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Abstract: Reducing carbon emissions during the manufacturing process is a top priority for realizing
the strategic “carbon neutral” target. Currently, there is a great deal of research about carbon
production in the middle and later stages of production. However, studies on upstream processes
are relatively scarce. Studies concerning the design stages are particularly uncommon, although
this phase has a profound effect on carbon emissions during manufacturing. Therefore, it is vital
to study this and related fields in depth. In this paper, we take Zhejiang Province, China, as the
research object, and study the relationship between the design industry and carbon emissions in
the manufacturing industry. Through analysis, we developed a first-level evaluation index for the
influence of design on carbon emissions in the production stage. Then, we subdivided the first-level
indexes into several second-level indexes using the entropy method. Subsequently, we calculated their
weights and comprehensively evaluated the influence of these design factors on carbon emissions in
the manufacturing industry using the ridge regression model test. Results from our research reveal
that at the design end of the production chain, the expansion of resource scale of each design phase
has a significant inhibitory effect on the carbon emissions of the manufacturing stage. Conversely,
improvements to the industrial economic benefit index have a significant positive effect on the carbon
emissions in the manufacturing industry, while government support and the innovation composite
index have little influence. The main conclusions of this study are as follows: To reduce carbon
emissions in the manufacturing industry, the scale of the inhibitory effect of the design process should
be fully evaluated, while the scale construction and related resource input of the design phase should
be emphasized. Furthermore, guidance regarding the social responsibility of design enterprises
should be strengthened to further promote the concept of “green design” and reverse the purely
market-oriented focus of the industry. Also, to promote a greener design industry, the provision
of high-quality green design talents should be fortified. In the future, an appropriate green design
evaluation index system should be devised to ensure the stable economic development of the design
industry and challenge the current situation where a focus on economic indexes results in increased
carbon emissions.

Keywords: design industry; manufacturing; carbon emissions; entropy value method; ridge regression;
structural equation model

1. Introduction

Since the industrial revolution, along with the population surge and industrial pro-
duction, human emissions of greenhouse gases have increased by a wide range, and the
resulting global climate change poses a major challenge to the development of human
society today [1]. In the face of the global climate challenge, China eloquently proposed
at the 75th Session of the United Nations General Assembly on 22 September 2020 that
it would take effective policies and measures at home. China aims to peak its carbon
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dioxide emissions by 2030 and become carbon neutral by 2060 on the basis of increasing its
Nationally Determined Contribution (NDC) [2].

To achieve the goal of carbon neutrality, the Chinese government has already is-
sued relevant regulations in finance [3,4], law [5,6], transportation [7,8], production and
manufacturing [9–12], and other fields, aiming to comprehensively promote reductions in
carbon emission across the country.

The characteristics of high energy consumption and high emissions make manufactur-
ing a vital element in achieving carbon neutrality [13,14]. As the country with the largest
manufacturing output in the world [15], China’s carbon emissions from manufacturing
now account for more than half of its total carbon dioxide emissions. Therefore, achieving
the goal of carbon neutrality is a genuine problem that the manufacturing industry must
face in the future.

Achieving carbon emission reductions in the manufacturing industry and shifting
from the traditional industrial development path to a high-quality development path is
a top priority [16–18]. To transform and upgrade the manufacturing industry, academics
in China have recognized the following paths: service-oriented manufacturing [19,20],
capital-intensive manufacturing [21,22], and design innovation [23–25]. In this paper, we
will further study the design-driven path in the transformation and upgrading of the
manufacturing industry and focus on the impact of the development of the design industry
on carbon emission reduction in the manufacturing industry.

At present, there is much research on the carbon emissions of manufacturing pro-
cesses [26–29], but few studies on the design phase of the production chain. However, the
design stage essentially determines the carbon emissions of the whole production process
and the final design output and has a tremendous influence on the carbon emissions of the
manufacturing industry. However, since the design industry is an emerging sector, data
is insubstantial and difficult to accurately capture and intuitively quantify, thus relevant
research is limited [30–32]. This results in a lack of effective regulation of the design indus-
try in the process of formulating carbon emission reduction policies for the manufacturing
industry. Also, there is a lack of focus on design industry supervision, which creates
loopholes in the regulation of carbon emissions in the manufacturing industry. Therefore, it
is necessary to study the impact of the design industry on manufacturing carbon emissions.

