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Abstract: We propose the EGARCH-MIDAS-CPU model, which incorporates the leverage effect and
climate policy uncertainty (CPU) to model and forecast European Union allowance futures’ (EUAF)
volatility. An empirical analysis based on the daily data of the EUAF price index and the monthly
data of the CPU index using the EGARCH-MIDAS-CPU model shows that the EUAF’s volatility
exhibits a leverage effect, and the CPU has a significantly negative impact on the EUAF’s volatility.
Furthermore, out-of-sample analysis based on three loss functions and the Model Confidence Set
(MCS) test suggests that EGARCH-MIDAS-CPU model yields more accurate out-of-sample volatility
forecasting results than various competing models. There is room for further application of the model,
such as this model could be applied to price carbon futures, so as to improve the liquidity of the
carbon market and achieve carbon peak and carbon neutrality as soon as possible.

Keywords: European Union allowance futures; climate policy uncertainty; volatility forecasting;
EGARCH-MIDAS model; MCS test

1. Introduction

With the continuous development of industry and science and technology, people’s
living environment has been deteriorating. In order to improve people’s living environment
and ensure the sustainable development, the European Union established the Emission
Trading System (EU ETS), which was set up to mitigate the environmental press about
carbon emissions. European Union allowance futures (EUAF) have been sold in the market
since the EU ETS was established, and the EUAF have played a crucial role in derivative
products. Modeling and forecasting the EUAF’s volatility could effectively capture EUAF
market risk and optimize the market risk management mechanism.

Carbon is a natural product, which is inevitably affected by climate change. The EUAF
are carbon financial derivative products, and they are also inevitably affected by climate
change and economic policy changes. The existing literature demonstrates that climate
change and policy uncertainty adjustment would affect carbon futures’ price fluctuation [1],
the impact of climate change and policy adjustment uncertainty on carbon futures price
is analyzed from the following three perspectives. First, based on demand perspective,
residents would increase the demand for carbon products when the sudden climate change
occurs. Increasing consumption demand of carbon products would promote enterprises to
increase production, and enterprises would purchase the carbon emissions products when
the carbon emissions reach the upper limitations, which could reduce carbon emissions and
accelerate carbon market development [2]. Then, based on the supply perspective, when
extreme climate change occurs, the crude material not being supplied in time leads to an
increase in the cost of carbon emissions. To reduce the cost of purchasing the crude material
of carbon, enterprises would mitigate carbon emissions. Lastly, based on the social welfare
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perspective, the demand and supply would create an imbalance when climate change
occurs, and the government would sustain the balance of carbon price for society [3].

It could be concluded from the above analysis that climate change would impact
the carbon price fluctuation, but climate change has been difficult to accurately forecast.
Meanwhile, climate change generates economic policy uncertainty adjustments that cannot
be forecast. Hence, there are fewer scholars researching the relationship between climate
policy uncertainty and EUAF volatility. There are two reasons to explain this phenomenon:
One is that it is uneasy to measure the climate policy uncertainty; the other is that there is
not a suitable model to demonstrate the relationship between themselves.

Gavriilidis [4], based on major American newspapers and the latest laws about carbon
emissions, such as the global strike on climate change and the president’s statement on
climate policy, constructed the climate policy uncertainty (CPU) index. We use the CPU to
research the relationship between the CPU and EUAF volatility and to explore whether the
model containing the CPU yields more accurate out-of-sample volatility forecasting results.
CPU is a monthly index, and the EUAF price is a daily index. The data frequency of the
two indicators is inconsistent. If the daily data of EUAF price is converted into monthly
data, important information contained in the daily data will be lost, leading to deviation in
the empirical results. Therefore, it is important to select a suitable model that could contain
different frequencies of data to research the relationship between CPU and EUAF volatility
and to explore the prediction ability of CPU to EUAF volatility.

In the view of this, Engle et al. [5] combined the GARCH model with the mixed
frequency data sampling (MIDAS) model to propose the GARCH-MIDAS model, the
significant characteristic of the GARCH-MIDAS model is that volatility is divided into
the short-term and long-term components. The short-term component was modeled by
daily return, and the long-term component was modeled by low-frequency (monthly)
variables. The GARCH-MIDAS model could not only capture the influence from different
frequencies of data to volatility, but the volatility forecasting ability of GARCH-MIDAS
model outperform the traditional GARCH-type models. Therefore, the GARCH-MIDAS
model has focused on the stock market [6–8], the futures market [9], foreign exchange
market [10,11] and energy market [12–14].

