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Abstract: Air pollution prediction is an important issue for regulators and practitioners in a sus-
tainable era. Air pollution, especially PM2.5 resulting from industrialization, has fostered a wave
of global weather migration and jeopardized human health in the past three decades. Taiwan has
evolved as a highly developed economy and has a severe PM2.5 pollution problem. Thus, the control
of PM2.5 is a critical issue for regulators, practitioners and academics. More recently, GA-SVM, an
artificial-intelligence-based approach, has become a preferred prediction model, attributed to the ad-
vances in computer technology. However, hourly observation of PM2.5 concentration tends to present
the GARCH effect. The objective of this study is to explore whether the integration of GA-SVM
with the GARCH model can build a more accurate air pollution prediction model. The study adopts
central Taiwan, the region with the worst level of PM2.5, as the source of observations. The empirical
implementation of this study took a two-step approach; first, we examined the potential existence of
the GARCH effect on the observed PM2.5 data. Second, we built a GA-SVM model integrated with
the GARCH framework to predict the 8 h PM2.5 concentration of the sample region. The empirical
results indicate that the prediction performance of our proposed alternative model outperformed
the traditional SVM and GA-SVM models in terms of both MAPE and RMSE. The findings in this
study provide evidence to support our expectation that adopting the SVM-based approach model for
PM2.5 prediction is appropriate, and that prediction performance can be improved by integrating the
GARCH model. Moreover, consistent with our prior expectation, the evidence further supports that
taking the GARCH effect into account in the GA-SVM model significantly improves the accuracy
of prediction. To the knowledge of the authors, this study is the first to attempt to integrate the
GARCH effect into the GA-SVM model in the prediction of PM2.5. In summary, with regard to the
development of sustainability for both regulators and practitioners, our results strongly encourage
them to take the GARCH effect into consideration in air pollution prediction if a regression-based
model is to be adopted. Furthermore, this study may shed light on the application of the GARCH
model and SVM models in the air pollution prediction literature.

Keywords: GA-SVM; GARCH; PM2.5 prediction; machine learning

1. Introduction

Air pollution has long been an important concern for all countries. In particular,
the level of air pollution is often closely related to the industrialization of each country.
Although industrialization brings economic growth and prosperity to society, it is often
accompanied by factors causing the deterioration of the ecological environment, such as
waste and air pollution. For a long time, developed countries, in response to citizens’
pursuit of a cleaner environment and better life quality, have had to deal with the air
pollution problems associated with high levels of industrialization. In recent years, as a
result of climate change and the rapid economic development of emerging economies, air
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pollution has become an important issue of global concern. Accordingly, highly indus-
trialized countries held the United Nations Framework Convention on Climate Change
(UNFCCC) in 1997 and proposed the Kyoto Protocol, advocating the 55 participating mem-
ber countries’ commitment to save energy and reduce carbon emissions. The goal was to
stabilize the concentration of greenhouse gases in the atmosphere, while balancing food
production and economic development. In addition, the private sector also raised funds
to set up the non-governmental organization the Green Peace Organization (GPO), which
is dedicated to research on environmental protection and the promotion of air pollution
prevention measures.

In Taiwan, economic development and air pollution show a considerable degree of
correlation. In the 1950s, Taiwan implemented the first phase of economic construction
plans to cultivate the development of labor-intensive light industrialization. The economic
growth in this decade, with an 8.7% annual growth rate, did not cause serious air pollution
problems. In the 1960s, Taiwan set up a manufacturing export zone and actively developed
the export industry. The average annual economic growth rate during this period was 9.8%.
In the 1970s, the world experienced an oil energy crisis. The Taiwan government adopted a
domestic demand-oriented strategy and promoted the Ten Major Construction Projects,
which increased public expenditure, improved infrastructure and actively developed
the petrochemical industry. Although Taiwan is one of the four Asian Tiger countries,
the development of the petrochemical industry has brought economic growth, with the
consequence of Taiwan’s current air pollution problem. In the 1980s, Taiwan actively
developed technology-intensive industries and established its first science industrial park in
Hsinchu, with an average annual economic growth rate of 8.5% throughout this decade. The
development of the technology industry, especially the semiconductor supply chain, which
contributed greatly to Taiwan’s economic growth, involved immense power and energy
consumption. In order to fully meet the power demand, the government increased the
production capacity of coal-fired power generation for sufficient power supply. However,
the seriousness of air pollution was also aggravated [1].

In response to people’s demands for better life quality, the Taiwan government has
worked on the prevention and control of air pollution, especially fine particles (PM2.5) [2].
However, in the past, when the government formulated air pollution control measures, it
was often necessary to take into account the costs incurred by the industry and the need to
promote domestic economic development. As a result, the effect of the early prevention
and control of air pollution was not significant, especially for PM2.5. The harm caused by
PM2.5 to human health has attracted international attention, because the spread of PM2.5
results not only in a deterioration of air quality but also in fatal health problems [3]. In
recent years, the GPO has invested a lot of resources toward empirical research on the
harm caused by air pollution to human health. According to a National Policy Research
Report from the National Policy Research Foundation [4], based on an air pollution research
by Harvard University on Asian countries including Taiwan, South Korea, Japan, China
and the Philippines, the GPO found that coal-fired power plants not only directly emit
PM2.5, but also emit sulfur dioxide (SO2), nitrogen oxides (NOx), soot and dust, etc., thus
stimulating the formation and increase in PM2.5. These fine particles enter the lungs of
the human body through the respiratory system, spreading through blood circulation and
causing diseases such as asthma, respiratory diseases, cancer or even death. As a result,
the government’s energy choices are not only closely related to carbon emissions, but also
directly related to air pollution, which has a considerable negative impact on human health.

In fact, in recent years, there have been numerous cases of harm to human health
caused by air pollution [3,5]. In 2010, PM2.5 from air pollution caused more than 3 million
cases of premature death in the world. According to the 2013 annual report on air quality
monitoring by the Environmental Protection Agency, the annual average concentration
of PM2.5 in Taiwan was 24 µg/m3, which was 2.4 times higher than the World Health
Organization (WHO) standard value [1]. With that PM2.5 concentration, the risk of lung
cancer and childhood asthma increased by 15% and the risk of stroke, heart disease and
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chronic respiratory disease increased by nearly 25%. The seriousness of Taiwan’s air
pollution problem did not come to the surface until the Changhua Guoguang Petrochemical
Development Project Evaluation in 2010 [6]. With government’s promotion of a non-nuclear
policy, the supply of green energy is still insufficient, thus the demand for coal-fired power
has continued to increase in recent years. The government is still planning to build new
coal-fired thermal power plants even though thermal power generation has accounted for
more than 80% of annual power generation structure in Taiwan. Therefore, in this study we
show that, in order to maintain citizens’ health, accurately predicting the level of PM2.5 and
analyzing the sources of air pollution are extremely important issues for the government to
formulate air pollution policies and to control target levels.

In terms of forecasting methodology, in order to deal with autoregressive characteris-
tics of observed time series data, the General Autoregressive Conditional Heteroscedasticity
model (GARCH) is the most widely used method. With recent progress of computer pro-
gramming and development of big data analysis, besides traditional statistical-based
forecasting methods, the machine-learning-based approach is preferred in industry and
academia. Among them, neural network systems and support vector machine (SVM)
models are the most commonly used. Recently, the application of methods has evolved
towards integrating models. For example, to improve prediction accuracy, neural networks
are combined with wavelet analysis [7], while in terms of SVM, the combination of genetic
algorithm (GA-SVM) is preferred [8].

