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Abstract: Hybrid offshore wind–solar PV power plants have attracted much attention in recent
years due to its advantages of saving land resources, high energy efficiency, high power generation
efficiency, and stable power output. However, due to the project still being in its infancy, investors
will face a series of risks. Hence, a multi-criteria group decision-making framework for hybrid
offshore wind–solar PV power plants risk assessment is constructed in this paper. Firstly, 19 risk
indicators are identified and divided into five groups. Secondly, probabilistic linguistic term sets
are then introduced to evaluate the criteria values to depict uncertainty and fuzziness. Thirdly, the
expert weight determination model is built by combining subjective and objective weights based on
expert information, the entropy and interaction-entropy measures of probabilistic linguistic term sets.
Fourthly, the expert evaluation information is aggregated by transforming probabilistic linguistic
term sets into triangular fuzzy numbers based on generalized weighted ordered weighted averaging
operator. Additionally, the risk level is determined using the fuzzy synthetic evaluation method.
Finally, the proposed method is applied to a case study and the risk level is slightly high with the
similarity measure result of 0.938. Then, the risk indicator system and corresponding countermeasures
can provide scientific reference for investment decisions and risk prevention.

Keywords: hybrid offshore wind–solar PV power generation; risk assessment; probabilistic linguistic
term sets; triangular fuzzy numbers; fuzzy synthetic evaluation method

1. Introduction

Due to the serious consequences of the greenhouse effect, global warming is increasing
and global energy reform is imperative to improve environmental issues. In addition, with
coal, oil, natural gas, and other non-renewable energy storage greatly reduced, the effective
use of renewable energy is extremely urgent. Renewable energy, especially wind and solar, are
two potential candidates to remove carbon footprints, which are cleaner and safer. In recent
years, the penetration of wind and solar resources has increased. The scarcity of habitable land
encourages the development of renewable energy projects in the marine environment. With
the progress of technology and the reasonable utilization of existing resources, the construction
of offshore wind power stations and offshore solar power stations shows a significant growth
trend. As for wind energy, as a kind of renewable and clean energy, offshore wind power
occupies a certain proportion of the energy industry and plays a crucial role in relieving
energy pressure [1]. As for solar energy, floating photovoltaic (FPV) systems are the core of
offshore photovoltaic power generation. The main advantage of FPV systems is the water
cooling on the solar cells [2]. This effect results in a higher energy conversion efficiency of
the floating panels, which can generate up to 10% more electricity [3]. In addition, it has the
advantages of inhibition of algae reproduction, convenient cleaning of PV equipment, and
so on [4].

Meanwhile, as an energy complementary system to provide more stable and flexi-
ble power output, hybrid offshore wind–solar PV power generation has attracted much
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attention in recent years, which has realized the expansion of energy utilization in the
space–time dimension. A basic arrangement of hybrid offshore wind–solar PV power
generation would be filling with FPV panels the free-surface amidst the offshore wind
turbines, which ensures smooth output of power generation on the basis of reasonable
utilization of available sea area. Additionally, this arrangement also avoids interferences
in the production of both renewables [5]. Mario López et al. [5] assessed the potential for
developing floating wind and solar energy off the coast of Asturias and demonstrated a
production synergy of offshore wind–solar farms. Compared with a typical offshore wind
farm, the capacity of the hybrid offshore wind–solar PV power farm is 10 times higher,
and the amount of electricity generated per surface area is seven times higher. In this way,
the utilization of marine space is optimized, while at the same time, the power output is
significantly smooth. It should be considered in future marine renewable energy projects.

However, the hybrid offshore wind–solar PV power generation project has just been
studied by scholars, and the relevant core technologies are not strong enough, including
seawater corrosion treatment, optimal array layout, power grid connection technology,
converters, etc. In addition, the market environment is not stable enough. There is very
little information to refer to for the project. In terms of these challenges, investors and
project managers will inevitably encounter some risks during the period of construction
and operation of the hybrid offshore wind–solar PV power generation project. Moreover,
energy projects have the characteristics of large capital input, strong unity, and long cycle;
risk management is particularly necessary in this case. Hence, reasonable risk assessment
and scientific risks countermeasures play a significant role in the whole life cycle of the
project. However, this problem has not been widely studied by scholars. It is obvious that
there is a lack of comprehensive risk assessment framework and a related risk indicator
system for the hybrid offshore wind–solar PV power project. Therefore, the meaning of the
research in this paper cannot be ignored.

Up to now, there is little literature on risk assessment for the hybrid offshore wind–
solar PV power projects, but the risk assessment has been implemented for other offshore
renewable energy projects. For offshore wind projects, Dai, Ehlers et al. [6] analyzed the risk
of collision between service vessels and offshore wind turbines and concluded that collisions
between turbines and service vessels even at low speed may cause structural damage to
the turbines; accordingly, certain risk responses were put forward in the aspect of design.
Gatzert et al. [7] analyzed the risk and corresponding risk management both for onshore
and offshore wind projects. Hong and Moller [8] focused on the economic risk assessment
of offshore wind farms from the perspective of tropical cyclones. Snyder and Kaiser [9]
studied the offshore wind plant using ecological and economic analysis. Shafiee and
Dinmohammadi [10] comparatively analyzed the risks of onshore wind power and offshore
wind power and proposed that both systems faced many of the same risks; however, there
are some main differences worth considering. For photovoltaic power generation projects,
Trapani et al. [11] proposed an alternative to flexible thin-film photovoltaics that floats on
the water and focuses on technical and economical assessment of offshore PV systems at the
waterline. Wu et al. [12] proposed a three-phase risk assessment model for the PV poverty
alleviation projects. Kayser et al. [13] identified the most critical risk factors currently
hindering the development of China’s PV projects using the improved Delphi method.
Wu et al. [14] established a risk assessment framework of offshore PV projects based on the
MAGDM method. A criteria system was built including risk factors in macro-economic,
technical, environmental, and management aspects. A fuzzy comprehensive evaluation
model was also constructed by combining the hesitant linguistic fuzzy sets, triangular fuzzy
sets, and analytic network process (ANP) methods. Gao et al. [15] considered market risks,
established an index system including economic, technical, environmental, and market
risk factors, and established a comprehensive risk assessment framework for offshore PV
projects under probabilistic language term sets. Considering the uncertainty of processing
information and the confidence of expert judgement, Zhou et al. [16] established a risk
assessment model of China’s offshore photovoltaic power generation projects with D-
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number and ANP method. In addition, Wu et al. [17] established a risk assessment model
of an offshore wave–wind–solar–compressed air energy storage power plant based on the
fuzzy comprehensive evaluation method. For the hybrid offshore wind–solar PV power
projects, Mario López et al. [5] assessed the potential for developing floating wind and
solar energy off the coast of Asturias and demonstrated a production synergy of offshore
wind–solar farms. Syed Raahat Ara et al. [18] proposed a two-level planning approach
to analyze techno-economic feasibility of hybrid offshore wind–solar PV power plants.
Dhunny, A Z studied the site selection of hybrid onshore wind–solar PV power plants [19].
Figure 1 illustrates the analysis of the research status of the hybrid offshore wind–solar
PV power plant and the comparison with other offshore new energy power plants. It is
obvious that risk assessment of hybrid offshore wind–solar PV power generation projects
has not been extensively studied. Hence, this paper will draw on the research published
on other energy projects to establish a targeted and practical indicator system and a
comprehensive risk assessment framework suitable for hybrid offshore wind–solar PV
power generation projects.
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Figure 1. The analysis of the research status and comparison of the offshore new energy power.