However, GARCH-MIDAS model has a drawback, which could not capture the
leverage effect of volatility. Hence, we propose the EGARCH-MIDAS-CPU model that
contained the CPU. Comparing the EGARCH-MIDAS-CPU model with the GARCH-
MIDAS model, this model could not only capture the leverage effect of volatility but could
also explore the relationship between CPU and EUAF volatility and study whether the
introduction of CPU could improve the prediction accuracy of EUAF volatility.

The innovations of the paper are twofold. First, we propose the EGARCH-MIDAS-
CPU model framework combing the CPU index. Compared to benchmark models (GARCH,
GARCH-MIDAS, GARCH-MIDAS-CPU model), the EGARCH-MIDAS model allows us to
capture the leverage effect of EUAF volatility. Second, we study the relationship between
CPU and EUAF volatility, and find that the CPU has a significantly negative impact on
the EUAF’s volatility. Moreover, CPU could improve the forecast accuracy for the EUAF’s
volatility. Most importantly, we find that the superior forecast ability of EGARCH-MIDAS-
CPU model is robust to short-term and medium-term forecasting windows.

The remainder of this paper is organized as follows. Section 2 presents the literature
review. Section 3 introduces methodology and data. Section 4 reports the results. Section 5
provides the further discussion. Section 6 makes a conclusion.

2. Literature Review

As one of the most important characteristics of carbon futures, the modeling and
prediction of carbon futures volatility can not only measure the risk in the carbon futures
market but can also provide reference for investors to formulate hedging strategies and
policy makers to formulate corresponding risk management regulations. Therefore, it is
of great theoretical and practical significance to accurately model and forecast the carbon
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futures’ volatility. The volatility prediction model has employed the generalized autore-
gressive conditional heteroscedasticity (GARCH) model [15]. The hypothesis of volatility
in the GARCH model is the certainty function about historical information, and parameters
are easily estimated by the maximum likelihood function. Therefore, the GARCH model
has been employed to model and forecast volatility in many areas.

However, the GARCH model has many defects in modeling volatility. On the one
hand, the GARCH model could not capture the asymmetry of volatility. Conrad et al. [16]
used the asymmetric GARCH-type models to capture the dynamic characteristics of the
EUAF’s volatility, and demonstrated that the EUAF’s volatility exists as asymmetric char-
acteristic (leverage effect). Dutta et al. [17] explored the relationship of EUAF and the
implied volatility of crude oil by using the EGARCH model, which contains a dynamic
jump component. The result of empirical research found that not only is there a high
correlation between two markets, but the volatility of both markets has a leveraging ef-
fect. Zhang et al. [18] conducted an empirical study for China’s carbon emission markets’
volatility by using the EGARCH model and found that China’s carbon emission markets
have “the counter leverage effect”, which means that China’s carbon emission markets
have severe reaction to good news rather than bad news after policies were published.

On the other hand, GARCH-type models (GARCH and EGARCH model) also could
not consider the existence of exogenous variables that could affect the EUAF’s volatility.
For example, energy markets (coal, carbon, crude oil, and nature gas, etc.) affect the
carbon emissions markets’ volatility [19,20], as well as the economy and policy [21,22].
In addition, Wang et al. [13] found the relationship of the EUAF and climate change
and uncovered the close connection between the EUAF’s volatility and climate change.
Batten et al. [23] explored the connection of energy markets, extreme change in climate, and
EUAF and demonstrated that extreme change in climate would affect the volatility of EUAF.
Gugler et al. [24] demonstrated the effectiveness of England and Germany in reducing
carbon emissions from the perspective of climate policy. Hambel et al. [25] constructed
the equilibrium model about climate change and systematically analyzed the relationship
between climate uncertainty and the social cost of carbon emissions.