Regarding the improvement of prediction accuracy, in addition to considering the inte-
gration of methods, the attributes of observation data are also very important. The sample
data examined in this study is the hourly air pollution index from the EPA monitoring
stations, which may be affected by factors such as terrain, atmosphere and so on. The air
pollution in the previous hourly period may not have dissipated yet, thus the deferred
effects on air pollution index observed in the next period may lead to autoregression.
Conventional prediction models have been built on the basis of regression analysis. In the
classical regression model, residual autoregression and heteroscedasticity should not exist;
therefore, their presence may produce bias and violate the underlying assumptions [9,10].
In addition, GA-SVM is a machine-learning-based AI approach. Accuracy of prediction
depends not only on quality of data, but also on availability of input (correlated) variables.
Thus, a sufficient number of input variables (for more training) will be helpful to generate
better prediction results. If we can provide more related variables in the training process,
we will be able to produce better prediction accuracy. Our intention is to examine variables,
from the GARCH model, which can improve the accuracy of the prediction model for
air pollution.

Accordingly, the purpose of this study is, using key observation data from local
monitoring stations, to analyze whether the hourly PM2.5 presents an autoregressive
conditional heteroscedasticity (ARCH) effect and whether incorporating the GARCH effect
into the GA-SVM model can improve the performance of an air pollution prediction model
and further identify factors affecting PM2.5. In the first stage of analysis, the examination
starts with an ADF test for stationary in our time series data, followed by an LM test
and an ARCH test to investigate the existence of autoregression and ARCH effect in our
dataset. We further estimate using a GARCH(1,1) model to confirm the existence of the
GARCH effect and integrate the GARCH effect into the GA-SVM model with PM2.5 as the
prediction variable in the second stage of analysis [11]. Empirical results indicate that the
prediction performance of our proposed alternative model outperformed traditional SVM
and GA-SVM models in terms of both MAPE and RMSE as accuracy measures.

Consistent with previous SVM literature, which suggests a trend to integrate various
approach into SVM model [8], our empirical results provide evidence to support our expec-
tation that adopting an SVM-based approach model for PM2.5 prediction is appropriate and
that prediction performance can be improved by integrating models, such as incorporate
the GARCH effect into a GA-SVM-based approach. Moreover, consistent with our prior
expectation, evidence further supports that taking the GARCH effect into account, in a
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GA-SVM model, clearly improves the accuracy of prediction. To the knowledge of the
authors, this study is the first to integrate the GARCH effect into the GA-SVM model in
the prediction of PM2.5. In summary, with regard to the development of sustainability for
both regulators and practitioners, our results strongly encourage them to take the GARCH
effect into consideration in air pollution prediction if the regression-based model is to be
adopted. Furthermore, this study may shed light on the application of the GARCH model,
as well as machine learning methods, in the air pollution prediction literature.

2. Materials and Methods
2.1. Literature Review

After the announcement of Kyoto Protocol, the prediction and management of air
pollution has become an important common concern among industry, government and
academics around the world. Scholars have put a lot of effort into empirical research and
have obtained quite significant results. Nevertheless, the pursuit of the best predictive
model has not reached a consistent conclusion. Here, we review key studies from the
literature relevant to this study.

Zickus et al. employed daily average of PM10 concentrations monitored in the Terro
region of Helsinki, Finland from 1996 to 1999 as a sample and variables such as wind speed,
wind direction, air pressure, humidity, precipitation, temperature, dew point temperature,
and terrain to predict daily PM10 concentration in 1999 with a three-year training period
from 1996 to 1998 [12]. Empirical methods include logistic regression, decision tree, multiple
adaptive regression splines (MARS) and artificial neural networks (ANN). Results show
that logistic regression, multiple adaptive regression, and neural networks perform more
consistently, while decision trees perform significantly worse. Dudot et al. employed
a neural network combined with a neural classifier to predict hourly maximum ozone
concentrations in central France [13]. The neural model is based on the MLP structure,
and the sample data is collected from the French air quality agency LIG’AIR, which has
15 ground monitoring stations, and this study only focuses on three stations in Orleans.
The daily maximum data for hourly ozone mean concentrations from 1999 to 2003 were
adopted. Since the ozone observation peaks in summer, the authors only used data from
April to September. Nonetheless, the model developed can be used to make valid forecasts
throughout the year. Results showed that the use of neural networks for ozone peaks
produced better predictions, with a 92% concordance index, MAE = RMSE = 15 µg/m3,
MBE = 5 µg/m3, as compared to the European threshold for hourly ozone of 180 µg/m3.
In order to improve the accuracy of prediction, the authors use a neural classifier with a
sigmoid function in the output layer. The output range of the network was [0,1], which
can be interpreted as the probability of exceeding the standard. Comparing this model
with logistic regression shows that the prediction accuracy index using the neural classifier
is 78%, compared to 65% to 72% for the classical MLP. Voukantsis et al. collected air
quality monitoring data from 2001 to 2003 at Kallio and Vallia stations in Thessaloniki,
Greece and at Sindos and Agias Sofias stations in Helsinki, Finland to predict daily average
of PM10 concentration in 2003 through a neural network model [14]. Research results
show that the predicted R2 values of PM10 at the Kallio, Vallila, Sindos and Agias Sofias
stations were 0.587, 0.639, 0.472 and 0.427, respectively. RMSE was 5.884, 7.128, 16.387 and
23.577 µg/m3, respectively. Higher values of R2 did not correlate with lower RMSE. In
addition, the concordance index between measured and modeled daily PM10 concentrations
was between 0.8 and 0.85, while the predicted PM10 kappa index for both cities reached 60%.
Empirical findings indicate that despite significant differences in the environment of the two
sample cities, the performance of the PM10 prediction model was not significantly different.

