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Abstract: Water use and its associated energy consumption in wine processes are often unnoticed in
best practice. Many proprietors are insensitive to how water is used within their winery procedures.
Key areas of environmental concern currently faced by the wine industry include water and energy
use and the production of greenhouse effect gas emissions, among others. This review revealed that
the practice within wine organizations tends to be largely unexplored and inadequate. To address
the present needs for accurate water and energy resources control, it is vital to develop research on
how water and energy are related and used in wine production to increase the effective use of these
resources, minimizing the related environmental impact. The main aim of this paper was to find
the relationship between energy and water utilization and subsequent CO2 emissions from a winery
located in the Douro Valley, contributing to its sustainability in terms of resources consumption. A
two-year monitoring plan on water use was implemented, and the related energy consumption and
CO2 emissions were calculated. The results showed high values of energy (148.5 kWh/day) as well as
related CO2 emissions (54 kg CO2/day) associated with high water consumption (that ranged from
16.20 to 27.66 m3 water/day). This information is very important and contributes to enlarging the
database of environmental parameters related to wine production in the Douro wine region, creating
opportunities for environmental improvement.

Keywords: winery; Douro Wine Region; water; energy; CO2 emissions

1. Introduction

Given the socio-economical importance of the wine industry in Portugal and the rest
of the global wine areas where vitiviniculture is a major activity [1,2], and considering the
existing necessity for accurate water and energy resources management, it is imperative to
develop research concerning how water and associated energy are used in wine production
to increase the effective use of these resources. At each step of the winemaking process,
water is always required, from crushing and pressing grapes over fermentation and aging to
the end product. Water is also at the core of the cleaning and disinfecting system, ensuring
that wine-making areas, tanks, barrels, and the bottling line are properly cleaned [3].

Due to its international scale, wine production environmental issues, among all the
water and energy use, have gone largely unmapped. Water use and its associated energy
consumption in wine processes are often unnoticed in best practices, with many proprietors
being insensible about how water is used [4,5]. However, wine companies are currently
adopting more sustainable beliefs and shifting their practices to attain sustainability goals
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(namely “Goal 6–Ensure availability and sustainable management of water and sanita-
tion for all” and “Goal 12- Ensure sustainable consumption and production patterns”),
increasing their social responsibility and increasing the value of their wines simultaneously.

Freshwater scarcity is an imperative issue on the environmental agenda, being in-
creasingly considered in different sectors [6], while the water footprint (WF) is quickly
gaining worldwide recognition [7]. There are some interesting studies about water footprint
assessment in the wine industry.

Herath et al. studying New Zealand’s wines, assessed the WFs of a wine bottle
using diverse methods [8] and assessed the impact of water use through the life cycle
of grape-wine production on water resources [9]. Ene et al. [10] carried out a water
footprint calculation of a bottle of wine produced in a medium-size wine production plant
in Romania.

Due to its importance in economic production and the world distribution market,
wine is one of the most analyzed products. Literature studies highlighted matters such as
glass bottle production, energy consumption, and the final distribution [7,11–19]. Other
publications analyzed conceptual and methodological aspects [20,21], focused on the wine
chain [22,23].

Nowadays, the wine industry is under an increasing legislative burden to be more
efficient and sustainable and has started to adopt integrative protective methods instead of
the old-style reparatory environmental practices [24]. Therefore, there is rising attention
within the wine industry on highlighting its input to sustainable development. Several
regulation documents from national or international entities working in the wine sector
were published [25–27], and also several programs and frameworks to assist winemakers
were made, for example [25]: the Code of Sustainable Winegrowing Practices Workbook as
the basis for the Sustainable Winegrowing Program [28], the “Commitment to Sustainable
Development” [29], the “Vignerons en Développement Durable” [30], the “Entwine,”
the Australian Environmental Protection System [31], the Certified Sustainable Wine of
Chile [32], and in Portugal, in 2016, the Alentejo wine production region developed a set of
rules to support the production and promotion of more sustainable wine [33].