Climate change and policy adjustments have a significant uncertainty. There are many
papers measuring the climate policy uncertainty. The climate policy uncertainty (CPU)
has been used in many areas since the CPU index was proposed. Lopez et al. [26] found a
positive correlation between uncertainty caused by climate policies and reduced corporate
investment from a sample of 250 European companies. Golub et al. [27] illustrated that
earning profit is not stable in risk-neutral conditions, and the CPU would be a hinderance for
enterprises to make investments and take loans from banks in reducing carbon emissions.
Based on the above analysis, we could find that the study of the CPU concentrates on
investors, enterprises, and banks. Fewer scholars have studied the relationship between
the CPU and the carbon futures market, and the CPU maybe have some abilities to explain
and predict EUAF price fluctuation. Therefore, we use the CPU to research the relationship
between it and the EUAF’s volatility and, at the same time, to see whether the introduction
of the CPU index into models could improve the EUAF volatility prediction accuracy.

In the past, the GARCH model was used to forecast the volatility of carbon financial
products. For example, Huang et al. [28] used the GARCH model to research and forecast
the EUAF’s volatility and found that the single-factor GARCH model did not yield the ac-
curacy in volatility forecasting, but extended GARCH models could yield higher prediction
accuracy in predicting EUAF volatility. Zhao et al. [29] researched the relationship between
energy markets and the EUAF’s volatility by using the mixed frequency data sampling
(MIDAS) model and found that the MIDAS model could capture the effective information
in mixed energy and economic variables and that the model containing a MIDAS compo-
nent could predict the EUAF’s volatility very well. In view of this, Dai et al. [30] used the
GARCH-MIDAS model to research the impact of economic policy uncertainty on EUA spot
volatility and found that economic policy uncertainty would affect the long-term volatil-
ity of the EUA’s spot volatility. Meanwhile, the model containing economic uncertainty
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would improve the EUA’s spot volatility forecasting accuracy. Liu et al. [31] researched the
relationship between economic policy uncertainty and the EUAF’s volatility by using the
GARCH-MIDAS model and demonstrated that economic policy uncertainty would affect
the EUAF’s volatility and that the GARCH-MIDAS model containing economic policy
uncertainty outperformed the GARCH-type models in EUAF volatility prediction.

In this paper, we propose the EGARCH-MIDAS-CPU model to model and forecast
volatility. The outstanding advantage of this model is that it could not only obtain the
superior forecasting ability of GARCH-MIDAS model, but also could capture the leverage
effect of EUAF volatility. Therefore, it is reasonable to use the EGARCH-MIDAS-CPU
model to analyze and predict EUAF volatility. The empirical results also show that the
out-of-sample prediction accuracy of EGARCH-MIDAS-CPU model outperforms that of
GARCH-type models, which provides a new perspective for modeling and predicting
EUAF volatility.

3. Methodology and Data
3.1. EGARCH-MIDAS-CPU Model

We propose an EGARCH-MIDAS-CPU model that could combine data of different
frequencies. The expression of the model is as follows:

ri,t = µ + σi,tεi,t, ∀i = 1, . . . , Nt (1)

σ2
i,t = gi,tτt (2)

εi,t|Φi−1,t ∼ i.i.d.N(0, 1) (3)

where ri,t denotes the logarithmic return day i of month t, namely, ri,t = logPi,t − logPi−1,t,
and Pi,t is the price of futures day i of t month. εi,t is independent identically distributed
standard normally distributed random variables at the set of Φi−1,t.

It can be seen in Equation (2) that the conditional variance of the daily return is divided
into two components: a short-term gi,t and a long-term τt. The short-term gi,t follows the
EGARCH (1,1) process:

log(gi,t) = γεi−1,t + α(|εi−1,t| − E(|εi−1,t|) + βlog(gi−1,t)) (4)

where β < 1 sustains the sequence stable, γ is a coefficient of leverage effect, if γ < 0 shows
that negative impact on the EUAF volatility is greater than that of positive impact on the
EUAF volatility under the same conditions, and vice versa.