Russo et al. applied a neural network to predict air quality, with hourly NO2 concentra-
tion data collected from Chelas and Avenida da Liberdade stations in Lisbon, Portugal from
1 January 2002 to 31 December 2006 [15]. The prediction is divided into two parts. In the
first part, only the period from 2002 to 2005 was considered and the data of the first three
years was used as training data to predict the year of 2005. Next, the data from 2002, 2003
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and 2005 were adopted for training to predict 2004, and so on for each year. In the second
part, the authors used the parameter values obtained in the first part to predict the NO2
concentration value in 2006. Selected variables include NO2, NO, CO as well as tempera-
ture, wind speed, wind direction, humidity, air pressure, solar radiation, and atmospheric
boundary height. Empirical results showed that the RMSE is about 20 or above. Tamas et al.
used ANN to predict the next 24 h ozone concentration in Corsica, France [16]. Sample
data were collected from four stations, Canetto, Giraud, Montesoro and Sposata, two in
cities and two in suburbs, from 2008 to 2012 to establish an MLP-based ANN early warning
model. The input variables include the concentrations of O3, NO2, MET and TI, and these
variables were configured into five combined models for prediction, namely O3, O3+NO2,
O3+NO3+MET, O3+NO2+TI and O3+NO2+MET+TI. Empirical results showed that for the
Canetto station, the prediction of the MLP (O3+NO2+TI) model was more accurate, the
RMSE was 17.31 µg/m3, and the MAE was 13.66 µg/m3; for the Sposata station, the MLP
(O3+NO2+MET+TI) model was more accurate, the RMSE was 16.90 µg/m3, and the MAE
was 13.31 µg/m3; for the Giraud station, the prediction of the MLP (O3+NO2+MET+TI)
model was more accurate, the RMSE was 16.53 µg/m3 and the MAE was 12.82 µg/m3; for
the Montesoro station, the MLP (O3+NO2+MET+TI) model was more accurate in predic-
tion, the RMSE was 15.90 µg/m3 and the MAE was 12.30 µg/m3. Zhou et al. proposed
an EEMD-GRNN (ensemble empirical mode decomposition—general regression neural
network) model for predicting PM2.5 concentrations [17]. EEMD decomposes the raw data
of PM2.5 into several intrinsic mode functions (IMFs), while GRNN is used to predict each
IMF. This study adopted input variables obtained from a principal component regression
(PCR) model to train a hybrid EEMD-GRNN model to remove redundancy. Training data
was from 1 January to 1 November in 2013, and the model was tested with data from 2
November to 21 November 2013 in Xi’an Province, China. The resulting MAE values of
the multiple linear regression (MLR) model, PCR model, traditional integrated moving
average autoregression (ARIMA) model, GRNN model and EEMD-GRNN model were
29.30, 26.35, 23.55, 23.50 and 19.80, respectively. MAPE values were 37.00, 32.75, 29.67,
31.25 and 28.01, respectively, and MSE values were 37.42, 31.30, 28.98, 32.31 and 29.41,
respectively. The EEMD-GRNN model outperformed the MLR model, PCR model, ARIMA
model and GRNN model without EEMD and can be adopted to develop an early warning
system for air quality. Elangasinghe et al. used neural networks combined with k-means
clustering to grasp the complex time series of PM10 and PM2.5 concentrations in coastal
New Zealand [18]. Wind speed, wind direction, solar radiation, temperature and relative
humidity were used as variables and the adjacent pollution sources were used as refer-
ences. Results support improved prediction accuracy based on the values of the correlation
coefficient and RMSE. The correlation coefficient between observed and predicted PM2.5
concentrations increased from 0.77 to 0.79, and PM10 concentrations increased from 0.63
to 0.69. The RMSE index values of PM2.5 and PM10 were reduced from 5.00 to 4.74 and
from 6.77 to 6.34, respectively. Kristiani et al. implemented short-term prediction of PM2.5
in Taiwan using the long short-term memory (LSTM) deep learning method [19]. Results
indicate that LSTM had the lowest RMSE value at 1.9, as compared to other models such as
CNN at 3.5, Bi-LSTM at 2.5, Bi-GRU at 2.7 and RNN at 2.4.

Zheng et al. applied neural networks and linear regression as spatial and temporal
prediction models and combined with regression trees [20]. The study included monitoring
data from 43 cities in China from 1 May 2014 to 30 April 2015 and combined temporal
predictors, spatial predictors, prediction aggregators and deformation predictors to forecast
air quality at Beijing, Shanghai, Tianjin, and Guangzhou for the following 48 h. Results
indicate that the model can achieve an accuracy of 0.75 in the first 6 h and 0.6 in the
next 7 to 12 h. Even though forecast accuracy in Beijing was the worst among the four
cities, it was still better than the weather forecasting model (WFM) adopted by the Beijing
Environmental Protection Monitoring Center. Feng et al. proposed a hybrid model that
combines air quality trajectory analysis and wavelet transformation with a neural network
(ANN) to predict PM2.5 concentrations beyond two days, and its accuracy was observed [7].
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The sample data was collected from 13 air quality monitoring stations in Tianjin and Hebei,
China from 1 September 2013 to 31 October 2014. Wind speed and wind direction were
set as parameters affecting air quality. The prediction results show that this hybrid model
can effectively improve prediction accuracy of PM2.5, and its RMSE value can be reduced
by as much as 40% on average. In particular, the days with high PM2.5 concentration can
almost be predicted by wavelet decomposition, and the detection rate (DR) can reach 90%
on average for the alert threshold set by the hybrid model.

Wang et al. established an urban air quality prediction system based on the weather
research forecast and chemistry (WRF-Chem) model and a regional haze weather forecast
system based on the Regional Atmospheric Environment Modeling System (RegAEMS)
and applied to Shanghai and Nanjing in the Yangtze River Delta region of China [21].
The study conducted a one-year forecast in Shanghai from May 2009 to April 2010 and a
one-month test in Nanjing in October 2007. Results show that WRF-Chem performs well
in the prediction of SO2, NO2, and PM10, with the prediction accuracy of API index in
Shanghai and Nanjing of 50–83% and 80%, respectively. RegAEMS performed well in haze
weather forecasting in terms of RH, PM2.5 and visibility. The accuracy rates of Shanghai and
Nanjing were 77% and 58%, respectively. The authors developed new classification criteria
by taking relative humidity, PM2.5 and visibility as key parameters. Saide et al., applied
WRF-Chem model combined with a two-kilometer grid to build a forecasting system to
predict PM2.5 concentration for the next one to three days [22]. The test period was from
April to August in 2014 and the sample included hourly PM2.5 observations at nine cities
in Chile and the United States: Santiago, Rancagua, Curico, Talca, Chillan, Los Angeles,
Temuco, Valdivia and Osorno. Empirical results show that the prediction accuracy ranged
from 50 to 70%, while the optimal initialization was 61 to 76%.

Delavar et al. established an air pollution prediction model to predict PM10 and PM2.5
concentrations in Tehran [8]. The day of the week, month, topography, meteorology and
pollution rates of two neighboring areas were adopted as input parameters for the machine
learning methods adopted including SVR (support vector regression), NARX (nonlinear
autoregressive exogenous), ANN and GWR (geographically weighted regression). Cross
validation was applied on results to evaluate the best method for modeling air pollution
predictions. Empirical results show that, SVR, NARX, ANN and GWR can reduce the
RMSE of PM10 by 53%, 47%, 47% and 94%; and predict the RMSE of PM2.5 by 58%, 57%,
61% and 94%, respectively. The best prediction method was NARX with external input.
Using the proposed prediction model, its RMSE value reached 1.79. In addition, using a
genetic algorithm (GA), the authors found that variables such as day of the week, month,
topography, wind direction, maximum temperature and pollution rates in two neighboring
areas were the most effective parameters for predicting air pollution. Hu et al. used the
hourly CO concentration values of four stations, namely, Liverpool, Chullora, Rozelle and
Prospect, in Sydney, Australia from May 2009 to May 2016 as samples [23]. Using SVR as the
method, CO concentration values were predicted and compared with the prediction results
of ANN. Empirical results show that when MAE is used as evaluation index, prediction
accuracy of SVR and ANN are 0.314 and 0.435, respectively; when RMSE is used, prediction
accuracy of SVR and ANN are 0.414 and 0.677, respectively. In summary, the prediction
results of SVR are more accurate than those of ANN.