This paper aims to establish a practical indicator system for the risk assessment of
the hybrid offshore wind–solar PV power generation project and develop an effective
comprehensive risk evaluation framework to evaluate the risk level of the hybrid offshore
wind–solar PV power generation project for related management personnel. The contribu-
tions of the proposed method can be briefly summarized as follows: (1) Through literature
review, case study, referring to the risk assessment of previous energy projects, and inviting
relevant experts, the expert committee was established, and finally the expert committee
established the risk indicator system. (2) The probabilistic linguistic term sets (PLTSs) are
introduced in this paper to describe the risk assessment information. Compared with other
forms of fuzzy sets, PLTSs not only allow experts to express preferences in different lin-
guistic terms but also give corresponding probability information for each linguistic term,
which can better retain the original evaluation information. (3) In this paper, a subjective
and objective weighting method is used to determine expert weight. The subjective weight
is determined according to the expert’s position, working time, project experience and other
standards, and objective weight based on the entropy and interaction-entropy measures
of PLTSs. The combination of subjective and objective weights is more in line with the
actual decision-making environment. (4) The expert evaluation information is aggregated
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by transforming PLTSs into triangular fuzzy numbers based on the generalized weighted
ordered weighted averaging (GWOWA) operator [20], which uses the original evaluation
information effectively to the maximum extent. Additionally, the risk level of the project is
determined by fuzzy synthetic evaluation method and similarity measures and provides
the corresponding risk response strategy.

The rest of the study is as follows. Section 2 reviews the PLTSs, TFN, and FSE methods,
which will be used in this paper. Section 3 analyzes the risk factors, and a comprehensive
indicator system for the hybrid offshore wind–solar PV power generation projects is
developed. A decision framework of the risk assessment for the hybrid offshore wind–solar
PV power generation projects is presented in Section 4. A case study, sensitivity analysis,
and comparative analysis are presented in Section 5. We present a discussion and offer
corresponding risks countermeasures in Section 6. Finally, Section 7 concludes this paper.

2. Literature Review

The multiple-attribute group decision-making (MAGDM) problem is a sub-discipline
of operations research. The MAGDM theory has received extensive attention and quite
a few achievements have been presented in the past decades. Because of the variety of
risk factors, it is clear that the risk assessment of hybrid offshore wind–solar PV power
generation projects is a typical MAGDM problem. Two main reasons for the uncertainty of
decision information were determined. Firstly, risk assessment of a project is universally
conducted in the planning and feasibility study stage. However, the risk assessment is only
an estimate of what will happen in the future. Therefore, there is uncertainty in the process
of risk assessment. Secondly, the judgements and evaluations are entirely dependent on the
experience and knowledge of DMs in the risk assessment. However, it is clear that DMs
are not entirely rational, so fuzziness exists. Therefore, the MAGDM method is often an
effective tool for these problems with imperfect, vague, and imprecise information, which
plays a significant role in the reasonableness and accuracy of risk assessment. In 1965,
Zadeh [21] proposed the concept of fuzzy sets to express uncertainty and fuzzy information.
Compared with specific numbers, fuzzy sets can express the uncertainty of objective things
and the fuzziness of subjective cognition better and have been widely used to solve these
problems. On this basis, some scholars have developed the fuzzy sets from different
angles and put forward its extended forms including type-2 fuzzy sets [22], intuitionistic
fuzzy sets [23], interval fuzzy sets [23], hesitant fuzzy sets [24], hesitant fuzzy language
terms [25], and PLTSs etc. [26]. The probabilistic linguistic term sets (PLTSs) are introduced
in this paper to describe the risk assessment information. PLTSs allow experts to express
preferences with multiple different linguistic terms and give corresponding probability
information for each term. For example, when assessing the market risk of hybrid offshore
wind–solar PV power generation projects, an expert may express that he/she is 60% sure
that it is slightly high (s4), and 40% sure that it is medium (s3); this evaluation information
can be expressed in the form of PLTS {s4(0.6), s3(0.4)}. It is obvious that PLTS can better
retain the original evaluation information. In addition, in terms of expert evaluation
information aggregation, PLTSs are transformed into triangular fuzzy numbers based on
a generalized weighted ordered weighted average (GWOWA) operator. The triangular
fuzzy number proposed by Zadeh [21] has been widely used in MAGDM problems for the
purpose of making decisions more in line with a realistic decision environment [10]. An
inexact interval-valued triangular fuzzy based multi-attribute preference framework was
conducted by Ren et al. [27]. It mainly takes vagueness in parameter values into account.
Some hesitant triangular fuzzy aggregation operators were proposed by Zhao et al. [28].
Additionally, they investigated their application to MAGDM problems, and an illustrative
example was used to show the validity of these operators. It can be seen clearly from the
above literature that the TFN is an effective tool for dealing with the MAGDM problem
with uncertain information and relatively simple calculation process well. Therefore, the
triangle fuzzy number was introduced by many researchers to solve risk assessment and
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performance analysis. In addition, some scholars have studied the methods of formal
transformation [20,29], which play an important role in MAGDM.

At present, for the MAGDM problem, many decision methods have been studied
extensively. TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution),
VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje), ELECTRE (Elimination
and Choice Translating Reality), and TODIM (an acronym in Portuguese for interactive and
multicriteria decision making) methods have been widely studied and applied by scholars.
Chen, et al. [30] conducted a hybrid MCDM approach based on ANP-entropy TOPSIS to
solve the material supplier selection problem. Li, et al. [31] proposed an MCDM model
based on the grey correlation and TOPSIS under interval-valued intuitionistic fuzzy envi-
ronment to select the cooperative partner in military–civilian scientific and technological
collaborative innovation. Tufail, et al. [32] studied the VIKOR method for MCDM based
on a bipolar fuzzy soft β-covering-based bipolar fuzzy rough set model. Additionally, the
proposed method can solve the site selection for solar power plants well. Peng, et al. [33]
conducted an integrated decision support model based on regret theory and ELECTRE III
to solve the problem of investment risk evaluation for new energy resources. Wu, et al. [34]
conducted a framework for offshore wind power station site selection based on ELECTRE
III under an intuitionistic fuzzy environment. Zhang, et al. [35] proposed the Wasserstein
distance-based probabilistic linguistic TODIM method, which can solve the problem of
the evaluation of sustainable rural tourism potential. Ding, et al. [36] studied the interval-
valued hesitant fuzzy TODIM method for dynamic emergency responses. However, the
above method can be utilized since these methods are mainly applied in optimal selection
or decision making for multiple potential projects instead of one targeted project. Fortu-
nately, the fuzzy synthetic evaluation method (FSE) can solve this problem as an effective
and practical approach for evaluating targeted non-deterministic problems with qualitative
languages through membership grade theory [37]. FSE provides a method of expression
and definition of fuzzy variables in mathematical logic, which can be utilized in quantifying
risk level, severity, and the impact of fuzzy risk variables. Therefore, this method can be
used to not only express the empirical knowledge of project managers but also help draw
reliable decisions from fuzzy facts via language definitions [38]. Many researchers have
adopted this method for risk assessment, investment decision making, site selection, and
so on. Wu, Li [37] evaluated the risk level of China’s PPP straw power generation project
via the FSE model. Some scholars also evaluated the real estate investment risk through the
FSE model. Additionally, they verified the scientific nature and practicality of the model
adopted. Wu, Jia [39] analyzed the advantages of the FSE model and assessed the risk of
the electric vehicle supply chain based on this method. Moreover, Wu, Li [14] selected the
FSE model to assess China’s offshore photovoltaic power generation projects based on the
FSE model.

