. The Natural Resource Conservation Service has classified soils based on
the runoff potentials of the soils into four SHGs (A, B, C, and D; [53]). Group D has the
largest runoff potential and group A has the smallest [54,55]. Group D covered about 40%
and group B covered about 11% of the study area (Figure 4g).
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2.4.8. Curve Number (CN)

Curve number is a dimensionless factor that is a function of hydrological conditions,
land use, soil type, and previous soil moisture [27,56]; it ranges from 0 to 100 with higher
values showing higher runoff potentials and the lower values showing lower runoff poten-
tials (Figure 4h; [57,58]). This map was generated based on land-use and SHG maps using
the ArcCN-runoff tool in ArcGIS 10.7.

2.4.9. Distance to Urban Drainage (DTUD)

During severe rainstorms, areas near urban drainage systems are more prone to
inundation and flooding. The DTUD map was produced by using the Euclidean Distance
tool in ArcGIS 10.7 (Figure 4i).

2.4.10. Urban Drainage Density (UDD)

Drainage density influences peak flows during rainfall [59]. Areas with high UDDs
are less flood-prone than areas with low UDDs; thus, this factor has an essential effect on
flood hazards [60]. The UDD map was obtained using the line-density tool in ArcGIS 10.7
(Figure 4j).

2.4.11. Land Use

Land use has an essential role in infiltration, runoff rates, interception, and evaporation,
and thus, it directly affects runoff conditions [59,61]. The land-use map included 17 different
classes (Figure 4k). Residential areas and streets are most susceptible to floods because in
these regions, soil infiltration capacity is small.

2.5. Hazard Modeling

Classification and regression trees (CARTs), random forests (RFs), boosted regression
trees (BRTs), multi-variate adaptive regression splines (MARSs), multi-variate discriminant
analyses (MDAs), and support vector machines (SVMs) were applied to estimate the
relationship between flooding and explanatory indicators and to create flood-hazard maps.
The software R 4.0.4 and SDM (Species Distribution Modeling) package [62] were used to
perform the modeling. Below, each model is briefly described.

CART: Classification and regression tree (CART) is a decision-tree (DT) model that can
be utilized for predictive regression modeling or classification [63,64]. None of the different
types of DT models, such as CART, Chi-Squared Automatic Interaction Detection (CHAID),
and Quick, Unbiased, and Efficient Statistic Tree (QUEST) have previously been used for
flood-hazard mapping in the region. The CART model searches through all values of all
parameters according to:

arg max
[
i
(
tp
)
− Pl i (tl)− Pri (tr)

]
(2)

where tp, tl and tr are parent, left, and right nodes; Pl and Pr are probabilities of right and
left nodes; and maximum homogeneity of child nodes is defined by an impurity function
i(t). More information about the CART model can be found in Breiman et al. [63] and
Lawrence et al. [34].

RF: Random decision forest or random forest (RF) is an ensemble learning method for
regression and classification. The ‘forest’ created by the random forest model is trained
through bootstrap aggregation. The building blocks of a random forest algorithm are
decision trees and comprise a decision support method. The decision tree has three
components: decision nodes, leaf nodes, and root nodes; it divides a training data set
into branches that further segregate it into other branches until a leaf node is attained. The
leaf node cannot be segregated further. In the decision tree, the nodes show attributes
that are applied to predict the outcome. A link to the leaves is provided with decision
nodes [37,65].
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BRT: Boosted regression trees are frequently used with different decision trees for
improving the performance of models [40]. It is an ML algorithm merged with a statistical
technique [39,66]. More information about this technique can be found in Elith et al. [67]
and Schapire [40].

MARS: Multi-variate adaptive regression spline was introduced by Friedman [29].
This method is a non-parametric regression model that can be considered as an extension
of linear models using automatic model interactions among non-linear variables.

MDA: The multi-variate discriminant analysis derives a linear combination of several
variables that are best at differentiating between pre-determined independent categories.
The procedure is performed by increasing the variance ratios for different categories [31].