Davis and Speckman adopted the generalized additive model (GAM) method to
establish an air quality prediction system to estimate the next-day maximum and the
average ozone concentration over an 8 h period (10 a.m. to 5 p.m.) in Houston [24]. The
study collected ozone data from 10 stations in the Houston area from 1983 to 1991, as
well as meteorological data at international airports. Data from April to October from
1983 to 1987 and from 1989 to 1990 were used as the training period, and 1988 and 1991
as the forecasting period. Empirical results indicate that wind direction, opaque cloud
cover factor, the previous day’s maximum ozone concentration, current day’s maximum
temperature and morning mixing depth were all very important variables in the model.
In addition, the 8 h prediction results of the average ozone concentration at each station
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showed that the RMSE ranged from 13.2 to 16.3 ppb (R2 is ranged from 0.66 to 0.73); the
prediction results of the maximum average ozone concentration indicated an error range
from 18.5 to 22.0 ppb (R2 is ranged from 0.61 to 0.68). Siwek et al. took data collected in
southern Warsaw from 2005 to 2007 as a sample to predict the PM10 concentration [25].
Three machine learning networks were adopted: Multilayer Perceptron (MLP), Radial
Basis Function (RBF), and SVM. Other models proposed include wavelet-transformed MLP,
RBF, and SVM models and a model integrating Blind Source Separation (BSS) and another
neural network structure. Empirical results showed that the MAE values of MLP, RBF and
SVM models were 6.47, 6.99 and 7.07 µg/m3, respectively, and the MAPE values were 26.43,
28.49 and 27.05%, respectively. After wavelet transformation, the MAE values of the MLP,
RBF and SVM models were 4.37, 5.76 and 4.93 µg/m3, respectively, and the MAPE values
were 18.04, 23.43 and 20.93%, respectively. The MAE values of the models integrated by
BSS and SVM were 3.89 and 4.03 µg/m3, respectively, and the MAPE values were 15.78
and 15.96%, respectively. Results indicate that accuracy of the prediction was improved,
and the prediction performance of the model integrated by SVM was the best, which was
over 12% higher than the SVM model transformed by wavelet, and higher than the pure
RBF model, which was the worst at over 44%.

Sotomayor-Olmedo et al. took monthly air quality monitoring data, including O3,
NO2 and PM10, from Mexico City as a sample and applied SVM to predict the air pollution
quality of each month in 2009 [26]. Parameters were adjusted through three kernel functions
and the performance of prediction results were compared. Empirical results showed that
in the prediction of O3 and NO2, the SVM model applying the Gaussian kernel function
had higher accuracy. The empirical results also indicated that the prediction accuracy of
the three kernel functions was lower in the last couple months of the year, especially in
December. As for the prediction of PM10, the Gaussian kernel function mode performed
better with a large number of SVMs and the polynomial and spline kernel function modes
were relatively accurate with a small number of SVMs.

Song et al. explored a more accurate model in the prediction of power usage load
spikes. The study proposed an FKM-ASVM-GARCH ECM model, which integrates
GARCH and SVM models, as an alternative model to be compared with traditional FKM-
ASVM model which does not include GARCH-modified errors [27]. The study adopted
China’s electricity supply as an observation sample, using the daily load capacity from
June to July 2014 as the training period of SVM and the daily load capacity in August
as the test period. Results indicate that MAPE, the evaluation criterion for prediction
accuracy, was reduced from 1.72 in traditional method without GARCH to 0.74 in the
alternative GARCH model. Therefore, it was suggested that the FKM-ASVM-GARCH
ECM is superior to the FKM-ASVM. Integration of the GARCH model can indeed improve
the accuracy of the SVM prediction model. Ishak et al. applied SVR and random forest
(RF) models to establish a prediction model for the daily maximum ozone concentration
at three monitoring stations in Tunisia, namely, Gabes, Ghazela and Manouba [28]. Using
the station data of the National Environmental Protection Agency (ANPE) from 20 June
2014 to 30 September 2014 as the observation sample, 36 explanatory variables, including
daily maximum ozone concentration (maxO3) and other pollutant concentrations (SO2,
NO2, NO and PM10), were adopted to explain daily maximum ozone concentration. The
experimental results showed that prediction performance of the RF model was better than
that of the support vector regression model. The RMSE values of the RF model at the Gabes,
Ghazela and Manouba stations were 2.26, 4.16, and 6.71, respectively; the MAE values
were 1.85, 3.18 and 5.29 and the MAPE values were 4.08, 3.51 and 8.63, respectively. Lin
et al. adopted three machine learning methods, including decision tree regression (DTR),
gradient boosted tree regression (GBTR) and SVR to predict PM2.5 concentration in the
next hour at 67 locations in Taiwan through a big data platform, with RMSE and MAE as
the accuracy evaluation criteria [29]. Results showed that the RMSE of DTR, GBTR and
SVR methods were 8.52, 5.17 and 4.68, respectively, and the MAE indicators were 6.25, 3.63
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and 3.46, respectively. A preliminary conclusion suggests that SVR is considered to be the
better prediction model.

Altogether, with recent evolution of quantitative methods, methodology of the air
pollution quality prediction in the literature has evolved from traditional Logistic regression
analysis to the application of machine-learning-based approaches. The most widely used
methods include neural network analysis (ANN) and SVM. The methodology of ANN
has evolved from a traditional single-layer input and output to a multi-layer recurrent
neural network analysis method (RNN). However, the need for huge volume of (big) data
to improve accuracy in RNN method has become a challenge for empirical study with
constrained data collection.

Another development trend is the use of hybrid prediction models combined with
other methods, such as wavelet analysis, in pursuit of higher prediction accuracy. In
terms of SVM methodology, it is moving towards combining other algorithms, such as
the combination of the genetic algorithm (GA) model and machine learning methods,
such as GA-SVM model. There is still a lack of consensus about which methodology can
provide the best prediction accuracy. Finally, the choice of air pollution predictors is also
inconclusive among the literature. The intention of this study is to examine predictors and
alternative prediction models that integrate the GARCH effect into the GA-SVM model, to
improve prediction accuracy for air pollution.

2.2. Dataset

Data for our empirical study was retrieved from the Environmental Protection Agency
(EPA) database in Taiwan. The study adopts the central Taiwan region, which has the
worst PM2.5 density, as the observed sample. The choice of predictive variables refers to
previous literature related in Section 2.1. However, due to the availability of data, nine
variables were adopted for our examination: fine particles (PM2.5), carbon monoxide (CO),
nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx), ozone (O3), suspended
particulate matter (PM10), sulfur dioxide (SO2), wind direction (WindDirection), and wind
speed (WindSpeed).

Sampling for this study includes hourly observation data from five air pollution
monitoring stations, including FongYen, SaLu, DaLi, ChungMin and SeaTun stations, in
central Taiwan. The observation period for our study was from 20 October 2020 to 16
December 2020. The dataset was split into two samples, training data and testing (holdout)
data, to evaluate the prediction performance. We held the testing data as the out-of-sample
test and used the holdout test to predict hourly PM2.5 concentration in next 8 h in January
2021. In Table 1, we present basic features of the data, including the locations of five
monitoring stations, duration and frequency of data and observation numbers in each
station. There are three major reasons for choosing the research period from 20 October
2020 to 16 December 2020. First of all, seasonal characteristics are distinct among the
four seasons in Taiwan. Especially, the effects of subtropical island weather, temperature
and continental air mass on air quality are unique in winter season. The most serious air
pollution problems occur around wintertime. Thus, we adopted observation data from
this period for examination considering the seasonal effect. Second, in this dataset with
over 1200 hourly observations in each station, from a statistical point of view, the mean
behavior of the sample is closer to observation data, which makes it more representative
for splitting hourly observation data into training data and testing (holdout) data. Third,
the data was retrieved from the EPA database in Taiwan. There is redundant overlap in
later period observations and clean data is not easy to retrieve, which is why we adopted
sample data from the 20 October to 16 December period.
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Table 1. Basic features of observation data.

Station 1 Station 2 Station 3 Station 4 Station 5

Location FongYen SaLu DaLi ChungMin SeaTun
Duration 58 days 58 days 58 days 58 days 58 days

Frequency Hourly Hourly Hourly Hourly Hourly
Observations 1211 1211 1215 1211 1211

Note: Stations 1, 2, 3, 4 and 5 represent monitoring stations in the counties of FongYen, SaLu, DaLi, ChungMin
and SeaTun, respectively. Data was retrieved from the EPA database in Taiwan. The observation period was from
20 October 2020 to 16 December 2020.