According to some authors, an appropriate evaluation of the sustainability of a product
or process has to adopt a Life Cycle Thinking (LCT) perspective, considering all the life
cycle steps involved [25,34–37]. Petti et al. [38] conducted ample scrutiny of LCA studies
in the wine area to determine imperative operational aspects related to goal and scope,
system boundary, data quality and availability, multi-functionality concerns, inventory
tools and impact assessment approaches, as well as results and research findings. These
authors emphasized the key points in the methodology and administration of the wine
supply sequence and processes, highlighting the assets and missing items and providing
valuable insights and pertinent endorsements for both LCA analysts and winemakers.

The main concerns in vinification are electric energy use in equipment; production of
solids during the process, which may be reused in other sectors; wastewater generation
due to cleaning and some leakage that may occur during the process; CO2 emissions
(about 80 kg/t grapes) and volatile organic compounds (0.93 kg/t grapes) during the
fermentation [39], apart from the CO2 associated with the energy to water use. The major
sectors/processes that use water are the fermentation tanks, cask washing, vat sopping,
bottling lines, cellars, and the crush pad. Water use and disposal require pumping and
other processes, raising energy costs [40].

Christ and Burritt [41] have performed a state of the art review to examine the key
areas of environmental concern presently handled by societies in the global wine trade.
Among others, water and energy use and the production of greenhouse gas emissions
were some of the most relevant environmental factors. According to the authors, practice
within wine associations tends to be largely unexplored and inadequate, reflecting the
absence of quantitative and qualitative environmental data required to bring environmental
improvement.

In Portugal, few works have been done:
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• Some of them mainly focused on the determination of the water footprint of a wine
bottle [42,43];

• Sustainability evaluation of Portuguese wines [25];
• LCA considering freshwater use in the wine industry [44];
• Water to wine production [2].

The setup that delivers water for several uses needs clean water treatment and supply
systems that consume energy, mainly for pumping and subsequent treatment and distribu-
tion. Water preservation is consequently directly related to energy preservation [45].

Regarding the present necessity for accurate water and energy management, it is
essential to investigate how the water and energy nexus is considered in wine production
to increase the efficient use of these resources, minimizing the related environmental impact.
This paper aims to understand the energy used for water utilization and the related CO2
emissions from a medium-sized winery in the Douro Valley to propose some efficient
measures and contribute to the winery’s sustainability in terms of resource consumption.
The paper is divided into several sections. In Section 2, the methods used and the case
study are described, then Section 3 discusses the results and the study’s main findings. In
Section 4, some conclusions and further ideas for future works are presented.

2. Methods
2.1. Energy to Water in Pumping Operation

Electrical energy (kWh) is consumed when a unit volume (m3) of water is pumped.
Reardon and Newell [46] highlight that there is a linear relationship between the energy spent
for groundwater pumping and the depth from which it is pumped at a specific pressure.

The energy consumed for pumping well water depends on the location of the water source
relative to the release site and the frictional resistance to flow [47]. It also depends on the pump
efficiency, pipeline length, diameter and roughness, and volumetric demand for water.

Table 1 presents some referenced values for energy to water pumping.

Table 1. Energy to Water referenced values.

Where Energy Consumption Reference

California 0.14–0.69 kWh/m3 [48]
Canada 0.25–3.02 kWh/m3 [49,50]

Canada

Flow rate of 100–950 m3/d
consumed 0.84–3.02 kw h/m3

Flow rate of 1000–10,000 m3/d
consumed 0.25–1.11 kw h/m3

[50]

2.2. Energy to Water in Clean Water Treatment Processes

Groundwater pushed from underground aquifers generally needs basic disinfection
with the help of simple technologies (filtration, chlorination, ozonation, or ultraviolet
irradiation). Normally, a groundwater treatment plant may have a pumping system, a
filtration system, a storage tank, a disinfection tank, and a support distribution pump [45].
Most of the groundwater treatment in the north of Portugal depends on the aquifer’s
quantity, quality, and contamination. Most of them are composed of a filtration unit
(normally a sand composed filter), a storage tank, and a disinfection process.