The form of the long-term component, the regression formula of MIDAS model, is
used in this paper that was derived from Dai et al. [32] and Liu et al. [8]; the expression of
τt is as follows:

log(τt) = m + θ1

K

∑
k=1

ψk(ω1)log(RVt−k) + θ2

K

∑
k=1

ψk(ω2)log(CPUt−k) (5)

where m is an intercept term, θ1 is the influence coefficient of RV on long-term component
τt, θ2 is the influence coefficient of the CPU on the long-term component. If θ2 > 0,
this indicates that there is a positive correlation between climate policy uncertainty and
long-term EUAF volatility. If θ2 < 0, this indicates that there is a negative correlation
between climate policy uncertainty and long-term EUAF volatility, namely, improving
the value of the CPU would mitigate the long-term EUAF volatility in the future. K is
the maximum MIDAS lag order of the low-frequency variables. ψk(ω) is the Beta weight
function. Consistent with Yu et al. [33], we set the Beta weight function as follows:

ψk(ω) =
(1− k/K)ω−1

K
∑

j=1
(1− k/K)ω−1

(6)
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RVt is the monthly volatility, based on the square sum of the daily rates of return:

RVt =
Nt

∑
i=1

r2
i,t (7)

where Nt is the total number of trading days in the t month. The EGARCH-MIDAS-CPU
model is constructed by Equations (1)–(7), namely, considering the leverage effect and CPU
that could affect the EUAF volatility.

3.2. Model Maximum Likelihood Estimation

The parameters of the EGARCH-MIDAS-CPU model could be estimated by using the
maximum likelihood function. The logarithmic likelihood function of the model is derived
as follows:

l(r; Θ) = −1
2

T

∑
t=1

Nt

∑
i=1

[ log(2π) + log(gi,tτt) +
(ri−1,t − µ)2

log(gi,tτt)
] (8)

where Nt and t denote the total number of trading days in the month of t and the total
number of months in transaction data, respectively.Θ = (µ, m, θ1, θ2, ω1, ω2, γ, α, β)′ is
the vector set of parameters. Furthermore, the maximum likelihood estimate of model
parameters can be obtained by maximizing the logarithmic likelihood function:

Θ̂ = argmaxl(R; Θ)
Θ

(9)

3.3. Model Maximum Likelihood Estimation

We choose the GARCH, GARCH-MIDAS, and GARCH-MIDAS-CPU models as the
benchmark models to demonstrate the superiority of data fitting and prediction ability of
the EGARCH-MIDAS-CPU model. In order to make the models comparable, we set the
GARCH model to follow the GARCH (1,1) process, and the presentation of the GARCH
model is as follows:

rt = µ + σtεt (10)

σ2
t = m + α(σt−1εt−1)

2 + βσ2
t−1 (11)

εt|Φt−1 ∼ i.i.d.N(0, 1) (12)

where rt denotes to the logarithmic return on day of t, namely, rt = logPt − logPt−1. µ is
conditional mean of rt, where α, β are the parameters of ARCH and GARCH components,
respectively, where 0 < α and 0 < β, and α + β < 1. The GARCH model is constructed by
Equations (10)–(12).

The GARCH-MIDAS model and the GARCH-MIDAS-CPU model have the same
short-term components. In order to make a comparison, we set the short-term volatility
components in accordance with the GARCH (1,1) process:

ri,t = µ + σi,tεi,t, ∀i = 1, . . . , Nt (13)

σ2
i,t = gi,tτt (14)

gi,t = (1− α− β) + α
(ri−1,t − µ)2

τt
+ βgi−1,t (15)

The long-term component of GARCH-MIDAS model is as follows:

log(τt) = m + θ1

K

∑
k=1

ψk(ω1)log(RVt−k) (16)

The setting form of the long-term component of the GARCH-MIDAS-CPU model is
the same as the form of Equation (5), which is not repeated here.
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3.4. Data and Statistical Description

Since the EU ETS was established, the EU ETS has finished three phases and has been
working on its fourth phase: phase I: from 3 January 2005 to 31 December 2007; phase II:
from 2 January 2008 to 31 December 2012; phase III: from 2 January 2013 to 31 December
2020; and phase IV: from 4 January 2021 to 31 December 2030. Because phase I is a trial stage,
the EU ETS was restricted in bank loans at the end of phase I that resulted in the price of the
EUAF tending to be zero [33]. This paper chose phase II to phase IV to conduct empirical
research; the data period is contained from 2 January 2008 to 31 March 2021, with 3410 data
from the WIND database. The CPU is derived from http://www.policyuncertainty.com/
(accessed on 25 April 2021) website, that is, constructed by Gavriilidis [5]. The sample is
selected from January 2008 to March 2021, with 159 monthly data.