SVM: Support vector machine is another ML model (supervised learning method) that
is utilized for regression, classification, and outlier detection [41]. This approach draws a
decision boundary, which is a hyperplane between any two classes for classifying them
or separating them into two categories (i.e., no flood or flood). The purpose is to specify
an optimum dividing hyperplane to increase the margins among various categories of the
training data and reduce generalization errors [32,68].

2.6. Performance Evaluation

The evaluation of models was performed using a contingency table for binary fore-
casting (yes/no). According to previous studies [69], several metrics, including accuracy,
probability of detection (POD), false alarm ratio (FAR), and precision, are used to evaluate
and validate the model performance (Equations (3)–(6)). The accuracy is the ratio of the
number of correct predictions to the total number of input samples (ranges from 0 to 1; [70]).
The POD quantifies the probability of finding a specific flaw, which is strongly connected to
the subjects of risk assessments and probabilistic analyses in the assessment of the integrity
of components. The POD is the proportion of the number of missing data to the total
number of observed incidences, and it ranges from 0 to 1 (the perfect value of POD is
equal to 1; [71]). The FAR is false alarms per total number of warnings or alarms in each
study or situation (between 0 and 1, where 0 is the desired result; [72]). Precision measures
the number of hits to alarms per total number of warnings or alarms in each study; it
denotes the closeness of measurements to each other, while accuracy is the closeness of
measurements to a particular value:

Accuracy =
(H + CN)

(H + FA + M + CN)
(3)

POD =
H

(H + M)
, (4)

FAR =
FA

(H + FA)
, (5)

Precision =
H

(H + FA)
, (6)

where H indicates the number of hits, FA represents the number of false alarms, M is
the number of misses, and CN specifies the number of correct negatives in the confusion
matrix [69]. In addition to the above statistics, the receiver operating characteristic curve
(ROC) and the area under the curve (AUC) were used to evaluate the performance of
models [32,70,73,74]. The area under the receiver operating characteristic curve (AUC-
ROC) has been broadly applied for evaluating model accuracy, which is the most popular
assessment criterion.

2.7. Urban Flood-Risk Assessment

The risk is a function of hazard and vulnerability [42]. The vulnerability is linked
to socioeconomic indicators, and the hazard is linked to environmental indicators. Flood
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hazards may be low in an area, but socioeconomic vulnerability may be high or vice versa.
Hence, vulnerability and hazards are jointly important for risk analysis. The flood-risk map
was produced for Rasht based on the vulnerability and flood-hazard maps [75,76]:

Risk = Hazard × Vulnerability (7)

The different steps in the suggested methodology are shown in Figure 5.
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3. Results
3.1. Modeling Results

All six models considered in this study used the 11 conditioning parameters and
flooded and non-flooded points for the calibration and validation. The model calibration
was repeated until a suitable AUC was obtained (>80% according to Yesilnacar [74]) for
which the flood-hazard maps were produced (Figure 6a–f).
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The accuracies, PODs, FARs, and precisions of the six models are shown in Tables 2 and 3.
According to Table 3, the AUC ranged from 0.781 to 0.947 with CART as the best. The
SVM model had the poorest performance (accuracy = 0.768, POD = 0.759, FAR = 0.214,
precision = 0.786, and AUC = 0.781). The main reason for the poor performance of the SVM
model is that the data input was not linear [77]. For the MDA model, poor performance
(accuracy = 0.811, POD = 0.788, FAR = 0.143, precision = 0.857, and AUC = 0.889) is related to
its need for a normal distribution of data; this model is also less capable of handling non-linear
relationships between output and input factors [78].

According to Table 3, the CART model displayed the best performance among all the
models (accuracy = 0.892, POD = 0.867, FAR = 0.071, precision = 0.929, and AUC = 0.947).
The RF (accuracy = 0. 875, POD = 0. 839, FAR = 0.071, precision = 0.928, and AUC = 0.941)
had a higher performance than the BRT (accuracy = 0.857, POD = 0.827, FAR = 0.111,
precision = 0.889, and AUC = 0.921) and MARS (accuracy = 0.821, POD = 0.801, FAR = 0.133,
precision = 0.867, and AUC = 0.916; Table 3).