Filtration is very important as it clears the water, helping to remove the major of the
coarse impurities, including the major suspended solids. The energy requirements for these
gravity filters are in the range of 0.005–0.014 kW h/m3 [45].

According to Arpke, & Hutzler, Ref. [51] groundwater chlorination consumes 0.002 kWh/m3.

2.3. Energy to Water in Wastewater Treatment Processes

Generally, wastewater is treated following three degrees of treatment: primary, sec-
ondary, and sometimes tertiary.
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Primary treatment is typical among different WWTP, and the different phases within the
treatment have diverse energy consumption. Screening and inorganic suspended solids removal
processes need low energy intensity, while primary sludge pumping is the process within the
primary treatment that consumes more energy. According to Kenway et al. [52], in Australia,
the total energy requirements for the primary treatment varies between 0.01 and 0.37 kWh/m3.

For the second stage of treatment, there is a wide range of options, most commonly
the activated sludge treatment process. However, this choice widely influences the energy
intensity values required for this treatment. Different values of energy consumption
are pointed out in different countries. The mean electrical energy consumption for the
secondary stage of treatment may vary between 0.2 and 1.89 kWh/m3 in the USA [53,54],
while in Sweden, this value extends to 0.42 kWh/m3 [55] per example.

The energy intake during the tertiary treatment depends on the level of treatment
required, depending on the quality of the discharge effluent required, according to the
point of discharge referred to in national/local legislation. The state-of-the-art review
discloses that tertiary treatment is the stage where energy consumption is higher. The total
energy consumption required for the advanced tertiary treatment ranges between 0.23 and
10.55 kWh/m3 in Australia [56]. In New Zealand, these values are lower, varying between
0.32 and 0.88 kWh/m3 [57,58]

2.4. CO2 Related Emissions

CO2 production depends on the total energy intake, so different values are presented
for several countries [58]. The procedures and backup tools adopted to estimate CO2
emissions are “made-to-order” with respect to direct needs [59,60]. According to Rothausen
and Conway, [61] in South Africa, 112 kg CO2/m3 are emitted in the wastewater treatment,
while in California, the value for recycled water is 1.023 kg CO2/m3, and in Canada
(Toronto), 117.31 g CO2/m3 are emitted in the water-treatment facility [58]. In Portugal,
369.23 g of CO2 is emitted per kWh of electricity consumed [62]. This value is an outcome
of the mixed technologies used in Portugal to produce electrical power: renewable energy
(hydroelectric, wind power, solar power, among others) and non-renewable electric energy
(petrol/gas-based).

2.5. Study Area

The study area (Lower Corgo) is part of the Alto Douro Wine Region, designated as a
World Heritage by UNESCO as a Living Cultural Landscape [Figure 1].

The vinification center studied is a modern medium-sized winery that employs around
twelve employees (Winery B from [2]).

This winery uses water exclusively from a private well that is filtered and treated locally.
In Figure 2, it is possible to observe the operations where water and energy are

interrelated in the winery. Energy use is inherent to water use; however, this is directly
related to the amount of water pumped since no energy is used to produce hot water used
in the process.

2.6. Data Collection

Data were collected from bibliographic sources (when they were not available/trustworthy
in the case study), and others were collected in the winery.

Water consumption was collected by the authors in the winery daily for two years
using common water metering and register devices (Winery B [2]). The energy consumption
was estimated considering the range of values obtained through the bibliographic review.
As said before, this winery uses water exclusively from a private well, so the extraction
of water from underground aquifers primarily requires energy for pumping. Then the
water is treated with a filtration and sometimes with a disinfection process. After use, the
wastewater produced is gravitationally conduced to a wastewater treatment plant that
performs the primary and secondary treatment. It is then discharged into a municipal
wastewater network for final treatment in the municipal wastewater treatment plant.
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Figure 1. Alto Douro Wine Region [2].

Figure 2. Energy to water relations scheme in the winery (the images are not from the winery
in question).