Thus, this paper will build a comprehensive risk assessment framework of a hybrid
offshore wind–solar PV power generation project with the advantages of the entropy and
interaction-entropy measures of PLTSs, GWOWA operator, and the FSE method based on
the above related scientific research.

3. The Construction of the Indicator System of Risk Assessment on a Hybrid Offshore
Wind–Solar PV Power Generation Project

It is an essential prerequisite for investors to identify risk factors to conduct risk
management [40]. In this study, the literature review method was first adopted and
databases such as the web of science and Elsevier were used. Moreover, literature published
by domestic and foreign scholars were searched using keywords such as offshore wind
power, offshore photovoltaic, and offshore new energy projects. We obtained extensive
articles on the risk assessment of these projects [6–10,14–17]. At the same time, the risk
factors can be collected by referring to the conference reports of offshore new energy
projects and case studies of existing offshore new energy projects. Through the above
activities, we obtained a large number of risk indicators of offshore new energy power
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generation projects. Then, three experts with rich experience in offshore energy projects
were invited to set up an expert committee. The expert committee selected and classified
the large collection of risk indicators according to their frequency and weight in published
articles. Finally, the expert committee determined the risk criteria system of the hybrid
offshore wind–solar PV power generation project through repeated discussion, 19 risk
factors were identified, and they were divided into five groups. The risk criteria system is
shown in Figure 2.
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3.1. Economic Risk (C1)

High initial investment (C11): The initial investment of the project mainly includes
equipment purchase cost, installation cost, construction cost, reserve cost, interest during
the construction period, etc. Hybrid offshore wind–solar PV power generation projects
will face higher costs than other energy projects, given the complexity of design and man-
ufacturing processes due to higher performance requirements. For example, underwater
cable requires high construction technology and expensive equipment, which increases the
financial pressure of the investment of the project.

High operation and maintenance costs (C12): The construction and operation of
renewable energy plants is critical to project management. Wind turbines and photovoltaic
equipment are prone to deformation, metal corrosion, material aging, and other risks due
to sea salt corrosion and sea breeze intrusion. Operation and maintenance costs increase
gradually as the cycle continues.

Financing risk (C13): A relatively large capital scale is obviously required for hybrid
offshore wind–solar PV power generation projects. Hence, the financing process plays an
important role in the smooth implementation of the project. Financing risk mainly consists
of the uncertainty generated by financing activities, such as financing guarantee, financing
structure design, and financing channel selection [41]. The technology of hybrid offshore
wind–solar PV power generation projects is still not mature; there may be significant
obstacles and risks in the financing process.

Profitability risk (C14): The profitability of a project refers to the ability to increase the
value of the funds invested in the project, which is easily affected by interest rate changes,
inflation, capital turnover, and other problems, leading to the reduction in the investment
benefit of the enterprise. The profitability risk of hybrid offshore wind–solar PV power
generation projects should be paid more attention under the background of government
subsidy withdrawal. In order to conform to reality, considering the time value of capital
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and reflecting the economic effect of the project, the net present value is usually the main
factor, supplemented by internal rate of return and dynamic payback period, and the
profitability risk of the project is evaluated.

3.2. Technical Risk (C2)

Site selection risk (C21): Site selection is the key part in hybrid offshore wind–solar
PV power generation projects, involved in solar resources, wind resources, distance to the
center of the load, geological conditions, etc. In addition, improper site selection not only
has a negative impact on project earnings, but also can cause problems such as not starting
construction as scheduled; therefore, has a certain risk.

Improper design of hybrid array (C22): The array design of hybrid offshore wind–so lar
PV power generation mainly includes the arrangement of wind turbines and photovoltaic
panels, which needs to consider the wake effect of wind turbines and the shadow effect
of solar photovoltaic panels. Unreasonable array design may lead to inadequate resource
utilization and low power generation efficiency.

Cable connection risk (C23): Under the gravitational action of celestial bodies, the sea
water in coastal areas has periodic fluctuations, known as oceanic tides. This poses a risk
for this project, where the downward pull of seawater pulls the cables as they fall back. If
the inverter cable connection and node connection between the PV panel and turbine are
not designed properly, the cable will not be able to cope with the effect of tide.

System failure risk (C24): The arrangement of the hybrid offshore wind–solar PV
power station may have a certain impact on birds, ships, and other original routes, and the
collision between turbines and birds or ships will inevitably lead to the failure of the power
generation system, which has certain risks.

Onshore supporting condition risk (C25): Onshore support conditions refer to the
important factors for project construction, operation, such as transportation conditions and
power transmission, and distribution systems. Hence, traffic conditions should be taken
into account because of the impact on the transport of large equipment. In addition, we also
need to consider whether the onshore grid and future plans can meet the support needs.

Visual effect risk (C26): Wind turbines are likely to pose a threat to bird species
by visually affecting flight or migration. In addition, although the tempered glass of
photovoltaic modules has a high light transmittance, it still cannot completely avoid the
reflection phenomenon, which may cause a visual impact on coastal residents. Large-
scale hybrid offshore wind–solar PV power stations may also have a visual impact on the
coastal landscape.

3.3. Environmental Risk (C3)

Wind resource risk (C31): The periodic variation in wind speed and wind resources is
vital for offshore wind power generation. To evaluate the development potential of offshore
wind power generation in an area in the early stage of a project has a profound impact on
the long-term development of the project.

Solar resource risk (C32): Whether there is ample photovoltaic power generation
of solar energy resources or not is quite important. Atmospheric haze, dust, and other
obstacles may reduce the power output of photovoltaic power generation. In addition, the
change in climate may also be caused by the long-term prediction of solar energy resources;
electric power systems may not be able to achieve the desired output, which will affect the
project’s profit.

Marine ecological damage (C33): The hybrid wind–solar PV power generation plants
have large scales, which will inevitably affect the marine ecological environment in the de-
velopment and construction processes. For example, the laying of submarine transmission
cables will make seabed sediments float and thus influence the reproduction of plankton.
In addition, the coastal habitat of birds will be inevitably occupied, and their nests will be
affected. Due to this damage to the marine ecosystem, environmental protection agencies
or environmentalists may raise objections.
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3.4. Market Risk (C4)

Market competition risk (C41): The competitiveness of the market will directly deter-
mine the viability of it in renewable power projects. The competition of hybrid offshore
wind–solar PV power plants includes offshore wind, offshore photovoltaic, and other
offshore renewable energy hybrid projects. Because the hybrid wind–solar PV power gen-
eration project is still in the begin stage, its research and development ability are relatively
weak, and it lacks marketing ability and has certain technical limitations; therefore, there is
a risk of being replaced in the market.

Unclear feed-in tariff policy (C42): Pricing policy is critical to project profitability, but
there is no clear pricing policy for hybrid wind–solar PV power generation projects in the
energy project market, which will bring uncertainty to project revenue.