Table 2. Models’ performance using the training dataset.

Criterion CART RF BRT MARS MDA SVM

Accuracy 0.985 0.931 0.901 0.869 0.854 0.831

POD 0.985 0.924 0.906 0.871 0.833 0.794

FAR 0.015 0.061 0.077 0.108 0.108 0.169

Precision 0.985 0.938 0.923 0.892 0.892 0.831

Table 3. Models’ performance using the validation dataset.

Criterion CART RF BRT MARS MDA SVM

Accuracy 0.892 0.875 0.857 0.821 0.811 0.768

POD 0.867 0.839 0.827 0.801 0.788 0.759

FAR 0.071 0.071 0.111 0.133 0.143 0.214

Precision 0.929 0.928 0.889 0.867 0.857 0.786

AUC 0.947 0.941 0.921 0.916 0.889 0.781

3.2. Urban Flood-Hazard Map

The flood-hazard map was generated based on the results of the CART, RF, BRT,
MARS, MDA, and SVM models (Figure 6). The equal interval classification method [79]
was used to categorize the flood-hazard map and simplified the model comparison. In other
words, the interval classification method divides categories equally with intervals of 0.2
(from 0 to 1). In each category, the number of records is different. When the distribution of
the data is rectangular, the equal interval classification method is sufficient [80]. Applying
this approach, the flood-hazard maps were classified into five categories: very high, high,
moderate, low, and very low (Figure 6). The performance of the MDA and SVM algorithms
was not suitable (Figure 6e,f; Table 4). The CART, RF, BRT, and MARS algorithms have
similar distributions of flood-hazard categories (Figure 6a–d; Table 4). The hazard maps
created by using the CART, RF, BRT, and MARS models indicated that low and very low
flood hazards are represented in regions in the west, northeast, and south of the study area
(Figure 6a–d). According to the CART-model map, the very high and high hazard classes
cover the greatest area, 41.8%, and the low and very low hazard classes cover only about
36% of the city. For the RF-model map, the very high and high hazard classes cover the
smallest region, about 31%, and the low and very low classes cover the greatest area, 38.6%
(Table 4).
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Table 4. Areas for different flood-hazard classes derived from the CART, RF, BRT, MARS, MDA, and
SVM models.

Flood Hazard
CART RF BRT MARS MDA SVM

(km2) (%) (km2) (%) (km2) (%) (km2) (%) (km2) (%) (km2) (%)