2.3. Methodology

In this study, we attempting to apply machine learning methods to estimate the degree
of PM2.5 based on hourly observation data. Due to the influence of terrain, temperature,
humidity, wind direction and so on, the PM2.5 in the previous period may not have
completely dissipated and will affect the PM2.5 concentration in the next period, thus
the phenomena of autoregression and heteroscedasticity, which are common in time series
data, might exist in the dataset. Therefore, it is necessary to check the time series features
before the prediction. Where the phenomena of autoregression and heteroscedasticity
exist, we applied the Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
model to capture the time series characteristics, and then examined various cross-model
integration methods, including integrating the GARCH effect in the GA-SVM model, to
establish a method that provides the highest prediction accuracy.

A two-stage approach will be performed in this study. In the first stage, as shown in
the upper part of Figure 1, we start with an Augmented Dickey–Fuller (ADF) unit root test
for stationary, followed by the GARCH effect diagnosis, including LM test and ARCH test,
and end with GARCH model estimation.

Figure 1. The Analysis Process Flow Chart.

2.3.1. Unit Root Test

Granger and Newbold suggested that, if an analysis is carried out with time series
data in a non-stationary state, the results will be biased and lead to spurious regression [30].
In such cases, difference should be carried out till the time series data is stationary for
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further analysis. For the stationary test method, we follow Engle and Granger and adopt
the Augmented Dickey–Fuller (ADF) test to check whether the PM2.5 concentration in the
dataset is a stationary time series [31]. Depending on the inclusion of intercept or trend, or
not, the three variations of ADF test model are:

1. Model with neither intercept nor trend

∆yt = γyt−1 +
p

∑
i=2

βi∆yt−i+1 + εt (1)

2. Model with intercept but without trend

∆yt = α0 + γyt−1 +
p

∑
i=2

βi∆yt−i+1 + εt (2)

3. Model with both intercept and trend

∆yt = α0 + γyt−1 + α2t +
p

∑
i=2

βi∆yt−i+1 + εt (3)

where α0 is the intercept; t is the trend for time; γ, βi and α2 are parameters to be estimated;
p is the optimal lag order; the residual is εt ∼ iid(0, σ2) and fit white noise; the null
hypothesis is H0 : γ = 0. If the test statistics are significant and the null hypothesis is
rejected, this time series data does not have a unit root phenomenon and belongs to a
stationary time series.

2.3.2. ARCH Test

When the conditional variance of the regression residuals is not uniform, the estimated
coefficient is not valid. Therefore, in traditional quantitative empirical analysis, testing
whether the model has heterogeneous variance (Heteroscedasticity) has become the main
step in diagnosing the model. In empirical analysis, before fitting the GARCH correlation
model, it is necessary to check whether the sample time series data has the feature of het-
erogeneous variation, that is, whether there is an ARCH effect, as the basis for whether the
ARCH model can be configured. For the test method, we applied the Lagrange multiplier
(LM) test proposed by Engle to test whether the ARCH effect was present [9]. The testing
steps were as follows.

(1) We first run the OLS regression to estimate the appropriate mean equation: yt = xt
∧
α,

where
∧
α is the regression coefficient estimated by OLS, and the residual

∧
εt = yt − xt

∧
α is

calculated accordingly, and then save the residual square
∧
ε

2

t as another time series.

(2) Regress the residual square estimate
∧
ε

2

t on intercept and q lagging terms to calculate
the coefficient of determination, R2, of this regression analysis. The estimation function is
as follows:

∧
ε

2

t =
∧
α0 +

∧
α1
∧
ε

2

t−1 +
∧
α2
∧
ε

2

t−2 + . . . . . . . . . . .+
∧
αq
∧
ε

2

t−q (4)

(3) Multiply the determined coefficient, R2, by the number of samples, T, to calcu-
late the LM test statistic, LM = T × R2 ∼ χ2(q), where the LM statistic approaches the
chi-square distribution with the degree of freedom q. If the resulting LM test statistic

significantly rejects the null hypothesis: H0 :
∧
α1 =

∧
α2 = . . . . . . . . . =

∧
αq = 0, it means that

the time series data inspected has an ARCH effect, and an ARCH or GARCH model should
be further fitted.

2.3.3. GARCH Model

If the ARCH effect exists in the hourly PM2.5 concentration data, the conditional
heterogeneity variance model will fit. Econometricians have proposed correction meth-
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ods to improve the heteroscedasticity of time series data. Among them, Engle [9] and
Bollerslev [10] are the most popular.

Engle considered the conditional variance to change over time and included it in
the autoregressive conditional heterogeneous variance (ARCH) model, allowing the con-
ditional variance to be a function of the squared term of residual in previous period [9].
Thus, previous volatility will affect the subsequent volatility, which is in line with the
phenomenon of volatility clustering. The model specification of ARCH(q) can be described
as follows:

yt = axt + εt

ht = σ2
t = α0 + α1ε2

t−1 + . . . . . . . .+αpε2
t−p = α0 +

q
∑

i=1
αiε

2
t−i

εt|Ωt−1 ∼ N(0, ht)

(5)

where α0 > 0, αi > 0, i = 1, 2, . . . . . . . ., q; yt is the time series data; axt is the conditional
mean of yt; Ωt−1 is the information collected up to period t − 1 and ht is the conditional
heterogeneity variance of yt.

Bollerslev further added the lag conditional variance to the ARCH model, so that
ARCH conforms to the traditional ARMA process, which is called the generalized au-
toregressive conditional heterogeneous variation (GARCH) model [10]. The conditional
variance is not only affected by the squared term of residual in previous period, but also by
the conditional variance in previous period. The GARCH (p,q) model is stated as follows:

yt = axt + εt

ht = σ2
t = α0 +

q
∑

i=1
αiε

2
t−i +

p
∑

j=1
β jht−j

εt|Ωt−1 ∼ N(0, ht)

(6)

where α0 > 0, αi > 0, i = 1, 2, . . . . . . . ., q; β j > 0, j = 1, 2, . . . . . . . ., p; yt is the time series
data; axt is the conditional mean of yt; Ωt−1 is the information collection up to period t − 1;
ht is the conditional heterogeneity variance of yt.

We follow the GARCH (1,1) specification since it represents most popular specification
based on prior literature [10,11,32,33].

After the GARCH model was estimated, to make sure the GARCH (1,1) model specifi-
cation is at its optimal level, we applied the ARCH-LM test to check the model fit as well.

The estimation function of ARCH-LM test is as follows:

∧
ε

2

t =
∧
α0 +

∧
α1
∧
ε

2

t−1 +
∧
α2
∧
ε

2

t−2 + . . . . . . . . . . .+
∧
αq
∧
ε

2

t−q + vt (7)

Since the SVM model is a regression-based model, when autoregression exists in the
dataset, the prediction result will be biased. If the GARCH effect was confirmed in the first
stage, in the second stage of analysis, we integrate the GARCH effect into the GA-SVM
model with PM2.5 as the prediction variable. We add the PM2.5 in the previous period
(PM2.5 (t−1)), the conditional heterogeneity variance in the previous period (ht−1) and
the squared term of the residual in the previous period, ε2

(t−1), from the GARCH model
estimation into the GA-SVM model to establish an alternative PM2.5 prediction model and
to compare the prediction accuracy with traditional GA-SVM model which does not take
the GARCH effect into consideration.