To ensure research quality, it is crucial to obtain high-quality data samples. Therefore,
in this paper, we selected a region with relatively developed manufacturing and design
industries for the data sample. The design industry is an emerging high-tech creative
industry with uneven regional distribution in China. However, Zhejiang province is a
region with a rapidly developing internet industry and an established retail manufacturing
industry, which has a complete range of representative design industries that are relatively
uniformly distributed. Therefore, in this paper, we used Zhejiang Province as the research
sample. Based on design industry trends and carbon emission data in Zhejiang province
from 2016 to 2020, we comprehensively analyzed the design end of the manufacturing
industry. The purpose of this paper is to reveal the influence of various evaluation indexes
on the development of the design industry and their effect on the carbon emissions of the
manufacturing industry.

The research areas involved in this paper include the following two elements: carbon
emissions of the manufacturing industry and a development evaluation of the design industry.

Concerning carbon emissions during the manufacturing stage, many scholars have
analyzed the driving factors of carbon emissions through the Kaya model and LMDI
model [33–38], hoping to reveal the core driving factors of manufacturing carbon emissions.
However, these methods are generally only applicable to the analysis of macro factors, such
as per capita GDP, energy intensity per unit GDP, etc., and they cannot directly establish
specific relationships between the carbon emissions of the manufacturing industry and
other related industries. Therefore, in this paper, we adopted different research approaches
for the study of the design industry. To measure manufacturing carbon emissions, several
studies have used the general Intergovernmental Panel on Climate Change (IPCC) detection



Sustainability 2022, 14, 4261 3 of 17

algorithm for carbon dioxide emissions to calculate the emissions generated in production
processes through the energy consumption of the manufacturing industry. For example,
Nie and Zhou et al. [39] calculated the manufacturing carbon emissions of 11 provinces
and cities in the Yangtze River Economic Belt in China from 2004 to 2017 by utilizing the
IPCC algorithm. Besides, Wang and Ren [40] used this method to determine the carbon
emissions of the manufacturing industry in China from 1995 to 2016. Liu [41] and Li [42]
also employed the IPCC algorithm to calculate the carbon emissions of the manufacturing
industry in Jiangsu Province from 2003 to 2017 and in Shandong Province from 2000 to 2016,
respectively. Research has proved that the IPCC algorithm is a convenient and effective
approach for evaluating the carbon emissions of the manufacturing industry based on
relevant energy consumption data. Therefore, we can apply this method to calculate the
carbon emissions of the manufacturing industry within a province.

In the field of design industry development evaluation, scholars have mostly used
mathematical models related to management and statistics. Wang [43] formulated a sec-
ondary index and tertiary index for the development evaluation of the design industry by
extracting relevant policies issued by the Chinese government at the national and regional
level from 2007 to 2015, then calculated the weight of each index through principal com-
ponent analysis. Qin and Wang [44] established relevant indexes for the competitiveness
evaluation of the design industry by referring to evaluation indexes of the creative industry
in Europe and Hong Kong. Then, they calculated the weight of each index by applying an
analytic hierarchy process. Yan [45] determined first-level, second-level, and third-level
indicators of design industry evaluation through a survey and comparative analysis of
relevant policies, then determined the weight of each indicator using the Delphi method.
Based on the diamond theoretical model and combined with relevant literature and policies,
Yu [46] devised eight first-level indicators, 12 second-level indicators, and 59 third-level
indicators for the evaluation of cultural creative industry, and proposed that the weight
of each indicator should be further measured through a questionnaire and analytic hier-
archy process. Chen and Wang et al. [47] obtained the relevant factors of design industry
evaluation by combining the diamond model with relevant literature. Subsequently, they
analyzed the causality by utilizing the structural equation model.

In summary, relevant studies on the measurement of carbon emissions in the manu-
facturing sector are relatively comprehensive. On the premise of possessing the relevant
data, the carbon emissions of the manufacturing sector can be quickly calculated using
the IPCC method. However, in the field of design industry development evaluation, there
remain issues of subjectivity, especially regarding the weight calculations of indicators. For
instance, the Delphi method and the analytic hierarchy process are both highly subjective
since they rely on the evaluation of experts. Besides, no research has focused on the impact
of design industry development on manufacturing carbon emissions. Therefore, in this arti-
cle, we first perform a comprehensive literature analysis to formulate an evaluation index
for the development of the design industry, then apply the entropy method to calculate
the weight of each index. Also, by using the ridge regression model, we avoid the subjec-
tivity of expert evaluation and preliminary judgment to explain how the design process
influences manufacturing carbon emissions. Furthermore, we use the structural equation
model to calculate the relationship between each indicator and carbon emissions, then
propose a development direction for carbon emission reduction, based on design industry
development. This provides theoretical reference and a decision-making foundation for
relevant departments and fills the research gap in the field of design industry-influenced
carbon emissions.