Figure 1 displays the time series of the EUAF returns, the returns of EUAF presents
clustering. We found that Figure 2 climate change shows obvious difference from the
time series of CPU. Especially after the Paris Agreement was signed and the outbreak of
COVID-19, the CPU change has been bigger than before. In addition, we could obtain a
result from the comparison between the EUAF return and CPU figure that when the CPU
fluctuates greatly, the return would significantly change.
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Table 1 shows the descriptive statistics of EUAF’s return and the CPU index. The
skewness is less than 0, and the kurtosis is bigger than 3, which deviates significantly
from the normal distribution. Comparison of the value of r and the CPU found that the
CPU has the bigger mean and standard deviation; this indicates that the CPU index has a
large fluctuation.

Table 1. Statistical description.

Obs Mean Min Max Std Skewness Kurtosis J-B Q(10)

r 3409 0.0002 −0.4347 0.2405 0.0315 −0.7665 18.3156 33652.0038 32.5790
CPU 159 128.1951 11.7800 629.0200 86.0910 2.0870 10.068 446.3868 265.4308

Note: J-B represents Jarque–Bera statistic, and Q (10) represents LJung-Box Q statistic with a lag of 10 orders.

http://www.policyuncertainty.com/
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4. Results
4.1. Estimation Results

We choose the GARCH, GARCH-MIDAS, GARCH-MIDAS-CPU, and EGARCH-
MIDAS-CPU models to conduct empirical research for the sample period from 2 January
2008 to 31 December 2018, with 2830 data. The biggest lags order (K) of MIDAS of the
GARCH-MIDAS, GARCH-MIDAS-CPU, and EGARCH-MIDAS-CPU models are set to
12, namely, employing the total information of the CPU filter of the last year obtains the
long-term fluctuation of the EUAF. The parameter estimation results of the models are
presented in Table 2.

Table 2. Estimation results.

GARCH GARCH-
MIDAS

GARCH-
MIDAS-CPU

EGARCH-
MIDAS-CPU

µ 0.0010 0.0010 0.0010 0.0007
(0.0004) (0.0004) (0.0004) (0.0006)

m 0.0000 −3.9721 −3.5619 −3.0748
(0.0000) (0.1189) (0.1048) (0.1204)

θ1
0.6319 0.6446 0.5869

(0.0248) (0.0188) (0.0349)

θ2
−0.0825 −0.3157
(0.0197) (0.0235)

ω1
1.0043 0.9973 4.0518

(0.0175) (0.0189) (0.1788)

ω2
0.1158 0.9218

(0.0000) (0.0179)

γ −0.0557
(0.0158)

α
0.1426 0.1541 0.1540 0.3026

(0.0088) (0.0089) (0.0080) (0.0205)

β
0.8544 0.8222 0.8213 0.9252

(0.0087) (0.0104) (0.0102) (0.0091)
l(r; Θ) 6246.4271 6254.5821 6255.0531 6255.1814

AIC −12,484.8542 −12,497.1642 −12,494.1062 −12,492.3627
BIC −12,461.0621 −12,461.4760 −12,446.5219 −12,438.8304

Note: AIC and BIC denote the Akaike information criterion and Bayesian information criterion, respectively. The
number in parenthesis is the standard error.

As can be seen from Table 2, the volatility persistence coefficient α + β of the GARCH-
type models (GARCH, GARCH-MIDAS, and GARCH-MIDAS-CPU models) close to 1, and
the volatility persistence coefficient of EGARCH-MIDAS-CPU is also close to 1, it demon-
strates that the short-term EUAF’s volatility has the highest level of volatility persistence.
The parameter estimation result of γ shows that the EUAF volatility exhibits a leverage
effect. That is, the negative impact on the EUAF volatility is greater than the positive impact
on the EUAF volatility under the same conditions.