Economic crisis risk (C43): Natural disasters and other force majeure events may have
a certain influence on the market economy. For example, many enterprises go bankrupt
and unemployment rate increases to induce economic crises, which may bring risks such as
capital chain fracture to the project and make the normal operation of the project impossible.

Risk of human resource shortage (C44): At present, in the context of COVID-19,
a public health emergency, the economic benefits and human resource management of
enterprises have received a great impact. Many enterprises are faced with situations of
layoffs and recruitment difficulties. For the hybrid wind–solar PV power generation project,
relevant personnel should have certain technical requirements, which makes it harder to
recruit staff.

3.5. Management Risk (C5)

Public opposition risk (C51): The public’s attitude towards the power station has a
great influence on the successful implementation of the power station. However, the noise
and occupancy of the hybrid power station may cause certain restrictions on the life of the
surrounding residents.

Inexperienced staff (C52): Hybrid wind–solar PV power generation projects are still
in the begin stage, and building, installing, and operating them in a marine environment
requires extensive expertise and work experience, which is somewhat risky.

4. The Risk Assessment Framework of Hybrid Wind–Solar PV Power Generation Projects

Step 1. Determination of the weight of risk indicators
In the risk assessment of the project, the importance of each criterion is different, so

the importance of each criterion needs weight to reflect it. At the same time, there is a
certain correlation among these criteria. For example, improper design of a hybrid array
(C22) and unreasonable site selection (C21) of the hybrid power plant will increase project
operation and maintenance costs (C12). Considering this situation, the ANP method is
used in this paper to determine the weight of attributes. Firstly, the expert group analyzed
and determined the intrinsic dependence among the criteria. Secondly, we used a 1–9 scale
method to determine the risk degree of each criterion and made pairwise comparisons to
obtain the judgment matrix. After calculating the judgment matrix, the unweighted super
matrix can be obtained. Thirdly, the influence matrix of the index group was obtained by
comparing the relationships between the index groups. Finally, the super weighted matrix
and limit matrix were obtained using software calculation, and the global weight and local
weight of the indicator were obtained [14].

Step 2. Defining the PLTS and obtaining the evaluation from experts
Considering that there are many factors involved in risk assessment of hybrid wind–

solar PV power generation projects, experts may use more than one language term for
evaluation and may hesitate among several language terms. In addition, experts may have
different preferences for each language term in expert evaluation. Therefore, in this paper,
probabilistic language term sets (PLTSs) were used to give criteria evaluation information
to reduce information loss and improve the accuracy of evaluation results.
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Theorem 1. Ref. [26] LetS = {si|i = 0, 1, · · · , 2τ} be a linguistic term set, a PLTS is defined as:

L(p) =
{

Lk(pk)|Lk ∈ S, pk ≥ 0, k = 1, 2, · · · , #L(p), ∑#L(p)
k=1 pk ≤ 1

}
(1)

where Lk(pk) is the linguistic term Lk associated with probability pk, and #L(p) is the
number of all linguistic terms in L(p).

Example 1. S = {st|t = −3,−2,−1, 0, 1, 2, 3} be an LTS. L1(p) = {(s−3, 0.2), (s−2, 0.8)} and
L2(p) = {(s−2, 0.4), (s0, 0.3), (s1, 0.2)} are two PLTSs.

We can see from example 1 that, in some cases, the sum of the probabilities of L2(p)
is less than 1. The elements in the two PLTSs are not equal. Hence, the method of PLTS
normalization is defined as follows.

Theorem 2. Ref. [26] Let L(p) =
{

Lk(pk)|Lk ∈ S, pk ≥ 0, k = 1, 2, · · · , #L(p), ∑
#L(p)
k=1 pk ≺ 1

}
be a PLTS. Then the normalized PLTS for L(p) is defined as:

L(p) = {L(k)(p′(k))|k = 1, 2, · · · , #L(p)} (2)

where p′(k) = p(k)/∑
#L(p)
k=1 p(k) for k = 1, 2, · · · , #L(p).

If the number of elements of two PLTSs is not equal, we need to add the |#L1(p)− #L2(p)|
element to the few PLTS; the element added is the smallest in PLTS and the probability value
is 0. L1(p) = {(s−3, 0.2), (s−2, 0.8), (s−3, 0)} and L2(p) = {(s−2, 0.44), (s0, 0.33), (s1, 0.22)}
are obtained.

Step 3. Determining the weight of experts
The weight of experts is determined by combining subjective and objective weights,

and the subjective weighting method uses four criteria to distinguish the weight of experts:
position held, project experience, education level, and working time, which is shown in
Table 1. The score of each expert is obtained according to the four standards, and the
subjective weight of the expert is obtained according to the score. The objective weighting
method is based on the combination of probabilistic language entropy and interaction-
entropy measures. The final weight is the average of subjective and objective weights.

Table 1. The score of expert subjective weight based on the information of experts.

Criterion Classification Score

Position

senior scholars 4
primary scholars 3

engineer 2
technician 1

Project experience
more than 7 3

3–7 2
less than 3 1

Education level
doctor and above 3

master 2
undergraduate and below 1

Working time
more than 7 years 3

3–7 years 2
less than 3 years 1
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The subjective weight of expert Ei:

ω(Ei) =
s(Ei)

∑k
i=1 s(Ei)

(3)

1. Probabilistic linguistic entropy measure

If the uncertainty degree of decision information given by expert Ei is greater, the
corresponding entropy measure will be larger, indicating that the useful information
provided by expert Ei is less. In this case, expert Ei should be given a smaller weight [15].

ωi =
∑n

j=1 (1− E(Lij(p)))

∑m
i=1 ∑n

j=1 (1− E(Lij(p)))
(i = 1, 2, · · · , m) (4)

where E(Lij(p)) is the entropy of PLTS Lij(p). It is defined as follows.

Theorem 3. Ref. [15] Let L(p) = {Lk(pk)|k = 1, 2, · · · , #L(P)} is a PLTS. The entropy measure
of PLTS is:

E(L(p))


#L(p)

∑
i=1

#L(p)
∑

j=1
4pi pj· f (γij), #L(p) ≥ 2;

0, #L(P) = 1,
(5)

where f : [0, 1]→ [0, 1] monotone increasing, γij =
∣∣γi − γj

∣∣i, j = 1, 2, · · · , #L(P) ,
γi, γj ∈ g(L) , f (0) = 0, f (1) = 1. the entropy measure describes the degree of uncer-
tainty contained in language terms and their corresponding probability information.

2. Probabilistic linguistic interaction-entropy measure

If the deviation between the decision information given by expert Ei and other experts
is greater, the larger the measurement value of interaction entropy is, indicating that the
decision information given by expert Ei is less reliable. In this case, the weight given by
expert Ei should be smaller [15].

ω′ i =
∑k

h=1,h 6=i ∑n
j=1 (1− IE(Lij(p), Lhj(p)))

∑k
i=1 ∑k

h=1,h 6=i ∑n
j=1 (1− IE(Lij(p), Lhj(p)))

(i = 1, 2, · · · , m) (6)

where IE(Lij(p), Lhj(p)) is the interaction-entropy measure of PLTS Lij(p), Lhj(p). It is
defined as follows.