This paper is divided into four parts. After the introduction, Section 2 introduces the
materials used in the research and the mathematical model, Section 3 mainly introduces the
calculation results, and Section 4 reviews the research results and draws the conclusions.
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2. Materials and Methods
2.1. Entropy Model

Entropy itself is a concept of thermodynamics, but it was introduced into information
theory by Shannon in 1948 [48]. In information theory, entropy is a measure of uncertainty,
and calculating the entropy value of an index can judge its degree of dispersion. Greater
degrees of dispersion mean there is a larger impact on the final comprehensive evaluation,
so we can calculate the weight of each index by using the information carried by its
entropy. In this paper, we studied the influence of the design industry on manufacturing
carbon emissions by constructing an index system on how the design industry influences
these emissions. It is necessary to calculate the weight of each index to define the future
development direction of the design industry and more effectively support reductions in
manufacturing carbon emissions.

According to existing research [49–51], the design industry evaluation system that
affects manufacturing production includes four first-level indicators: design re-source scale
index, economic benefit index, government support intensity, and innovation composite
index. Since the design industry itself affects carbon emissions by influencing manufactur-
ing production, it is acceptable to use these four indicators as first-level evaluation indexes.
Combined with data extracted from the Department of Economy and Information Technol-
ogy of the Zhejiang Provincial Government, we can further subdivide these four indicators
into eight secondary indexes: design companies (home), full-time workers engaged in
design (people), number of design transactions (a), output value of design achievement
transformation (ten thousand yuan), level of provincial support funding (ten thousand
yuan), local matching funding limit (ten thousand yuan), number of authorized patents (a),
number of major awards obtained domestically and abroad (a). The number of authorized
patents includes the total number of patents for appearance, utility models, and invention.
Major awards include the international Red Dot Award and the domestic Red Star Award.
See Table 1 for the specific distribution.

Table 1. Primary and secondary indicators for the evaluation system on the influence of the design
industry on the carbon emissions of the manufacturing industry.

The first- and secondary-level indexes of
the evaluation system of the influence of
design industry on carbon emission of

manufacturing industry

Primary Indicators Secondary Indicators

Design resource size index
Number of design enterprises (enterprises)

Number of full-time design
practitioners (persons)

Economic efficiency index

Number of design achievement
transactions (PCS)

Output value of design achievement
transformation (ten thousand RMB)

Government support capacity
Provincial support funding (ten

thousand RMB)

Local matching funding (ten thousand RMB)

Innovation composite index Number of patents granted (PCS)

Major awards at home and abroad (number)

We can use Equation (1) to normalize the specific data of the collected second-level
indicators and obtain the corresponding standardized data. The normalized data of each
second-level indicator Xij is Yij. Then, according to Equation (3), we determine the sample
information entropy Ej corresponding to each second-level indicator. Here, Pij is calculated
using Equation (2) according to the Yij value of each parameter in the sample. Then, using
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Equation (4), we calculate the corresponding weight Wi for each of the secondary-level
indicators based on the information entropy Ei of the second-level indicator.

Yij =
Xij −minXi

maxXi −minXi
(1)

Pij =
Yij

∑n
i=1 ∑m

j=1 Yij
, (i = 1, . . . , n; j = 1, . . . m) (2)

Ej = −
1

ln(n)

n

∑
i=1

Pij ln Pij (3)

Wi =
1− Ei

k−∑ Ei
(4)

2.2. Ridge Regression Model

Although the entropy method can be used to determine the weight of the impact of
each level of indicators, that does not mean the design industry necessarily has a significant
impact on manufacturing carbon emissions. However, we believe that further research
on the influence of the former on the latter is of sufficient research value since the design
stage influences most of the changes in the manufacturing process. Therefore, further
analysis is required to determine whether the design industry does influence changes in
manufacturing carbon emissions. Furthermore, the relationship between positive and
negative variables cannot be directly calculated through the entropy method model [52].
Thus, in this paper, we established a ridge regression model to judge whether the devel-
opment of the design industry can explain the causes of carbon emission changes in the
manufacturing industry.