Then, the parameter estimation results of ω1 and θ1 are significant, namely, RV has a
positive effect in the long-term EUAF volatility. That is, the bigger fluctuation in the RV
would cause the bigger long-term EUAF fluctuation. In addition, ω2 and θ2 are significant,
that means that the lag information of the CPU could not only affect the long-term fluc-
tuation in the EUAF, but the impact is also significantly negative [14]; that is, the higher
value of the CPU could forecast the lower long-term EUAF volatility. The explanation is
that when drastic climate change, the EUAF volatility would wildly fluctuate, government
would publish some regulations to mitigate the EUAF volatility for achieving carbon peak
and carbon neutral targets, some policies would be published for price stabilization, the
relationship between these are negative, so the relationship of the CPU and EUAF volatility
is negative.
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As can be seen from Figure 3, the long-term component fitting effect of EGRCH-
MIDAS-CPU model is significantly better than that of the GARCH-MIDAS-CPU model. It
further shows that the EGARCH-MIDAS-CPU model can better fit the data of the EUAF
market, considering the asymmetry of the volatility of EUAF and the influence of CPU on
the volatility of the EUAF market.
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Figure 3. Long-term component fitting figure.

4.2. Out-of-Sample Results

Investors would be more interested in out-of-sample predictive ability of the models
and the indicators that could accurately predict future volatility than the estimated results
in a sample. We employ a rolling time window scheme to prove the predictive ability
of the EGARCH-MIDAS-CPU model. The timespan from 2 January 2019 to 31 March
2021 obtains the 579 out-of-sample predictive samples. In this paper, three loss functions
would be used to evaluate the prediction performance of the models. Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Quasi-likelihood (QLIKE) are shown in
Equations (17)–(19), respectively:

MAE =
1
T

T

∑
t=1

∣∣∣σ2
t+1 − σ̂2

t+1(m)
∣∣∣ (17)

MSE =
1
T

T

∑
t=1

(σ2
t+1 − σ̂2

t+1(m)) (18)

QLIKE =
1
T

T

∑
t=1

(
σ2

t+1

σ̂2
t+1(m)

− log(
σ2

t+1

σ̂2
t+1(m)

)− 1) (19)

where T is the numbers of out-of-sample forecasting, σ2 represents the variance of the return
rate of the EUAF. σ̂2(m) denotes the forecasting volatility proxy, and m presents the GARCH,
GARCH-MIDAS, GARCH-MIDAS-CPU, and EGARCH-MIDAS-CPU forecasting models.

As can be seen from the Table 3, the EGARCH-MIDAS-CPU model could yield more
accurate out-of-sample volatility forecasting results than the benchmark models (GARCH,
GARCH-MIDAS, and GARCH-MIDAS-CPU models) in most cases. This illustrates that the
model contained a leveraging effect, and the CPU could improve prediction accuracy for
EUAF volatility forecasting. In addition, compared to the GARCH-type models (GARCH,
GARCH-MIDAS, and GARCH-MIDAS-CPU models), we found that the GARCH-MIDAS-
CPU model obtains a higher out-of-sample prediction accuracy on the whole, followed by
the GARCH-MIDAS model and the GARCH model, which further prove that the models
containing the CPU index could improve the volatility prediction accuracy of the models.
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Table 3. Out-of-sample results.

GARCH GARCH-
MIDAS

GARCH-
MIDAS-CPU

EGARCH-
MIDAS-CPU

MAE 9.3879 × 10−4 9.3361 × 10−4 9.2028 × 10−4 8.9909 × 10−4

MSE 3.7593 × 10−6 3.7307 × 10−6 3.6968 × 10−6 3.6017 × 10−6

QLIKE 1.4042 1.4024 1.3939 1.4016
Note: The lowest ratio in each row is shown in bold.

4.3. MCS Test Results

In order to test and evaluate out-of-sample prediction, the statistical significance of
the EGARCH-MIDAS-CPU and benchmark models were assessed. The Model Confidence
Set (MCS), proposed by Hansen et al. [34], is employed to identify optimal models with
the certain reliability. Setting the M0 is the original set of competition models, the null
hypothesis is that the predictive ability of any two models is the same. The theorem-type
environments (including propositions, lemmas, corollaries etc.) can be formatted as follows:

H0,M : E(duv,t) = 0, ∀u, v ⊂ M0, M0 ⊂ M (20)

where duv = Losst(u)− Losst(v) represents the difference between the loss function values
of model u and v at the same loss function MAE, MSE, and QLIKE.