Very high 20.6 21.7 14.1 14.8 21.7 22.8 24.9 26.3 32.2 33.9 1.6 1.7

High 19.1 20.1 15.2 15.9 14.8 15.6 10.1 10.6 37.1 39.1 1.8 1.9

Moderate 21.2 22.3 29.2 30.7 14.4 15.2 9.6 10.1 7.9 8.3 2.3 2.5

Low 7.3 7.7 22.8 23.9 20.5 21.5 12.4 13.1 6.7 7.1 85.9 90.5

Very low 26.8 28.2 13.7 14.7 23.6 24.9 37.9 39.9 11.1 11.6 3.2 3.4

Total 95 100 95 100 95 100 95 100 95 100 95 100

3.3. Importance of Flood-Hazard Factors

Selecting suitable conditioning factors is important in flood-hazard modeling [81].
In the present study, the sensitivity of the factors was investigated using a jackknife test,
which is a fast and powerful method using partial-derivative calculations. Further details
about the jackknife test are described by Skinner and Rao [82]. The relative importance
of the flood-hazard factors used is shown in Figure 7. Distance to rivers (DTR) was
the most influential factor, followed by urban drainage density (UDD) and distance to
urban drainage (DTUD). Figure 8 shows that DTR was the most important among all the
models (38, 29.1, 33, 39, 35, and 33 for the CART, RF, BRT, MDA, MARS, and SVM models,
respectively). The importance of UDD and DTUD in the CART method was about 23 and
12, respectively; all other factors were less than five (Figure 7a). In the RF and BRT models,
the importance of all the conditioning factors (except DTR and UDD) was less than five
(Figure 7b,c). According to the MARS model, DTR, UDD, DTUD, and soil hydrological
group (SHG; with 35, 14, 9, and 6) were the most significant factors in the flood hazard map
(Figure 7d). In the MDA model, the importance of the DTR, UDD, SHG, and rainfall was
about 39, 14, 14, 11, and 7, respectively; all the other factors were less than five (Figure 7e).
In the SVM model (Figure 7f), the most important factors were DTR and DTUD (values
equal to 33 and 7, respectively).
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3.4. Importance of Vulnerability Indicators Using the AHP Method

The results obtained from the AHP indicate that among the urban flood-vulnerability
parameters, population density (0.363), land use (0.279), and dwelling quality (0.158) are
the most important, followed by household income (0.087), distance to cultural heritage
(0.064), and distance to medical centers and hospitals (0.049). Table 5 shows the weights
assigned to each parameter (based on the AHP method and expert knowledge).

Table 5. Importance of the flood-vulnerability indicators based on the AHP method.

Indicator Weight

Population density (PD) 0.363

Land use 0.279

Dwelling quality (DQ) 0.158

Household income (HI) 0.087

Distance to cultural heritage (DTCH) 0.064

Distance to medical centers and hospitals (DTMCH) 0.049

Total 1.000
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3.5. Urban Flood-Vulnerability Maps

The obtained weights of the layers according to the AHP approach were normalized for
every layer through the membership functions (MF). According to Samanlioglu et al. [83]
and Azareh et al. [84], applying continuous values using a fuzzy method shows changes
in factors more realistically. Additionally, fuzzy methods can reduce uncertainty. Thus, a
suitable MF, considering the relationships between every layer and flood vulnerability, was
used to standardize every layer between 0 and 1 using the fuzzy membership tool within
ArcGIS 10.7 (Table 6).

The flood-vulnerability map was produced through using the weights obtained from
the AHP method and fuzzy layers (Equation (1)) using ArcGIS 10.7. The urban flood-
vulnerability map of Rasht was then obtained with a pixel size of 12 × 12 m (Figure 8).
According to the map, the most vulnerable flooding areas are located in the north and
northeast parts of the city. The vulnerability was categorized into five classes for better
visual interpretations (Figure 8): very low, low, moderate, high, and very high, representing
27.3, 11.9, 18.8, 14.7, and 22.3 km2 of the area, respectively (Table 7).

Table 6. Fuzzy membership function for different indicators.

Indicator Membership Function

Population density (PD) Linear increasing

Dwelling quality (DQ) Linear decreasing

Household income (HI) Linear decreasing

Distance to cultural heritage (DTCH) Linear decreasing

Distance to medical centers and
hospitals (DTMCH) Linear increasing

Land use

User-defined (0 for barren land; 0.1 for green space and
water bodies; 0.3 for sports venues; 0.6 for urban

facilities and equipment, cultural heritage, and tourist
places; 0.8 for offices, religious venues, commercial

service venues, and animal husbandry; 0.9 for
agricultural areas, roads and streets, educational venues,

medical services, and industrial areas; and 1 for
residential areas)

Table 7. Areas with different flood vulnerability categories.

Flood Vulnerability km2

Very high 22.3

High 14.7

Moderate 18.8

Low 11.9

Very low 27.3

Total 95

3.6. Urban Flood-Risk Map

The flood-risk map for Rasht was created by using the hazard and vulnerability maps.
According to the above, the vulnerability map was generated by applying the AHP and
the hazard map was generated by applying the CART model. The flood-risk map was
divided into five classes by using the equal interval method: very low, low, moderate, high,
and very high (Figure 9), covering 44.4, 22.7, 14.8, 8.8, and 4.3 km2 of the city, respectively
(Table 8). The north and southeast of the area are more exposed to flood risks, and several
parts in the west and central areas have high flood risks (Figure 9).
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Table 8. Areas with different flood risk categories.