Based on the original linear regression in Equation (5), Y is the observation vector of
the dependent variable with a dimension of n× 1, X represents the observation matrix
of the independent variable, and its dimension is n× (p + 1). Also, β signifies the vector
coefficient at p + 1, while ε denotes the random vector of n dimension. We obtain the
ridge regression model by adding a set of normal numbers to the diagonal of matrix X′X
(Equation (6)). Here, Ip+1 represents the identity matrix and k is the ridge parameter. We
can obtain a stable k value according to the change trajectory of its selected value, and
then substitute it as a fixed constant for regression analysis to obtain the corresponding
calculation results.

Y = Xβ + ε, (5)

β̂RR =
(
X′X + kIp+1

)−1X′Y. (6)

2.3. Structural Equation Model (SEM)

Since the regression model does not effectively reflect causes and effects, we cannot
determine the causal relationship between the relevant indicators in the design and manu-
facturing industries through a ridge regression analysis alone. Therefore, to better study
the relationship between carbon emissions in design and manufacturing and provide theo-
retical support on relevant policies, we propose a structural equation model. Besides, based
on the normalization of each index in Equation (1), we further analyzed the relationship
between them.

According to the relationship between the current indicators to be calculated and
the carbon emissions of the manufacturing industry, we constructed a preliminary model
relationship diagram (Figure 1).
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Figure 1. Diagram of the model illustrating the relationship between the industrial indicators and
manufacturing carbon emissions.

2.4. Data Sources

The data sources in this paper are based on the 2016–2020 China Industrial Statistical
Yearbook, China Energy Statistical Yearbook, Zhejiang Provincial Government Design In-
dustry Dynamic Detection Summary, the Zhejiang Province Characteristic Design Demon-
stration Base Construction Monthly Summary, and the Zhejiang Industrial Production
Data Summary.

3. Results
3.1. Weight Calculation Results

According to the above equation, we selected 18 cities in Zhejiang province where the
design industry is relatively developed, namely Hangzhou, Ningbo, Wenzhou, Huzhou,
Haining, Shaoxing, Yongkang, Quzhou, Zhoushan, Taizhou, Lishui, Yiwu, Tongxiang,
Xiaoshan, Yuhang, Zhuji, Yueqing, and Jiangshan. We extracted relevant data of these
cities from 2016–2020 for the analysis. In this study, we established four specific first-
level indicators, and after performing weight calculations we used the entropy method
and the regression model to verify the reliability of the weights obtained. Subsequently,
we subdivided these factors into eight specific second-level indicators to monitor the
corresponding data. According to Equation (1), after normalization we substituted the
data of all second-level indicators into Equations (2)–(4) to accurately calculate the weights
of all of the second-level indicators. Then, we added the corresponding second-level
indicators together to obtain the weights of the first-level indicators. The weights of all of
the indicators from 2016 to 2020 obtained using the entropy method were summarized to
obtain the weight distribution map of secondary indicators displayed in Figure 2. Table 2
provides detailed figures that correspond to the distribution map in Figure 2.

Results indicate that among the four first-level indicators, the design resource scale
index has the least impact on carbon emissions in the manufacturing industry, with a
weight of only 7.6%. In contrast, the economic benefit index has the largest weight among
the first-level indicators (32.85%) and thus the greatest impact on carbon emissions. Besides,
the weight of government support is 29.67%, which is only marginally less important
than the innovation composite index (30.14%). Among the secondary indexes, the index
weights of the two design resource factors (industrial design companies and workers
engaged as designers) both display a downward trend. This reflects the declining size and
importance of the design industry itself, and its influence on carbon emissions continues
to fall. Additionally, the number of patent licenses is the only other secondary index that
exhibits a continuous declining trend, while the remaining indexes experienced yearly
fluctuations. Therefore, we need to further analyze the weights obtained by the regression
model analysis and combine them with corresponding annual manufacturing carbon
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emissions data to confirm the weight of each index based on a stability analysis of the
primary indicator weights. By using the entropy method mentioned above, and taking into
account the data available in the current Energy Statistical Yearbook, we comprehensively
calculated the weights of the four first-level indicators from 2013 to 2020, as Table 3 and
Figure 3 show.
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3.2. Ridge Regression Analysis

To test the rationality of the entropy method the weight calculations, we introduced
the ridge regression model. Combined with the calculated carbon emissions of the man-
ufacturing industry, the ridge regression model tests the reliability and the positive and
inverse of each index weight. According to the carbon emissions of the manufacturing
industry from 2013 to 2020, we adopted the common carbon emission formula from the
IPCC method [53], which is expressed in Equation (7):