Based on equivalence test and elimination rules, the optimal prediction combination
is selected to construct statistical test:

TM = Max
u,v∈M

|tuv| (21)

where duv is the average difference in between any two prediction models (u and v) relative
to the loss function. ˆVar(duv) represents the value of Var(duv) estimated using bootstrap
method. When the statistical value of T is greater than the critical value, the null hypothesis
is rejected and the poor prediction model is eliminated. The above process is repeated until
there are no further models to be eliminated. Finally, the optimal prediction combination
is obtained. For implementing the MCS procedure, we use a block bootstrap of 105 repli-
cations and a significance level of 10%. According to the basic principle of MCS test, if
the p-value of MCS test is less than 0.1, the model cannot pass the MCS test, which also
indicates that the model has a poor volatility predictive ability. On the contrary, the model
has a p value greater than 0.1, which could pass the MCS test, and it is a model with better
volatility predictive ability.

As can be seen from Table 4, the EGARCH-MIDAS-CPU model not only passes the
whole MCS test in three loss functions but also yields the biggest p value (p=1) in the most
cases. Thus, the model containing the leverage effect and CPU could forecast the EUAF’s
volatility very well. Meanwhile, the out-of-sample forecasting results of GARCH-type
models are compared, the GARCH-MIDAS-type models (GARCH-MIDAS and GARCH-
MIDAS-CPU models) outperform the GARCH model in the out-of-sample prediction.
Furthermore, the GARCH-MIDAS-CPU model outperforms the GARCH-MIDAS model in
most cases, and it could also demonstrate that the model contained CPU could improve
volatility prediction accuracy.

Table 4. MCS test results.

GARCH GARCH-
MIDAS

GARCH-
MIDAS-CPU

EGARCH-
MIDAS-CPU

MAE 0.0042 0.0000 0.0478 1.0000
MSE 0.0579 0.1318 0.1318 1.0000

QLIKE 0.0791 0.0825 1.0000 0.3763
Note: The numbers in the table are the p-values of MCS test. p-values are greater than 0.1 (bold) indicate that the
models are included in the MCS test, that is, the model with good volatility predictive ability.
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5. Further Discussion

In order to test whether the out-of-sample forecasting abilities of the models are robust,
this paper chooses different rolling time windows to perform out-of-sample forecasting.
The out-of-sample forecasting periods are from 10 November 2020 to 31 March 2021, 23
June 2020 to 31 March 2021, and 25 April 2019 to 31 March 2021. The forecast intervals are
100, 200, and 500 days, respectively, to test whether the model constructed in this paper
has robustness and applicability in different prediction periods. Tables 5 and 6 show the
different loss function values and MCS test results under different rolling time windows.

Table 5. Out-of-sample results.

GARCH GARCH-
MIDAS

GARCH-
MIDAS-CPU

EGARCH-
MIDAS-CPU

100

MAE 1.0696 × 10−3 1.0507 × 10−3 1.0410 × 10−3 9.9992 × 10−4

MSE 5.7411 × 10−6 5.6838 × 10−6 5.6475 × 10−6 5.5139 × 10−6

QLIKE 1.4459 1.4380 1.4308 1.4452
200

MAE 1.0036 × 10−3 9.8285 × 10−3 9.6551 × 10−3 9.3439 × 10−3

MSE 5.0822 × 10−6 5.0254 × 10−6 5.0053 × 10−6 4.8673 × 10−6

QLIKE 1.4533 1.4459 1.4467 1.4505
500

MAE 1.0612 × 10−3 1.0445 × 10−3 1.0376 × 10−3 9.862410−4

MSE 6.5978 × 10−6 6.5525 × 10−6 6.5554 × 10−6 6.4527 × 10−6

QLIKE 1.5346 1.5227 1.5307 1.5450
Note: The lowest ratio in each row is shown in bold.

Table 6. Out-of-sample results.

GARCH GARCH-
MIDAS

GARCH-
MIDAS-CPU

EGARCH-
MIDAS-CPU

100

MAE 0.0003 0.0016 0.0024 1.0000
MSE 0.0483 0.0666 0.1198 1.0000

QLIKE 0.2109 0.2109 1.0000 0.2109
200

MAE 0.0000 0.0015 0.0132 1.0000
MSE 0.0569 0.1506 0.1506 1.0000

QLIKE 0.4582 1.0000 0.9172 0.9172
500

MAE 0.0000 0.0000 0.0000 1.0000
MSE 0.3132 0.6752 0.6752 1.0000

QLIKE 0.1185 1.0000 0.1644 0.1185
Note: The numbers in the table are the p-values of MCS test. p-values are greater than 0.1 (bold) indicate that the
models are included in the MCS test, that is, the model with good volatility predictive ability.