2.3.4. GA-SVM Model

The Genetic Algorithm (GA) was proposed by John Holland and is based mainly on
Darwin’s theory of evolution to simulate the “natural selection” in the evolution of the
biological world [34]. The natural elimination mechanism of “survival of the fittest” is
widely applied in solving optimization problems, data search, artificial intelligence and
machine learning [35]. In the financial field, many scholars have also applied the genetic



Sustainability 2022, 14, 4459 12 of 20

algorithm to examine various topics, such as: trading systems, stock or portfolio selection,
bankruptcy prediction, credit evaluation, budget allocation, etc. [36].

The genetic algorithm mainly operates through three processes: reproduction, crossover
and mutation. During the reproduction process, an initial population is randomly gen-
erated, and each individual is coded in binary and substituted into a fitness function.
Then, based on the obtained fitness value, individuals with high fitness are selected and
reproduced to the mating pool. Two individuals are selected randomly in the mating pool
for mating each time and the algorithm decides whether the resulting offspring should
undergo further mutation. The process of reproduction, crossover and mutation is repeated
until the most resilient population is produced. A processing flow chart of the genetic
algorithm is shown in Figure 2 [36].

Figure 2. Processing Flow Chart of the Genetic Algorithm (GA).

SVM is a learning method widely applied in classification-related topics. SVM was
proposed in 1995 by Vladimir Naumovich Vapnik and the AT&T laboratory team [37].
SVM is a machine learning system developed based on the Structural Risk Minimization
(SRM) method in statistical learning theory. The main concept of SVM is to use a separating
hyperplane to divide data into two or more classes and to deal with the problem of
classification in data mining.

2.3.5. Evaluation Indicators for Prediction Models

Regarding the performance evaluation of prediction models, four indicators are gener-
ally adopted, including mean-absolute percentage error (MAPE), root mean squared error
(RMSE), mean absolute error (MAE) and correlation coefficient (CC) [38]. Specifications of
the four indicators are presented in Table 2 based on Witten, Frank and Hall [38]. MAPE is
the most commonly used criteria for prediction performance evaluation [36]. We further
added RMSE to reinforce our evaluation and will present results in Section 3.3.
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Table 2. Performance Measures for Numeric Prediction.

Mean absolute percentage error
(MAPE)

100%
n ×

[
ρ1−a1

a1
+ · · ·+ ρn−an

an

]
Root mean squared error

(RMSE)

√
(ρ1−a1)

2+···+(ρn−an)
2

n
Mean absolute error

(MAE)
|ρ1− a1|+···+|ρn− an |

n

Correlation coefficient
(C. C.)

SPA√
SPSA

SPA = ∑i (pi−p)(ai−a)
n−1

SP = ∑i (pi−p)2

n−1 SA = ∑i (ai−a)2

n−1
Here, a is the mean value over the test data.

Lewis stated that MAPE is often applied to evaluate the predictive ability of a
model [39]. The smaller the MAPE, the better the prediction performance. The denomina-
tor of percentage termed MAPE is the actual value, thus there is no problem of unstable
comparison basis due to the size of the value. When MAPE is the measure, the value
of (1-MAPE) represents the accuracy of prediction; thus, the lower the MAPE value, the
better the predictive ability. RMSE mainly measures the degree of deviation between the
predicted value and the actual value. The degree of deviation is standardized with the
actual value of the variable, so the predictive ability of each variable can be compared.
When RMSE is the measure, the closer its value is to 0, the better the predictive ability.

In Table 3, we present the interpretation of MAPE values based on Lewis [39]. For
example, if the MAPE value is less than 10%, the prediction performance will be classified
as “highly accurate forecasting”. When the MAPE value is above 50%, the prediction
performance will be classified as “inaccurate forecasting”.

Table 3. Interpretation of MAPE values.

MAPE Intepretation

MAPE < 10% Highly accurate forecasting
10% <MAPE < 20% Good forecasting
20% <MAPE < 50% Reasonable forecasting

50% <MAPE Inaccuracte forecasting

3. Results and Discussion
3.1. GARCH Effect Diagnosis

In Table 4, we present the results of the GARCH effect diagnosis in each of five air
pollution monitoring stations including FongYen, SaLu, DaLi, ChungMin and SeaTun
stations in Taichung, Taiwan, which are labeled as Stations 1, 2, 3, 4 and 5, respectively, in
Table 3. Before the diagnosis, we start with an ADF unit root stationary test, as suggested by
Engle and Granger [31], and find that the test statistics in all five stations are significant with
probability of chi-square equal to 0.0000. The results significantly reject the null hypothesis
of non-stationary at alpha = 0.01 level of confidence, thus the PM2.5 time series data in each
station are all stationary and can be used for further estimation.

As shown in Table 4, in all five monitoring stations, F-statistics of the OLS model are
all statistically significant at 0.01 level and the adjusted R2 values are at least 0.7773. The
coefficient estimates and the t-statistics of each variable at each station are presented in the
table. The coefficient estimates of PM2.5 concentration in previous period (PM2.5 (t−1)) at
Station 1 to 5 are 0.5408, 0.5828, 0.4945, 0.5563 and 0.5543, respectively; all are statistically
significant at 0.01 level. Similar results can be found on the coefficient estimates of PM10
and sulfur dioxide (SO2); both are statistically significant at 0.01 level for all five stations.
The coefficient estimates of ozone (O3) were not significant for all five stations.
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Table 4. Results of GARCH Effect Diagnosis.

Variable Station 1 Station 2 Station 3 Station 4 Station 5

PM2.5 (t−1) 0.5408 0.5828 0.4945 0.5563 0.5543
25.80 *** 31.70 *** 24.83 *** 30.10 *** 28.47 ***

CO −0.9842 0.5406 −0.1548 −0.2233 0.9440
−1.94 1.14 −0.47 −0.51 1.70

NO 1.2822 −0.0410 −0.0046 0.2324 0.2220
1.55 −0.56 −0.01 0.47 0.34

NO2 1.2568 0.1181 −0.1277 0.2902 0.1788
1.54 2.19 ** −0.23 0.59 0.27

NOX −1.0688 −0.0139 0.1713 −0.2036 −0.1715
−1.31 −0.31 0.30 −0.42 −0.26

O3 −0.0102 0.0090 0.0068 0.0030 0.0016
−0.82 0.75 0.51 0.25 0.13

PM10 0.1547 0.1734 0.1970 0.1927 0.1801
13.28 *** 16.86 *** 18.01 *** 17.60 *** 16.73 ***

SO2 0.4612 0.5779 0.6934 0.5627 0.3856
9.84 *** 9.84 *** 11.05 *** 8.72 *** 6.07 ***

WindDirection 0.0004 0.0012 0.0019 −0.0003 −0.0026
0.30 1.30 1.82 −0.42 −2.52 **

WindSpeed 0.3763 −0.1501 −0.0007 −0.4826 −0.5618
−2.15 ** −1.86* −0.09 −3.14 *** −5.11 ***

C 0.8794 −1.3351 −1.2469 −0.1998 2.0251
1.71 * −2.75 *** −3.56 *** −0.39 3.43 ***

Observation 1211 1211 1215 1211 1211
F-statistic 423.2258 739.5768 710.4244 740.6729 602.5055

Prob. (F-stat.) 0.0000 0.0000 0.0000 0.0000 0.0000
Adj. R2 0.7773 0.8592 0.8532 0.8594 0.8325

LM Test
F-statistic 16.2423 20.4623 21.2019 21.6132 20.8101

Prob. (F-stat.) 0.0000 0.0000 0.0000 0.0000 0.0000
Obs*R2 31.9702 40.0022 41.4075 42.17369 40.6592