The contribution for CO2 emissions was obtained using the conversion factors referred
to before (369.23 g of CO2 emitted per kWh of electricity consumed as referred by Silva-
Afonso et al. [62].

A previous paper published by the authors presented the water used in the winery
(Table 2). Two years of monitoring were performed, and there was a considerable difference
between the water consumption in the first and the second year. These differences were
correlated with the different volumes of wine production within these years, according
to the irregularity in grape production over different years due to normal variations in
climatic and agronomic conditions.
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Table 2. Average water consumption in the winery (Data from [2]).

m3 Water/Day

1st year 27.66

2nd year 16.20

3. Results and Discussion

Given the values presented in the bibliography and considering the minimum and
maximum values presented in Table 2, energy consumption was calculated in relation
to water use within the winery (Figures 3 and 4). As shown, pumping and secondary
wastewater treatment are the most important operations related to energy consumption.
Secondary wastewater treatment may consume more than 50 kWh/day, and pumping
operations use more than 80 kWh/day, considering the maximum values referred to in the
bibliography (Figure 4).
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Considering the total energy consumption within the winery, values higher than
140 kWh/day can be reached (which are quite large values) (Figure 5).
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consuming processes.

As expected, the related CO2 emissions follow the same tendency of the energy
consumption used as an emission factor to calculate CO2 emissions (Figure 6). In this
case, total emissions of more than 50 kgCO2/day may be achieved, which are important
values. Considering that energy is used from the water extraction point until the point
where water returns to the natural system [61], a combined approach for reducing energy
and water consumption (like dry cleaning with squeegees and brooms before any other
water cleaning processes; cleaning with pressurized hot water and the use of foam cleaning
solutions) will be extremely important to improve the inter-relationship between energy
and water, and consequently to decrease CO2 emissions.
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4. Conclusions

In this case study on winery, considering the total energy consumption within the
winery, values of more than 140 kWh/day were achieved. According to the total CO2
emissions, more than 50 kgCO2/day were also achieved in this study.

The critical point in the sustainability of the winery industry is the capability to
reasonably acquire, use, process, and discharge quality water back into the environment or
for reuse (for reuse in irrigation, for instance). Water management faces major challenges
due to increasing reservations caused by climate change and fast fluctuating socio-economic
boundary conditions. The variability of water resources available over time, unpredictable
rainfall, associated climate changes, the intensification of agriculture and industries, and
an increasing population lead to major water consumption and management challenges
with policy implications in the short term. Making water management more adaptive and
flexible is essential under fast-shifting socio-economic conditions and climate changes. Wine
companies are currently adopting more sustainable philosophies, changing their practices
to achieve these goals, and improving not only water efficiency but also codependent
energy consumption and CO2 emissions.

This paper contributes to enlarging the database of environmental data in one of the
most important wine regions in the world (Douro Region in Portugal), which is required
to bring environmental improvement. In fact, in Portugal, there is a considerable lack of
information related to the impact of wineries on water and energy consumption, which
is why there is still a significant volume of work to be done on this matter. This paper
represents a contribution, presenting a specific case study that may be used in other cases
where there is an interest in improving sustainability.

This study may bring environmental awareness to the stakeholders for the proper
use of water, and its consequences, related to energy to water use and associated CO2
emissions. Implementing the best accessible practices, moving to sustainable production,
and decreasing the impact on natural resources are goals for the wine industry. The
reduction of wineries’ water/energy consumption is also essential.

Recognizing the limitations of this study based on a mix of bibliography and real
winery collected data, in further research, we intend to expand these studies to more
wineries, with more real data measures from several different size wineries. Future work
will be developed to identify the level of alignment of the various actors in the wine
industry concerning the importance and implementation of sustainable practices.

More sustainable practices are demanded in agriculture to improve sustainability,
which is one of the main goals of the 2030 Agenda for Sustainability Development, boost-
ing the implementation of more sustainable methods and technologies. In the resource-
intensive scheme within which this activity is operating, it will be necessary to create
new attitudes.
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