CO2e =
n

∑
i=1

(Ei × NCVi × Cc)× 10−3 × COF× 44
12

. (7)

In Equation (7), CO2e signifies the carbon emissions of the manufacturing industry, Ei
represents the consumption of the ith energy, NCVi denotes the net calorific value of the ith
energy, Cc is the carbon content per unit calorific value, and COF represents the oxidation
factor, where the default is complete oxidation, i.e., COF = 1. Table 4 displays the results
of the calculations and Figure 4 presents a graph to illustrate the results. We plotted the
relevant data and added a polynomial asymptotic curve of order 2.
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Table 2. Weight summary of all of the indicators from 2016 to 2020.

Level-1
Indicator Level-2 Indicator 2020

Weight
2019

Weight
2018

Weight
2017

Weight
2016

Weight

Average Value
of Level-2
Indicator

Average Value
of Level-1
Indicator

Design
resource

size index

Number of design
Enterprises

(enterprises)
1.59% 1.75% 2.04% 4.29% 4.50% 2.83%

7.60%Number of
full-time design

practitioners
(persons)

3.85% 3.93% 4.67% 5.65% 5.76% 4.77%

Economic
efficiency

index

Number of
transactions of

design
achievements

(PCS)

13.40% 14.60% 14.90% 18.25% 18.30% 15.89%

32.85%Output value of
design

achievement
transformation
(ten thousand

yuan)

14.34% 16.82% 16.82% 19.70% 17.81% 16.69%

Government
support
capacity

Provincial support
funding (ten

thousand yuan)
18.82% 16.05% 16.05% 11.91% 12.66% 15.56%

29.67%
Local matching

funding (ten
thousand yuan)

17.66% 18.47% 18.47% 9.76% 10.82% 14.11%

Innovation
composite

index

Number of patents
granted (PCS) 12.28% 14.19% 14.19% 17.31% 19.52% 15.86%

30.14%Major awards at
home and

abroad (number)
18.06% 12.87% 12.87% 13.12% 10.63% 14.28%

Table 3. Weight of the indicators at each level from 2013 to 2020.

Year Design Resource
Size Index

Economic
Efficiency Index

Government
Support Capacity

Innovation
Composite Index

2013 11.03% 35.21% 19.97% 33.79%
2014 10.67% 34.75% 22.19% 32.39%
2015 10.44% 35.29% 20.45% 34.15%
2016 10.26% 36.11% 23.48% 30.15%
2017 9.94% 37.95% 21.67% 30.43%
2018 6.71% 31.72% 34.52% 27.06%
2019 5.68% 29.40% 32.22% 32.70%
2020 7.60% 32.85% 29.41% 30.14%

We chose carbon emission data as the dependent variable and the weight of the
corresponding first-level indexes over the selected period as the independent variable for
ridge regression analysis. Figure 5 shows the corresponding ridge trace map.
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Table 4. Carbon emission data of Zhejiang Province, 2013–2020.

Year Carbon Emissions (Ten Thousand Tons)

2013 37,280
2014 37,652
2015 39,220
2016 40,552
2017 42,060
2018 43,350
2019 44,786
2020 46,339
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According to the ridge regression diagram, when the k value is 0.01, the normalized
regression coefficients of each variable are stable, so the optimal value for k is 0.01. Table 5
presents the results after the implementation of the ridge regression model.
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Table 5. Ridge regression analysis results.

Unstandardized
Coefficients

Standardized
Coefficients

t p R2 Adjusted R2 F
B Standard

Error Beta

Constant 24,554.392 8844.280 - 2.776 0.109

0.978 0.933
F(4,2) = 21.834

p = 0.044

Design
resource size

index
20,822.462 35,909.676 −1.560 −5.799 0.028

Economic
efficiency

index
86,491.702 22,260.913 0.871 3.885 0.036

Capacity of
government

support
6272.282 6555.546 0.130 0.957 0.440

Innovation
composite

index
13,090.373 15,030.795 0.114 0.871 0.476

According to the results in Table 5, the F-test value of p = 0.044 is less than 0.05, which
indicates that the model is meaningful. After obtaining these comprehensive results, we
can determine the following relationship: manufacturing carbon emissions = 24,554.392 −
208,222.462 × design resource scale index + 86,491.702 × economic benefit index + 6272.282
× government support capacity + 13,090.373 × innovation composite index.