Prob. (Chi2) 0.0000 0.0000 0.0000 0.0000 0.0000

ARCH test
F-statistic 231.4378 24.6600 31.1825 96.8117 148.2826

Prob. (F-stat.) 0.0000 0.0000 0.0000 0.0000 0.0000
Obs*R2 194.5480 24.2067 30.4505 89.7771 132.2895

Prob. (Chi2) 0.0000 0.0000 0.0000 0.0000 0.0000
Note: Test statistics of ADF test in five stations are significant with the chi-square probability equal to 0.0000; thus,
the data in each station does not have a unit root phenomenon and belongs to a stationary time series. Stations 1, 2,
3, 4 and 5 represent monitoring station in the counties of FongYen, SaLu, DaLi, ChungMin and SeaTun, respectively.
Variables examined include fine-particle observation in previous period (PM2.5 (t−1)), carbon monoxide (CO),
nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx), ozone (O3), suspended particulate matter
(PM10), sulfur dioxide (SO2), wind direction (WindDirection), and wind speed (WindSpeed). t-statistic values
are presented below each coefficient estimates. ***, ** and * indicate statistical significance at 1%, 5% and 10%,
respectively.

As we expected, autocorrelation in the PM2.5 data does exist, and the result of the LM
test reconfirms such a phenomenon. As shown in the lower part of Table 4, the F-statistics
are all significant at the 0.01 level. Test statistics, Obs*R2, in five stations are 31.9702,
40.0022, 41.4075, 42.1737 and 40.6592, respectively, are all significant at the 0.01 level and
all significantly reject null hypothesis of no autocorrelation phenomenon. We further
performed an ARCH test to investigate whether a GARCH effect existed in our sample
data. As shown at the bottom of Table 4, the F-statistics are all significant at 0.01 level.
Test statistics, Obs*R2, in five stations are 194.5480, 24.2067, 30.4505, 89.7771 and 132.2895,
respectively, and are all significant at 0.01 level, significantly rejecting the null hypothesis
of no GARCH effect, implying that the GARCH effect does exist in our sample data.
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The results of the LM test and ARCH test indicate that the PM2.5 time series data is
autoregressive and does have an ARCH effect. A bias would be expected if we further
estimated with a regression-based model, such as the SVM model. Thus, an ARCH or
GARCH model should be further fitted.

3.2. GARCH Estimation

In Table 5, we present the GARCH estimation and model specification for each of
the five monitoring stations. We follow the GARCH (1,1) specification since it represents
the most popular specification, based on prior literature [29–32]. As shown in the upper
section of Table 4, for all five stations, the coefficient estimates of both PM2.5 (t−1), the
PM2.5 observation in previous period and PM10 were statistically significant at an alpha
level of 0.01. Coefficient estimates of PM2.5 (t−1) at stations one to five were 0.5210, 0.5528,
0.4402, 0.5577 and 0.4786, respectively. Coefficient estimates of PM10 at stations one to five
were 0.1634, 0.1635, 0.2327, 0.1755 and 0.2001, respectively. Coefficient estimates of SO2 at
stations one to five were 0.2115, 0.5537, 0.6148, 0.2355 and 0.2485, respectively, and all were
statistically significant at α = 0.01 level. The coefficient estimates of Ozone (O3) were not
significant for all five stations.

Table 5. Result of GARCH (1,1) Estimation.

Variable Station 1 Station 2 Station 3 Station 4 Station 5

GARCH (1,1)
PM2.5 (t−1) 0.5210 0.5528 0.4402 0.5577 0.4786

27.31 *** 33.80 *** 31.17 *** 41.47 *** 28.22 ***
CO 2.9016 2.4174 0.5319 2.5439 3.3907

6.28 *** 8.16 *** 1.47 9.13 *** 5.75 ***
NO 0.9557 −0.0513 0.6952 0.1474 0.1618

1.38 −0.34 2.68 *** 0.36 0.21
NO2 1.0488 0.0779 0.5710 0.1766 0.1172

1.53 0.53 2.24 ** 0.44 0.16
NOx −0.9170 −0.0024 −0.5645 −0.1312 -0.1266

−1.33 −0.02 −2.21 ** −0.32 -0.17
O3 −0.0025 −0.0064 −0.0153 0.0064 0.0060

−0.28 −0.64 −1.26 0.75 0.58
PM10 0.1634 0.1635 0.2327 0.1755 0.2001

18.24 *** 26.84 *** 31.04 *** 29.07 *** 26.42 ***
SO2 0.2115 0.5537 0.6148 0.2355 0.2485

5.64 *** 16.23 *** 9.04 *** 5.42 *** 3.71 ***
WindDirection −0.0012 −0.0006 −0.0001 −0.0002 −0.0024

−1.28 −0.95 −0.10 −0.28 −3.40 ***
WindSpeed −0.3804 −0.2110 0.0008 −0.2507 −0.4646

−2.73 *** −3.40 *** 0.07 −2.02 ** −5.44 ***
C 1.1559 −0.6811 −0.4225 −0.0385 1.8648

2.76 *** −1.66 * −1.69 * −0.10 4.10 ***

Variance
Equation

2.8001 0.5845 7.1652 1.3838 0.9128
C 7.03 *** 6.24 *** 9.53 *** 5.47 *** 4.01 ***

0.3133 0.1689 0.4319 0.2426 0.1741
ε2

(t−1) 8.81 *** 8.53 *** 10.44 *** 8.46 *** 10.03 ***
0.5639 0.8122 0.2937 0.6820 0.7891

h(t−1) 14.08 *** 44.93 *** 5.72 *** 20.11 *** 35.78 ***
Note: Stations 1, 2, 3, 4 and 5 represent monitoring stations in the counties of FongYen, SaLu, DaLi, ChungMin
and SeaTun, respectively. Variables examined include fine particle observation in the previous period (PM2.5 (t−1)),
carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx), ozone (O3), suspended
particulate matter (PM10), sulfur dioxide (SO2), wind direction (WindDirection) and wind speed (WindSpeed).
t-statistic values are presented below each coefficient estimates. ***, ** and * indicate statistical significance at 1%,
5% and 10%, respectively.
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We also found that the coefficient estimates of nitric oxide (NO), nitrogen dioxide
(NO2), and nitrogen oxide (NOx) were statistically significant at the 0.01, 0.05 and 0.05 levels,
respectively, only at station 3 (DaLi) but not significant at the other four stations. Conversely,
coefficient estimates of wind speed (WindSpeed) were significant at station 1, 2, 4 and 5 but
not significant at station 3 (DaLi). A similar result is found in the coefficient estimates of
carbon monoxide (CO), which were significant at Station 1, 2, 4 and 5, all at the 0.01 level,
but not significant at station 3 (DaLi).

In the lower section of Table 5, we present the variance estimates of the GARCH
model including the squared term of the residual in the previous period (ε2

(t−1)) and
the conditional heteroscedasticity in previous period (ht−1) at five stations. Coefficient
estimates of ε2

(t−1) at station one to five are 0.3133, 0.1689, 0.4319, 0.2426 and 0.1741,
respectively; all are statistically significant at 0.01 level. Coefficient estimates of ht−1
at stations one to five are 0.5639, 0.8122, 0.2937, 0.6820 and 0.7891, respectively; all are
statistically significant at α = 0.01 level.