Risk Class km2

Very high 4.3

High 8.8

Moderate 14.8

Low 22.7

Very low 44.4

Total 95

4. Discussion

The results of the hazard modeling indicated that the SVM and MDA models had
the poorest performance among all the models. The SVM model does not work well for
non-linear relationships. The MDA model is a parametric approach that needs data with a
normal distribution [78]. According to the AUC, accuracy, POD, FAR, and precision values,
the CART model had the best performance (accuracy = 0.892, POD = 0.867, FAR = 0.071,
precision = 0.929, and AUC = 0.947). The models showed that areas close to major rivers
are much more exposed to flooding and were categorized as very high and high (about
38% of the area). This corroborates results found by Yang et al. [85].

The land-use and PD maps (Figure 3a,f) showed that residential areas with high and
very high population densities are located in areas with very high flood hazards (Figure 6).
Therefore, these areas require efforts to minimize future flood damage [81].

Similar to Pham et al. [86] and Darabi et al. [87], the machine-learning algorithms
indicated that the factors of distance to rivers and urban drainage density were the most
important features. In March 2019, the areas located in the vicinity of the rivers suffered
heavily from flooding, which proves the obtained results of this work. In addition to being
located along rivers, the weak drainage system in the hazardous areas is another root cause
of widespread damage from flooding. Most roads and streets in Rasht, particularly in areas
in the north, southeast, and southwest, lack suitable drainage systems (Figure 4i,j). These
findings corroborate those found by Falah et al. [88] and Ogden et al. [89].

Generally, the flood-risk map (Figure 9) indicated that the north and southeast areas
and several areas in the west and center of the city are most exposed to flood risks. Un-
planned developments of residential areas along the rivers and a lack of suitable drainage
systems are the most influential causes of inundation and flooding. Appropriate drainage
systems and the maintenance of them are necessary for better urban flood management,
and it is of great importance to identify the most vulnerable urban residents in all areas for
decreasing flood risks.

Due to human activities (such as the development of the city, increasing permeable
surfaces, and land-use changes) and climate change, the risk map may change over time.
Thus, it is important to perform similar future investigations and compare these results.
It may be possible to predict risk maps for future periods by considering local human
activities and climate change’s impacts.

5. Conclusions

Flood-risk evaluation is essential for sustainable urban development and sustainable
urban water management. A novel approach was suggested that does not require the
traditional engineering modeling that requires high-quality input data. Six machine-
learning techniques (CART, RF, BRT, MARS, MDA, and SVM) were applied to create
a flood-hazard map for Rasht in Iran. The CART model outperformed other models
(accuracy = 0.892, POD = 0.867, FAR = 0.071, and precision = 0.929). An urban flood-risk
map was created based on vulnerability and hazard maps, which both can serve as a first
stage in advancing flood-risk mitigation approaches and allocating warning and forecasting
systems. Distance to river, urban drainage density, and distance to urban vulnerable areas
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are the most significant indicators that influence the flood hazard. The findings show
that machine-learning methods are efficient in urban flood-risk assessments. For urban
flood vulnerability, based on the AHP method and expert knowledge, the weight for
each factor was: population density = 0.363, land use = 0.279, dwelling quality = 0.158,
household income = 0.087, distance to cultural heritage = 0.064, and distance to medical
centers and hospitals = 0.049; population density is a significant parameter in urban flood
vulnerability. The integrated technique outlined in the present study shows credible results
can be obtained without complex rainfall–runoff modeling and costly field surveys. The
proposed method is especially helpful in areas with little data to describe and exhibit flood
hazards. The risk map indicates that the north and southeast regions of Rasht are highly
susceptible to flooding and must develop accurate management to prohibit flooding or
provide a remedy against flooding.
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