Theorem 4. Ref. [15] L1(p) = {Lk
1(pk

1)|k = 1, 2, · · · , #L(P)} and L2(p) = {Lk
2(pk

2)|k =
1, 2, · · · , #L(P)} are two PLTSs. The interaction-entropy measure of PLTS is:

IE(L1(p), L2(p)) =
1
2
(RE(L1(p), L2(p)) + RE(L2(p), L1(p))) (7)

RE(L1(p), L2(p)) =
#L(p)

∑
k=1

pk
1(g(Lk

1) log
g(Lk

1)

g(Lk
2)

+ (1− g(Lk
1)) log(

1− g(Lk
1)

1− g(Lk
2)
)) (8)

Through the above entropy measure, we can obtain the final objective weight of
expert Ei:

ωi =
viω

′
i

∑k
i=1 viω′ i

(i = 1, 2, · · · , m) (9)
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Theorem 5. Ref. [15] An PLTS L(p) =
{

Lk(pk)|Lk ∈ S.pk ≥ 0.k = 1, 2, · · · , #L(p)
}

and a

hesitation fuzzy set hγ =
{

γk|γ ∈ [0, 1]
}

, the membership γk inhγ and the linguistic term Lk in

L(p) can be transformed into each other by the equivalent functions g and g−1, which are defined as:

g : [0, 2τ]→ [0, 1], g(Lk) = ind(Lk)
2τ = γk

g−1 : [0, 1]→ [0, 2τ], g−1(γk) = s2τγk = Lk (10)

3. The final weight of experts:

ω = (ω(Ei) + ωi)/2 (11)

Step 4. Transform PLTS into triangular fuzzy number

Theorem 6. Ref. [42] A three tuple A = (a, b, c) is called a TFN if it satisfies:

µA(x) =


0, x ≺ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, x � c

(12)

Theorem 7. Ref. [43] For any set of language terms sk(k = i, i + 1, · · · , j), we can describe it by a
TFN Ak = (aL

k , aM
k , aR

k ), where:

(1) If −τ ≺ k ≺ τ, then aL
k = τ+k−1

2τ , aM
k = τ+k

2τ , aR
k = τ+k+1

2τ

(2) If k = −τ, then aL
k = aM

k = 0, aR
k = 1

2τ

(3) If k = τ, then aL
k = 2τ−1

2τ , aM
k = aR

k = 1

Example 2. τ = 2, TFN used to represent the language term is s−2 = (0, 0, 0.25),
s−1 = (0, 0.25, 0.5), s0 = (0.25, 0.5, 0.75), s1 = (0.5, 0.75, 1), s2 = (0.75, 1, 1).

According to the above definition, we can obtain the numerical set corresponding to TFN
of all language terms in PLTS T =

{
aL

i , aM
i , aL

i+1, aR
i , aM

i+1, aL
i+2, aR

i+1, · · · , aL
j , aR

j−1, aM
j , aR

j

}
,

and aR
k−1 = aM

k = aL
k+1, k = 1, · · · j− 1, then T =

{
aL

i , aM
i , aM

i+1, · · · , aM
j , aR

j

}
.

To transform PLTS into TFN, PLTS information must be fully utilized. In this article,
we used the GWOWA operator to aggregate information. PLTS have two key elements:
language terms and their probabilities. The information of language terms can be utilized
by transforming them into TFNs. In addition, their probability information can be em-
bedded using the importance-weighted vector of the GWOWA operator, as defined and
described below:

Since the subscripts of language terms may not be continuous, we add some elements
with a probability value of 0 in PLTS to make the subscripts of language terms continuous.

Example 3. L(p) = {(s−3, 0.2), (s0, 0.8)} is a PLTS, we add some elements and rewrite it as
L(p) = {(s−3, 0.2), (s−2, 0), (s−1, 0), (s0, 0.8)}.

Theorem 8. Ref. [20] P = (p1, p2, · · · , pn) is the weight information of a1, a2, · · · , an,
pi ∈ [0, 1], ∑n

i=1 pi = 1, then, f P,W
GWOWA : Rn → R, the corresponding weight information

W = (ω1, ω2, · · · , ωn), ωi ∈ [0, 1], ∑n
i=1 ωi = 1, the definition of the GWOWA operator is:
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f P,W
GWOWA(a1, a2, · · · , an) = (

n

∑
i=1

νibλ
i )

1
λ

(13)

where λ ∈ (0,+∞), bi is the ith largest element in a1, a2, · · · , an, the weight νi is calculated
as follows:

νi = ω∗(
i

∑
j=1

pσ(j))−ω∗(
i−1

∑
j=1

pσ(j)) (14)

where ω∗ is a monotonically increasing function. It can be written as:

ω∗(x) =
i−1

∑
k=1

ωk + ωi(nx− (i− 1)),
i− 1

n
≤ x ≤ 1

n
(15)

For convenience, P = (p1, p2, · · · , pn), W = (ω1, ω2, · · ·ωn), V = (ν1, ν2, · · · , νn)
are called the importance weighting vector, position weighting vector, and the com-
prehensive weighting vector, respectively. Different methods exist to compute position
weighting vector W = (ω1, ω2, · · ·ωn). Yager [44] proposed the attitudinal character as
AC(W) = ∑n

j=1
n−j
n−1 ωj, which expresses the attitude of the DM for giving more weight to

higher or lower values. The weights can be calculated using the following mathematical
programming:

Max
n
∑

j=1
ωj ln(ωj)

s.t.
n
∑

j=1

n−i
n−1 ωj = α

n
∑

j=1
ωj = 1

0 ≤ ωj ≤ 1(j = 1, 2, · · · , n)

(16)

where attitudinal character α should be given by DMs.
For L(p) = {si(pi), si+1(pi+1), · · · , sj(pj)|sk ∈ S, k ∈ {i, i + 1, · · · , j},

pi ≥ 0, ∑
j
k=i pk = 1}, we transform the PLTS into a TFN A = (a, b, c), where:

a = min{aL
i , aM

i , aL
i+1, aR

i , aM
i+1, aL

i+2, aR
i+1, · · · , aL

j , aR
j−1, aM

j , aR
j } (17)

c = max{aL
i , aM

i , aL
i+1, aR

i , aM
i+1, aL

i+2, aR
i+1, · · · , aL

j , aR
j−1, aM

j , aR
j } (18)

The value of b is determined according to the following rules:

(1) If j = τ, then aM
τ = aR

τ , T = {aL
i , aM

i , aM
i+1, · · · , aM

τ , aR
τ }. Using the GWOWA operator,

parameter b of the TFN can be calculated as b = f P,M
GWOWA(aM

i , aM
i+1, · · · , aM

τ ), where
the elements of the importance weighting vector P =(pi, pi+1, · · · , pτ) correspond to
the probability values in L(p). PLTS L(p) can be translated into TFN:

A = (aL
i , f P,M

GWOWA(aM
i , aM

i+1, · · · , aM
τ ), aM

τ ) (19)

(2) If j = −τ, then aL
−τ = aM

−τ , T =
{

aL
−τ , aM

−τ , aM
−τ+1, · · · , aM

j , aR
j

}
, we can easily obtain:

a = min{aM
−τ , aM

−τ , aM
−τ+1, · · · , aM

j , aR
j } = aM

−τ (20)

c = max{aL
−τ , aM

−τ , aM
−τ+1, · · · , aM

j , aR
j } = aR

j (21)

b = f P,M
GWOWA(aM

−τ , aM
−τ+1, · · · , aM

j ) (22)
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PLTS L(p) can be translated into TFN:

A = (aM
−τ , f P,M

GWOWA(aM
−τ , aM

−τ+1, · · · , aM
j ), aR

j ) (23)

(3) If i � −τ, j ≺ τ, we can obtain T =
{

aL
i , aM

i , aM
1 , · · · , aM

j , aR
j

}
, we can easily obtain:

a = min{aL
i , aM

i , aL
i+1, aR

i , aM
i+1, aL

i+2, aR
i+1, · · · , aL

j , aR
j−1, aM

j , aR
j } = aL

i (24)

c = max{aL
i , aM

i , aL
i+1, aR

i , aM
i+1, aL

i+2, aR
i+1, · · · , aL

j , aR
j−1, aM

j , aR
j } = aR

j (25)

Using the GWOWA operator, the value of b in TFN can be calculated
b = f P,M

GWOWA(aM
i , aM

i+1, · · · , aM
j ), PLTS L(p) can be translated into TFN:

A = (aL
i , f P,M

GWOWA(aM
i , aM

i+1, · · · , aM
j ), aR

j ) (26)

Example 4. S = {s−3, s−2, s−1, s0, s1, s2, s3}, we take position weighting vector
W = (0.44, 0.23, 0.33), and λ = 1 [25]. PLTS L(p) = {(s1, 1/3), (s2, 1/3), (s3, 1/3)} can
be transformed into TFNA = (0.5, 0.85, 1).

Step 5. Aggregate expert evaluation information
To realize the aggregation of expert evaluation information, a fuzzy induced ordered

weighted harmonic averaging (FIOWHA) operator based on TFN was adopted in this
paper, which is defined as follows:

Theorem 9. Ref. [14] a1, a2, · · · , an is a set of TFNs to be aggregated. The definition of the
FIOWHA operator is:

FIOWHAω((µ1, γ1), (µ2, γ2), · · · , (µn, γn)) =
1

n
∑

j=1

ωj
gj

(27)

where γj = [γL
j , γM

j , γU
j ], ω = (ω1, ω2, · · · , ωn)

T is a weight vector associated with the

FIOWHA operator that satisfies ωj ∈ [0, 1], and
n
∑

j=1
ωj = 1. gj is the second vector γi in

(µi, γi) of the ith largest element in µi(i = 1, 2, · · · , n). The first vector µi in (µi, γi) is called
the order-induced vector.

Step 6. Aggregating TFN of indicator based on FSE method
The total risk level of the project is obtained by aggregating the triangle fuzzy number

of each risk index with the fuzzy synthetic evaluation method. The process of the FSE
method is classified into three stages. Firstly, a first-order evaluation vector composed of
TFNs of criteria in each group is established Rci:

Rci =
(
hci1, · · · , hcij

)T (28)

Secondly, the secondary evaluation vector Rc containing each group of triangular
fuzzy numbers is obtained using fuzzy synthesis operation:

hci = Wci·Rci = (ωci1, · · · , ωcij)·(hci1, · · · , hcij)
T (29)

Rc = (hc1, · · · , hci) (30)

where ωcij is the weight of each risk factor within every group.
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Thirdly, the overall risk level of the project represented by TNFs is calculated as:

R = Wi·Rc = (ωc1, · · · , ωci)·(hci, · · · , hci)
T = (γL, γM, γU) (31)

where ωci denotes the weight of each risk factor group.
Step 7. Defuzzification process
TFN can be used to represent the risk level of hybrid offshore wind–solar PV power

generation projects. The similarity degree is introduced for the defuzzification process in
this paper to get a more intuitive and easy-to-understand result. The similarity degree
between two TFNs can be calculated as [14]:

Sd(α, β) = 1−
∣∣αL − βL

∣∣+ ∣∣αM − βM
∣∣+ ∣∣αU − βU

∣∣
3

(32)

where α = (αL, αM, αU), β = (βL, βM, βU) are TFNs, and Sd(α, β) represents the similarity
degree between α and β. Thus, which risk level the evaluation result is closer to can be
obtained using the principle of maximum similarity. Finally, the risk assessment framework
is shown in Figure 3.
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5. Case Study

In order to demonstrate the rationality and usability of the proposed risk assessment
framework for hybrid offshore wind–solar PV power generation projects, a case study is
presented in this part.
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5.1. Problem Description

B city plans to implement the construction of a hybrid offshore wind–solar PV power
generation project. Before the implementation of the project, it plans to conduct a risk
assessment on the project. Three experts E = {ei|i = 1, 2, 3} are invited to evaluate the risk
indicators of the project and express them in the form of PLTSs.

5.2. Determination of the Weight of Risk Indicators

The analytic network process (ANP) method was used to determine the weight of risk
indicators. First, the ANP structure model was constructed, and the ANP structure model
was followed by decision-making objectives, decision-making criteria, and indicators from
top to bottom. Invited related scholars, who have rich experiences in offshore energy
projects, set up a committee of experts. The expert committee discussed the interaction
relationship between various risk indicators and established an ANP network diagram;
Figure 4 shows the ANP network diagram. The straight arrows indicate that the indicators
in the two indicator groups have an influence relationship, and the curved arrows indicate
that there is an interaction relationship between the indicators in the indicator group. At the
same time, the expert committee made a pairwise comparison of indicators on 1–9 scales
under different criteria, constructed a judgment matrix, and conducted a consistency test to
calculate its weight vector, taking C11 criteria as an example (Tables 2–6). After computing
the judgment matrix, the unweighted super matrix was generated by the software. In
addition, we compared the relationships between various indicator groups, and input
the compare matrix into the software and obtained the influence matrix of the indicator
group (shown in Table 7). The super weighted matrix and limit matrix were obtained using
software calculation, and the global weight and local weight of the indicator were obtained
(Table 8, Figure 5).
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Table 2. The judgement matrix of C1 under the C11 criterion.

C11 C12 C13 C14 Weight

C12 1 4 2 0.54
C13 1/4 1 1/3 0.13
C14 1/2 3 1 0.34

CR = 0 < 0.1, consistency test passed.
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Table 3. The judgement matrix of C2 under the C11 criterion.

C11 C21 C22 C23 C24 C25 C26 Weight

C21 1 1 3 2 4 2 0.24
C22 1 1 4 3 6 2 0.31
C23 1/3 1/4 1 1/2 4 1/2 0.12
C24 1/2 1/3 2 1 3 1 0.14
C25 1/4 1/6 1/4 1/3 1 1/3 0.04
C26 1/2 1/2 2 1 3 1 0.15

CR = 0 < 0.1, consistency test passed.

Table 4. The judgement matrix of C3 under the C11 criterion.

C11 C31 C32 C33 Weight

C31 1 1 3 0.43
C32 1 1 3 0.43
C33 1/3 1/3 1 0.14

CR = 0 < 0.1, consistency test passed.

Table 5. The judgement matrix of C4 under the C11 criterion.

C11 C41 C42 C43 C44 Weight

C41 1 1 4 1/2 0.3
C42 1 1 4 1/2 0.3
C43 1/4 1/4 1 1 0.12
C44 2 2 1 1 0.28

CR = 0 < 0.1, consistency test passed.

Table 6. The judgement matrix of C5 under the C11 criterion.

C11 C51 C52 Weight

C51 1 1 0.5
C52 1 1 0.5

CR = 0 < 0.1, consistency test passed.