Empirical results do support our expectation that the PM2.5 observations in the pre-
vious period (PM2.5 (t−1)), conditional heteroscedasticity (ht−1) and residual square of
GARCH model (ε2

(t−1)) are appropriate to be incorporated as prediction variables into a
GA-SVM model in our second stage procedure to establish an alternative PM2.5 prediction
model. After the GARCH model was estimated, to make sure the GARCH (1,1) model
specification was at an optimizal level, we perform an ARCH-LM test to check the model fit
as well. Test statistics in all five monitoring stations except Station 3 (DaLi) were significant,
rejecting the null hypothesis at 0.01 level, indicating that the GARCH model fit is optimized.

3.3. Evaluations of the Prediction Models

In the second stage of our analysis, we integrate the GARCH effect into the GA-
SVM model by adding PM2.5 observations in the previous period (PM2.5 (t−1)), GARCH
effect (ht−1) and residual of the GARCH model (ε2

(t−1)) to establish an alternative PM2.5
prediction model (GA-SVM-GARCH) and compare the prediction performance of two
traditional approaches, the SVM and the GA-SVM model, to our proposed alternative
model. The observation period for our study was from 20 October 2020 to 16 December
2020. The dataset was split into two sample sets, training data and testing (holdout) data,
to evaluate the prediction performance. We held the testing data as the out-of-sample test
and used the holdout test to predict hourly PM2.5 concentration in next 8 h in January 2021.

In Table 6, we present the MAPE and RMSE values of the SVM, GA-SVM and GA-SVM-
GARCH models. MAPE is the most commonly used criteria for prediction performance
evaluation [35]. The prediction accuracy was calculated by subtracting MAPE value from
one. For example, the MAPE values of SVM, GA-SVM and GA-SVM-GARCH model in
Station 2 (SaLu) are 35.94%, 33.14% and 0.68%, respectively, indicating prediction accuracies
of 64.06%, 66.86% and 99.32%, respectively. The results indicate a significate increase in
prediction accuracy with the GA-SVM-GARCH model by over 30% as compared to the
traditional SVM and GA-SVM models. We further added RMSE as the second evaluation
indicator to reinforce our evaluation. When the RMSE value is closer to 0, the predictive
ability of the model is better. For example, in Station 2 (SaLu), RMSE values of SVM, GA-
SVM and GA-SVM-GARCH models were 4.7724, 4.4938 and 0.0950, respectively, further
proving the better prediction performance with the GA-SVM-GARCH model.

In terms of performance comparison, Song et al. adopted China’s electricity supply
as an observation sample and found that the MAPE was reduced from 1.72% in the FKM-
ASVM model without GARCH, to 0.74% in the FKM-ASVM-GARCH ECM model with
GARCH [27]. In our proposed alternative model, the MAPE value of Station 4 reduced
from 26.89% in GA model and 26.64% in GA-SVM model to 0.14% in GA-SVM-GARCH
model. The results indicate that integration of the GARCH model can indeed improve
the accuracy of the SVM prediction models and our proposed GA-SVM-GARCH model
provides the highest accuracy.
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Table 6. Performance of Alternative Prediction Models.

Model Station 1 Station 2 Station 3 Station 4 Station 5

SVM
MAPE 10.33% 35.94% 21.64% 26.89% 16.08%
RMSE 3.9405 4.7224 2.9855 7.2913 4.2309

GA-SVM
MAPE 10.42% 33.14% 25.72% 26.64% 15.88%
RMSE 4.0778 4.4938 3.1561 7.3327 4.2144

GA-SVM-GARCH
MAPE 0.32% 0.68% 0.61% 0.14% 0.14%
RMSE 0.0596 0.0950 0.0632 0.0313 0.0255

Note: Stations 1, 2, 3, 4 and 5 represent monitoring stations in the counties of FongYen, SaLu, DaLi, ChungMin
and SeaTun, respectively.

In Figures 3 and 4, we present graphical abstracts of MAPE and RMSE comparison
of three SVM models above in five monitoring stations. As shown in Figure 3, the MAPE
values are within a range from 0.14% to 0.68% in the GA-SVM-GARCH model, as compared
to 10.42% to 33.14% in the GA-SVM model and 10.33% to 35.94% in the GA model. In
Figure 4, the RMSE values are within a range from 0.0225 to 0.0950 in the GA-SVM-GARCH
model, as compared to 3.1561 to 7.3327 in the GA-SVM model and 2.9855 to 7.2913 in the
GA model.

As shown in Table 6, Figures 3 and 4, the MAPE and RMSE value of the GA-SVM-
GARCH model are the lowest compared to those values in the SVM and GA-SVM models.
Overall, the performance of our proposed alternative model outperformed traditional SVM
and GA-SVM models in terms of both MAPE and RMSE. When we integrated the GARCH
effect into the GA-SVM model, the improvement in predicting accuracy exceeded our
expectations.

Figure 3. MAPE comparison of three SVM models in five monitoring stations.
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Figure 4. RMSE comparison of three SVM models in five monitoring stations.

4. Conclusions

Air pollution, especially that of PM2.5, resulting from industrialization has fostered a
wave of global weather migration and jeopardized human health in the past three decades.
The prediction and control of air pollution, especially PM2.5, has been a critical issue for
regulators, practitioners and academics in Taiwan. Much research has been carried out
searching for better prediction models, yet there is no consensus on which is the most
accurate approach. In this study we conducted a two-stage analysis and explored whether,
by integrating the GA-SVM model with the GARCH effect, we can construct a more
accurate air pollution prediction model. The study adopted the region with the worst PM2.5
density, central Taiwan, as the sample source.

In the first stage of analysis, the examination started with an ADF test for stationary in
our time series data, followed by an LM test and ARCH test to investigate if autoregression
and the ARCH effect existed in our dataset. We further estimated with a GARCH (1,1)
model to confirm the existence of a GARCH effect and integrated the GARCH effect into
the GA-SVM model with PM2.5 as the predictive variable in the second stage of analysis.
Empirical results indicate that the prediction performance of our proposed alternative
model outperformed traditional SVM and GA-SVM models in terms of both MAPE and
RMSE as the accuracy indicators.

Consistent with previous SVM literature [7,23,26,27], which shows a trend of integrat-
ing various approaches into the SVM model, our empirical results provide evidence to
support our expectation that adopting an SVM-based approach model for PM2.5 prediction
is appropriate and that prediction performance can be improved by integrating models,
such as incorporate the GARCH effect into the GA-SVM-based approach. Moreover, consis-
tent with our prior expectation, evidence further support that taking the GARCH effect
into account, in the GA-SVM model, clearly improves the accuracy of prediction. To the
knowledge of the authors, this study is the first to attempt to integrate the GARCH effect
into the GA-SVM model in the prediction of PM2.5. It is possible to compare the empirical
results of prediction in this study to findings in the recent PM2.5 literature, although differ-
ent methods were adopted. Studies on the Taichung region by Chen et al. [2] and Kristiani
et al. [19], cross country (Kusuma et al. [3]), and sub-district in China (Long et al. [5]) are
comparable.

In summary, this study has implications for sustainability management by both gov-
ernment and industry. As long as a regression-based approach is adopted, ignoring possible
autoregressive characteristic in time series dataset tends to result in lower prediction effi-
ciency and accuracy. Furthermore, if variance clustering exists in a time series dataset, the
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choice of prediction model should account for this phenomenon. It is highly recommended
to take the GARCH effect into consideration in air pollution prediction to capture variance
clustering and to improve prediction efficiency and accuracy. Moreover, this study may
shed light on the application of the GARCH model, as well as machine learning methods,
in the air pollution prediction literature.
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