Table 6 presents a summary of the results, according to the existing ridge regression model.

Table 6. Ridge regression model summary.

Model Summary

Sample Size R2 Adjusted R2 Model Error

7 0.9776 0.933 737.722

The R square value in the table is 0.978, which means that the scale index of design
resources, economic benefit index, government support capacity, and innovation composite
index can explain 97.76% of the changes in carbon emissions of the manufacturing industry,
from the perspective of the design industry. Thus, the design stage of the manufacturing
process has a tremendous impact on its carbon emissions. Therefore, it is of practical
value to further study the impact of design industry development on carbon emissions
in manufacturing.
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3.3. Structural Equation Model Analysis

We selected the first-level indicators and the calculated carbon emissions of the man-
ufacturing industry in Zhejiang province as potential variables, and the second-level
indicators associated with the first-level indicators as the corresponding measurements
of the potential variables. Relevant data were substituted into the calculations to obtain
preliminary results. First, we analyzed the obtained model fitting indicators by applying
six commonly used fitting judgment indicators. The results are displayed in Table 7.

Table 7. Structural equation model preliminary fitting index results.

Commonly Used
Indicators GFI RMSEA RMR CFI NFI NNFI

Requirement > 0.9 < 0.10 < 0.05 > 0.9 > 0.9 > 0.9
Calculated result 0.996 0.247 1.034 1.012 0.883 0.950

Table 7 indicates that the RMSEA value exceeds the requirement of the judgment
criterion of <0.1, the RMR value also exceeds the criterion of <0.05, and the NFI value
does not meet the requirement of >0.9. Overall, three of the six most commonly used
judgment indexes of model fitting level are unsatisfactory, indicating that the model fitting
combination is not ideal. As a result, we made further adjustments to the coefficients and
relationships to refit the model. Based on the results of the calculations, Table 8 presents
the relationship and MI value distribution among all of the paths in the model.

Table 8. Path impact relationship distribution.

X (X Impacts Y) Y MI

Factor 4 - Factor 5 −0.392
Factor 2 - Factor 5 0.370
Factor 3 - Factor 5 3.487
Factor 4 - Factor 1 0.865
Factor 3 - Factor 2 12.347
Factor 2 - Factor 1 7.528

Table 8 indicates that Factor 3 has a significant influence on Factor 2, while Factor 2
influences Factor 1. Besides, the MI index value of the Factor 3 influence on Factor 2 is
larger than 10. Thus, we can theoretically enhance the model further. Therefore, Factor 3
affects Factor 2 and Factor 2 influences Factor 1 in the relationship. We increased the value
of MI to be greater than 10 to improve the model, and Table 9 presents the results of the
fitting indexes obtained by the model after subsequent adjustments.

Table 9. Model fitting analysis results.

Commonly Used
Indicators GFI RMSEA RMR CFI NFI NNFI

Requirement > 0.9 < 0.10 < 0.05 > 0.9 > 0.9 > 0.9
Calculation results 1.042 0.035 0.043 1.327 0.952 1.030

In Table 9, we can see that the model fitting results have satisfied all of the judgment
indexes, so we can conclude that the model fitting degree is relatively good. Thus, we
obtained revised results for the regression coefficients of the model, as Table 10 and Figure 6
illustrate below.

Based on the distribution of standardized regression coefficients in Table 10 and
Figure 6, we can conclude that the scale index of design resources has a restrictive effect
on carbon emissions in the manufacturing industry. Conversely, the economic efficiency
index, government support capacity, and innovation composite index all have a positive
influence on the carbon emissions of the manufacturing industry According to Figure 6, in
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the weight distribution of indicators affecting carbon emissions of manufacturing industry,
the economic benefit index is the largest, followed by the innovation composite index,
government support capacity, and design resource scale index. These results correspond to
the weight distributions calculated by the entropy method.

Table 10. Regression coefficient summary.