As can be seen from Tables 5 and 6. In the short-term and medium-term, the model
containing the CPU could improve the accuracy of volatility prediction. Furthermore, the
EGARCH-MIDAS-CPU model could yield the highest out-of-sample prediction accuracy
in the short-term and the medium-term, indicating that the model contained a leverage
effect and the CPU could forecast EUAF volatility very well. However, in the long-term,
the EGARCH-MIDAS-CPU model also obtains the highest accuracy in the most cases, but
the prediction accuracy is not significantly compared to benchmark models.

6. Conclusions

EUAF volatility modeling and forecasting is of great significance for allocation assess-
ment, hedging, and risk management. Therefore, it is significant to accurately forecast
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EUAF volatility, and it is also a hot research orientation in finance and energy. The tra-
ditional model does not take into account the leverage effect (asymmetry) of the EUAF’s
volatility and the impact of climate policy uncertainty (CPU) on the EUAF’s volatility. To
address this issue, this paper proposes an extension of the GARCH-MIDAS model, namely,
the EGARCH-MIDAS-CPU model, which incorporates the leverage effect and CPU to
model and forecast the EUAF’s volatility. An empirical analysis based on the daily data of
the EUAF index and the monthly data of the CPU index shows that the EUAF’s volatility
exhibits a leverage effect and the CPU has a significantly negative impact on the long-term
component of the EUAF’s volatility. Furthermore, out-of-sample analysis based on three
loss functions and the model confidence set (MCS) test suggests that EGARCH-MIDAS-
CPU yields more accurate out-of-sample volatility forecasts than the benchmark models.
In particular, the superior forecasting ability of the EGARCH-MIDAS-CPU model is robust
to short-term and medium-term forecasting windows, but the robustness of the EGARCH-
MIDAS-CPU model is not significant in the long-term forecasting window. Hence, the
model, which contained the leverage effect and the CPU, could only yield more accurate
out-of-sample volatility forecasts in the short and medium terms.

According to the conclusion of this paper, we discuss the economic value of this
paper from the theoretical and practical aspects. From the theoretical point of view, the
EGARCH-MIDAS-CPU model proposed in this paper not only fills in the blanks of EUAF
volatility prediction but also clarifies the relationship between climate policy uncertainty
and EUAF volatility, that is, how the change in climate policy would adversely affect the
EUAF’s volatility. From a practical point of view, researching the relationship between
CPU and EUAF volatility can help carbon emission enterprises analyze the relationship
between climate policy changes and their own emission reduction costs, so as to adjust their
emission strategies and achieve the purpose of energy conservation and emission reduction.
It is helpful for policy makers to make reasonable risk avoidance policies based on climate
policies and EUAF market fluctuations, promote the healthy and stable development of
EUA market, and achieve the goal of carbon neutrality and carbon peak at an early date.

It is worth pointing out that the model proposed in the paper still has room for
further improvement. For example, jump can be introduced into the EGARCH-MIDAS-
CPU model to capture the jump phenomenon of the volatility in the EUAF market. In
addition, the EGARCH-MIDAS-CPU model could be applied to different fields, such as risk
measurement (e.g., Value at Risk) and option pricing, to further illustrate the usefulness of
our EGARCH-MIDAS-CPU model.
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GARCH
EU ETS emission trading scheme
EUA European Union Allowance
EUAF European Union Allowance futures
CPU climate policy uncertainty
GARCH Generalized autoregressive conditional heteroskedasticity
GARCH-MIDAS Generalized autoregressive conditional heteroskedasticity mixed

data sampling
GARCH-MIDAS-CPU GARCH-MIDAS contains CPU
EGARCH Exponential GARCH
EGARCH-MIDAS-CPU Exponential GARCH-MIDAS-CPU
AIC Akaike information criterion
BIC Bayesian information criterion
MCS Model confidence set
MAE Mean absolute error
MSE Mean square error
QLIKE Quasi-maximum likelihood loss function error
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