Table 7. The influence matrix of the indicator group.

Indicator C1 C2 C3 C4 C5

C1 0.169 0.161 0.293 0.303 0.21
C2 0.333 0.267 0.178 0.197 0.193
C3 0.264 0.37 0.233 0.247 0.333
C4 0.16 0.134 0.109 0.13 0.134
C5 0.074 0.068 0.26 0.123 0.13

Table 8. The global weight and local weight of the indicator.

Indicator Indicator The Local Weight The Global Weight

Economic risk C1
(0.3145)

C11 0.2031 0.0638

C12 0.3352 0.1054

C13 0.0978 0.0308

C14 0.3639 0.1145

Technical risk C2
(0.1903)

C21 0.2039 0.0388

C22 0.2142 0.0408

C23 0.1302 0.0248
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Table 8. Cont.

Indicator Indicator The Local Weight The Global Weight

C24 0.1703 0.0324

C25 0.0948 0.018

C26 0.1866 0.0355

Environment risk C3
(0.2501)

C31 0.3261 0.0816

C32 0.3142 0.0786

C33 0.3597 0.0899

Market risk C4
(0.1519)

C41 0.2772 0.0421

C42 0.2830 0.043

C43 0.1271 0.0193

C44 0.3127 0.0475

Management risk C5
(0.0932)

C51 0.6476 0.0604

C52 0.3524 0.0328
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5.3. Collect Expert Evaluation

We set up a committee of experts, E = {ei|i = 1, 2, 3}. Probabilistic language term
sets were used to evaluate the risk assessment indicator system of hybrid offshore
wind–solar PV power generation projects constructed in the third part. In this paper,
S = {s0 : VL, s1 : L, s2 : SL, s3 : M, s4 : SH, s5 : H, s6 : VH}, which is defined as a seven-
scale language term set, where very low (VL), low (L), low (L), slightly low (SL), medium
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(M), slightly high (SH), high (H), and very high (VH). Table 9 shows the original evaluation
data and Table 10 shows the normalized indictor evaluation information.

Table 9. The indictor evaluation information of expert Ei.

Indicator E1 E2 E3

C11 {s4(0.7), s5(0.3)} {s3(0.4), s4(0.6)} {s4(1)}
C12 {s6(1)} {s5(0.5), s6(0.5)} {s4(0.3), s5(0.7)}
C13 {s3(0.6), s4(0.4)} {s3(1)} {s2(0.5), s3(0.5)}
C14 {s5(0.7), s6(0.3)} {s5(0.55), s6(0.45)} {s5(0.9)}
C21 {s5(0.9)} {s4(0.5), s5(0.5)} {s4(0.43), s5(0.57)}
C22 {s4(0.7), s5(0.3)} {s4(0.4), s5(0.6)} {s5(0.9), s6(0.1)}
C23 {s4(0.75), s5(0.25)} {s4(1)} {s3(0.1), s4(0.9)}
C24 {s4(0.4), s5(0.6)} {s4(0.9)} {s4(0.5), s5(0.5)}
C25 {s1(0.1), s2(0.9)} {s1(0.4), s2(0.6)} {s2(0.9)}
C26 {s4(0.5), s5(0.5)} {s4(1)} {s4(0.5), s5(0.5)}
C31 {s4(0.4), s5(0.6)} {s5(1)} {s5(0.55), s6(0.45)}
C32 {s4(0.5), s5(0.5)} {s5(0.7), s6(0.3)} {s4(0.7), s5(0.3)}
C33 {s4(0.7), s5(0.3)} {s5(0.8)} {s4(0.5), s5(0.5)}
C41 {s4(0.5), s5(0.5)} {s4(0.7), s5(0.3)} {s4(0.9), s5(0.1)}
C42 {s4(0.57), s5(0.43)} {s5(0.8)} {s4(0.9), s5(0.1)}
C43 {s2(0.2), s3(0.8)} {s3(0.5), s4(0.5)} {s2(0.2), s3(0.8)}
C44 {s2(0.6), s3(0.3)} {s2(0.6), s3(0.4)} {s3(0.9)}
C51 {s4(0.6), s5(0.4)} {s3(0.8)} {s3(0.5), s4(0.5)}
C52 {s3(0.7), s4(0.3)} {s2(0.2), s3(0.8)} {s3(0.5), s4(0.5)}

Table 10. Normalized indictor evaluation information of expert Ei.

Indicator E1 E2 E3

C11 {s4(0.7), s5(0.3)} {s3(0.4), s4(0.6)} {s4(0), s4(1)}
C12 {s6(0), s6(1)} {s5(0.5), s6(0.5)} {s4(0.3), s5(0.7)}
C13 {s3(0.6), s4(0.4)} {s3(0), s3(1)} {s2(0.5), s3(0.5)}
C14 {s5(0.7), s6(0.3)} {s5(0.55), s6(0.45)} {s5(0), s5(1)}
C21 {s5(0), s5(1)} {s4(0.5), s5(0.5)} {s4(0.43), s5(0.57)}
C22 {s4(0.7), s5(0.3)} {s4(0.4), s5(0.6)} {s5(0.9), s6(0.1)}
C23 {s4(0.75), s5(0.25)} {s4(0), s4(1)} {s3(0.1), s4(0.9)}
C24 {s4(0.4), s5(0.6)} {s4(0), s4(1)} {s4(0.5), s5(0.5)}
C25 {s1(0.1), s2(0.9)} {s1(0.4), s2(0.6)} {s2(0), s2(1)}
C26 {s4(0.5), s5(0.5)} {s4(0), s4(1)} {s4(0.5), s5(0.5)}
C31 {s4(0.4), s5(0.6)} {s5(0), s5(1)} {s5(0.55), s6(0.45)}
C32 {s4(0.5), s5(0.5)} {s5(0.7), s6(0.3)} {s4(0.7), s5(0.3)}
C33 {s4(0.7), s5(0.3)} {s5(0), s5(1)} {s4(0.5), s5(0.5)}
C41 {s4(0.5), s5(0.5)} {s4(0.7), s5(0.3)} {s4(0.9), s5(0.1)}
C42 {s4(0.57), s5(0.43)} {s5(0), s5(1)} {s4(0.9), s5(0.1)}
C43 {s2(0.2), s3(0.8)} {s3(0.5), s4(0.5)} {s2(0.2), s3(0.8)}
C44 {s2(0.67), s3(0.33)} {s2(0.6), s3(0.4)} {s3(0), s3(1)}
C51 {s4(0.6), s5(0.4)} {s3(0), s3(1)} {s3(0.5), s4(0.5)}
C52 {s3(0.7), s4(0.3)} {s2(0.2), s3(0.8)} {s3(0.5), s4(0.5)}

5.4. Determine the Weight of Experts

The weight of experts adopted the method of combining subjective and objective
weights. The calculation of subjective weight of experts is as shown in Part 4. The informa-
tion of the expert committee is shown in the following Table 11.
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Table 11. The information of the expert committee.

Expert Position Project Education Working Weight

E1 4 3 3 3 0.433
E2 2 1 2 3 0.267
E3 2 2 2 3 0.3

ω(Ei) = (0.433, 0.267, 0.3) is the subjective weight of experts. According to the equa-
tion of step 3 in part 4, assume f (x) = xr, r = 1. The expert probabilistic language entropy
measure is calculated as vi = (0.3238, 0.3396, 0.3365), and the probabilistic language inter-
entropy measure is calculated as ω′i = (0.3332, 0.3327, 0.3341). The final weight of experts
is ωi = (0.3784, 0.303, 0.3186).