X Y Non-Standardized
Regression Coefficient SE z p Standardized Regression

Coefficient

Factor 1 Factor 5 −6.527 1.416 −1.478 0.023 −0.135
Factor 2 Factor 5 7.650 2.009 2.798 0.039 0.994
Factor 3 Factor 5 0.330 0.384 0.860 0.390 0.225
Factor 4 Factor 5 16.459 0.756 7.073 0.409 0.975
Factor 3 Factor 2 0.582 0.678 0.858 0.391 0.821
Factor 2 Factor 1 2.198 2.178 1.009 0.313 0.999

Factor 1 Number of design
enterprises 1.000 - - - 0.901

Factor 1 Number of full-time
design practitioners −0.958 0.267 −3.584 0.007 −0.963

Factor 2
Output value of design

achievement
transformation

−2.257 2.171 −1.039 0.299 −0.992

Factor 2
Number of design

achievement
transactions

1.000 - - - 0.462

Factor 3 Provincial support
funding 1.000 - - - 0.666

Factor 3 Local matching
funding 1.494 0.850 1.757 0.079 0.982

Factor 4 Number of patents
granted 1.000 - - - 0.010

Factor 4 Major awards at home
and abroad 9.388 16.778 5.924 0.000 0.996
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As Figure 6 indicates, there is also a significant relationship among the various in-
dicators. For the indicators within each level, an increase in government support has a
positive effect on the economic benefit index, while growth in the economic benefit index
results in the enhancement of the design resource scale. Between the primary and sec-
ondary indicators, a larger number of design enterprises leads to an increase in the design
resource scale index, while a greater number of design professionals somewhat inhibits
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development of the design resource scale. In terms of economic benefits, an increase in
the number of design transactions leads to a slight improvement in economic benefits, but
development of the output value of transformational design does not lead to growth in
economic benefits. Concerning government support, funding from local and provincial
governments has a significant role in stimulating the development of the design industry.
Regarding the innovation composite index, higher numbers of patents granted and awards
given promote the innovative ability of the design industry, to a certain extent. Besides,
the number of major domestic and international awards correlates with improvements in
industrial innovation ability.

In terms of the distribution of each index, the economic benefit index and the innova-
tion composite index have the greatest impact on the development of the design industry
and the carbon emissions of the manufacturing industry. Their coefficients are much greater
than the other two first-level indexes, which confirms that the design industry is a progres-
sive sector that is highly dependent on innovation. Comparatively speaking, expansion of
industrial scale has a restrictive effect on carbon emissions in the manufacturing industry,
indicating that the design process itself promotes the transformation and advancement of
the manufacturing industry. Additionally, appropriate design planning during the initial
stages of the production chain has positive significance for carbon emission reduction in the
manufacturing phase. For each level of indicators, the importance of government support
is reflected in the impact on the economic benefits of the design industry, rather than the
impact on the carbon emissions of the manufacturing industry. Government support for the
design industry greatly enhances economic benefits, thus further promoting the expansion
of design industry scale and related resources, and stimulating industry development.

4. Conclusions
4.1. Discussion of Research Results

The design industry belongs to the high-tech creative sector and relies heavily on
scientific and technological innovation. Its survival and development greatly depend on
the transformation of the economic benefits of innovation content. Moreover, the design
industry obtains advanced industrial capital through the efficient economic transformation
of cultural creativity, emerging technologies, and other sources [54–56]. With the rapid
development of the new internet era, this type of industry creates high added value
by connecting with other corresponding industries, becoming a main driving force that
develops national strategic brands and technological innovation [57]. The design industry
itself is closely linked to the manufacturing industry. Through reasonable design, the added
value of products can be enhanced to increase sales and achieve higher commercial value.
The manufacturing process involves heavy industry and its carbon emissions are generally
high, and the product decisions made in the design stage have a direct impact on carbon
emissions during the production process [58]. After the design stage of a certain product,
there are several choices regarding production procedures. Since the corresponding carbon
emissions of each procedure are different, the design stage naturally has a significant impact
on emissions [59].

In this paper, we deconstructed several factors of the design industry that affect the
carbon emissions of the manufacturing industry. We devised corresponding primary and
secondary indexes and calculated the weight of each relevant index using the entropy
method. We also introduced a ridge regression model to aid our analysis. Based on the
results obtained, we established that design industry development can effectively explain
most of the reasons for changes in manufacturing carbon emissions. More specifically,
97.79% of the changes in manufacturing carbon emissions can be explained from the per-
spective of design industry development. Therefore, our study on the relationship between
the two industries has great practical value. In this study, we re-introduced the structural
equation model and used as factors the first level indexes and carbon emissions of the
manufacturing industry. We obtained a revised structural equation model by adding an
influence path and appropriately amplifying the MI value. Modeling results revealed
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that expansion of the scale index of design resources has a restrictive effect on the carbon
emissions of the manufacturing industry. The economic benefit index, government support
capacity, and innovation composite index of the design industry all promote carbon emis-
sions in the manufacturing industry. The weight distribution obtained by the structural
equation is consistent with the entropy method, meaning that the weight of the economic
benefit index is greater than the innovation composite index, while government support
capacity outweighs the design resource scale index.

The first-level index planned in this paper is closely related to the development
of the design industry itself. The economic benefit index has the largest weight since
higher indexes result in greater market satisfaction toward designed products, which
reflects the impact this index has on carbon emissions. As a result, the manufacturing
industry produces a larger number of products. This expansion of the production base
subsequently leads to an increase in carbon dioxide emissions [60]. Dominated by the
market profit mechanism, the design industry tends to be solely market-focused. It aims
to gain higher profits, but often ignores the issue of environmental protection [61]. This
consequently leads to a rise in carbon emissions during the production process. As for green
design, there are no appropriate laws or regulations in China to encourage environmental
protection in the design stage, and designers are often unaware of green design. Thus
the carbon emissions of the manufacturing industry increase with the rising economic
benefit index [62]. The influence of government support and the innovation composite
index on carbon emissions is positive but insignificant, and the weight of the two is less
than the economic benefit index. The reason for this is that both of them promote the
development of the design industry. In related studies, the development of the design
industry is extremely dependent on its innovative capability [63], and several studies have
shown that government support is one of the core driving forces for its development [64,65].
These two indicators promote the development of the design industry and expand the
scale of production in the corresponding manufacturing industry. Currently, green design
has not penetrated the ethical professional system of designers [66–68], the vast scale
of production will generate huge carbon emissions. Design resource scale index in the
calculation of entropy value method, its minimum weight significantly, in fact reflects
that the design industry demand for design direction of resource is not unbearable, and
the number of design enterprise is not decisive in the manufacturing industry regarding
carbon emissions as the influence of the design of carbon emissions is reflected in the design
of products and market to cater to the degree of quality and design itself. No amount
of companies can scale up their manufacturing operations without designing excellent
products. And its inhibition, due to the expansion of design resource, will let now advocate
green design direction of resources into the practice of design, and it will also attract more
education practitioners with stronger green design consciousness into the system design,
and thus more production process with less carbon emissions, which bodes well for natural
inhibition of carbon emissions. The above weight distribution of the influencing factors of
the design industry on the carbon emissions of the manufacturing industry is in essence
consistent with the industrial characteristics of the design industry itself, which is the
reality that high-tech and creative industries attach importance to creativity rather than
limited to the industrial scale.

4.2. Research Conclusions

Given the results of our research, we can provide practical suggestions for government
decision-making related to the design industry. First, carbon emission reduction in the
manufacturing industry from the perspective of carbon neutrality is critical. Moreover,
the design industry has an immense impact on the carbon emissions of the manufacturing
industry, which is a point that cannot be ignored when devising carbon emission reduction
measures. In the design industry, the orientation of design resources should be regulated,
and more human, cultural, and social resources should be directed toward the correspond-
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ing industry. This makes full use of the restraining effect of the scale of design resources on
carbon emissions in manufacturing.

According to regulations and the control of industrial development, and regarding
both its economic benefit index and creative composite index, the goal of the government is
to promote the development of industry. At the same time, it should avoid unchecked devel-
opment, which leads to sharp increases in manufacturing carbon emissions. The authorities
should vigorously support the development of advanced science and technology creative in-
dustries and strengthen the related design industry based on corporate social responsibility.
The concept of green design will then further penetrate industrial development.

In the process of design education, it is necessary to cultivate the sense of designers’
social and moral responsibility, integrate the concept of green design into the education
system, and vigorously cultivate “green design talents”. We should expand the scale of
design resources, thereby restricting carbon emissions. Additionally, the participation of
these talents will reduce the influence of government support, economic efficiency index,
creative composite index, and other indicators to cut carbon emissions.

Furthermore, it is necessary to be cautious when adjusting the economic benefit index
in the design industry. Among the factors affecting carbon emissions of the manufacturing
industry, this item carries the largest weight, but it is also directly related to the dynamics of
future industrial development. Therefore, the development of high-tech creative industries
should be supported and the economic benefits improved. In practical applications, the
economic benefits of the design industry should involve more evaluation norms, such as
corresponding evaluations of the green index of design results, the establishment of an
evaluation system of the green index of the design, etc., to promote a reduction in carbon
emissions and the healthy development of the industry.
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