5.5. Transform the PLTSs into Triangular Fuzzy Number

Before transforming the PLTSs into TFN based on the GWOWA operator, first
S = {s0 : VL, s1 : L, s2 : SL, s3 : M, s4 : SH, s5 : H, s6 : VH} was transformed into the lan-
guage term set S = {s−3 : VL, s−2 : L, s−1 : SL, s0 : M, s1 : SH, s2 : H, s3 : VH} with τ = 3.
The position weight ω = (0.47, 0.53) was assumed, and λ = 1 [25]. The value of triangular
fuzzy number is shown in Figure 6. The results of triangular fuzzy numbers are shown
in Table 12.

Sustainability 2022, 14, x FOR PEER REVIEW 20 of 31 
 

5.4. Determine the Weight of Experts 
The weight of experts adopted the method of combining subjective and objective 

weights. The calculation of subjective weight of experts is as shown in Part 4. The infor-
mation of the expert committee is shown in the following Table 11. 

Table 11. The information of the expert committee. 

Expert Position Project Education Working Weight 
1E  4 3 3 3 0.433 
2E  2 1 2 3 0.267 
3E  2 2 2 3 0.3 

ω =( ) (0.433,0.267 , 0.3)iE  is the subjective weight of experts. According to the equa-
tion of step 3 in part 4, assume = =( ) , 1rf x x r . The expert probabilistic language entropy 
measure is calculated as ϖ = (0.3238 , 0.3396 , 0.3365)i , and the probabilistic language in-

ter-entropy measure is calculated as ω = ， ，' (0.3332 0.3327 0.3341)i . The final weight of ex-
perts is ω = (0.3784,0.303, 0.3186)i . 

5.5. Transform the PLTSs into Triangular Fuzzy Number 
Before transforming the PLTSs into TFN based on the GWOWA operator, first 

{ }= ， ， ， ， ， ，0 1 2 3 4 5 6: : : : : : :S s VL s L s SL s M s SH s H s VH  was transformed into the lan-

guage term set { }− − −= ， ， ， ， ， ，3 2 1 0 1 2 3: : : : : : :S s VL s L s SL s M s SH s H s VH  with τ = 3

. The position weight ω = (0.47,0.53)  was assumed, and λ = 1 [25]. The value of triangu-
lar fuzzy number is shown in Figure 6. The results of triangular fuzzy numbers are 
shown in Table 12. 

 
Figure 6. The value of the triangular fuzzy number. 

Table 12. Transformation of the PLTSs into triangular fuzzy numbers. 

Indicator 1E  2E  3E  

C11 (0.5,0.776,1)  (0.333,0.565,0.833)  (0.5,0.667,0.833)  
C12 (0.833,1,1)  (0.667,0.91,1)  (0.5,0.715,1)  
C13 (0.333,0.595,0.833)  (0.333,0.5,0.667)  (0167,0.378,0.667)  

Figure 6. The value of the triangular fuzzy number.

Table 12. Transformation of the PLTSs into triangular fuzzy numbers.

Indicator E1 E2 E3

C11 (0.5, 0.776, 1) (0.333, 0.565, 0.833) (0.5, 0.667, 0.833)
C12 (0.833, 1, 1) (0.667, 0.91, 1) (0.5, 0.715, 1)
C13 (0.333, 0.595, 0.833) (0.333, 0.5, 0.667) (0167, 0.378, 0.667)
C14 (0.667, 0.942, 1) (0.667, 0.918, 1) (0.667, 0.833, 1)
C21 (0.667, 0.833, 1) (0.5, 0.745, 1) (0.5, 0.738, 1)
C22 (0.5, 0.776, 1) (0.5, 0.731, 1) (0.667, 0.954, 1)
C23 (0.5, 0.783, 1) (0.5, 0.667, 0.833) (0.333, 0.515, 0.833)
C24 (0.5, 0.731, 1) (0.5, 0.667, 0.833) (0.5, 0.745, 1)
C25 (0, 0.184, 0.5) (0, 0.231, 0.5) (0.167, 0.333, 0.5)
C26 (0.5, 0.745, 1) (0.5, 0.667, 0.833) (0.5, 0.731, 1)
C31 (0.5, 0.731, 1) (0.667, 0.833, 1) (0.5, 0.753, 1)
C32 (0.5, 0.745, 1) (0.667, 0.942, 1) (0.5, 0.776, 1)
C33 (0.5, 0.776, 1) (0.667, 0.833, 1) (0.5, 0.745, 1)
C41 (0.5, 0.745, 1) (0.5, 0.714, 1) (0.5, 0.684, 1)
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Table 12. Cont.

Indicator E1 E2 E3

C42 (0.5, 0.756, 1) (0.667, 0.833, 1) (0.5, 0.684, 1)
C43 (0.5, 0.756, 1) (0.333, 0.58, 0.833) (0.167, 0.362, 0.667)
C44 (0.167, 0.437, 0.667) (0.167, 0.425, 0.667) (0.333, 0.5, 0.667)
C51 (0.5, 0.76, 1) (0.333, 0.5, 0.667) (0.333, 0.58, 0.833)
C52 (0.333, 0.612, 0.833) (0.167, 0.362, 0.667) (0.333, 0.58, 0.833)

5.6. Aggregation of Expert Evaluation Information

In this paper, the fuzzy induced ordered weighted harmonic average (FIOWHA) oper-
ator of TFN was used for aggregation, and the aggregation results are shown in Table 13.

Table 13. The result of aggregation of triangular fuzzy numbers.

Indicator E1 E2 E3 Result

C11 (0.5, 0.776, 1) (0.333, 0.565, 0.833) (0.5, 0.667, 0.833) (0.449, 0.677, 0.896)
C12 (0.833, 1, 1) (0.667, 0.91, 1) (0.5, 0.715, 1) (0.677, 0.882, 1)
C13 (0.333, 0.595, 0.833) (0.333, 0.5, 0.667) (0.167, 0.378, 0.667) (0.28, 0.497, 0.73)
C14 (0.667, 0.942, 1) (0.667, 0.918, 1) (0.667, 0.833, 1) (0.667, 0.9, 1)
C21 (0.667, 0.833, 1) (0.5, 0.745, 1) (0.5, 0.738, 1) (0.563, 0.776, 1)
C22 (0.5, 0.776, 1) (0.5, 0.731, 1) (0.667, 0.954, 1) (0.553, 0.819, 1)
C23 (0.5, 0.783, 1) (0.5, 0.667, 0.833) (0.333, 0.515, 0.833) (0.447, 0.662, 0.896)
C24 (0.5, 0.731, 1) (0.5, 0.667, 0.833) (0.5, 0.745, 1) (0.5, 0.716, 0.949)
C25 (0, 0.184, 0.5) (0, 0.231, 0.5) (0.167, 0.333, 0.5) (0.053, 0.246, 0.5)
C26 (0.5, 0.745, 1) (0.5, 0.667, 0.833) (0.5, 0.731, 1) (0.5, 0.717, 0.949)
C31 (0.5, 0.731, 1) (0.667, 0.833, 1) (0.5, 0.753, 1) (0.551, 0.769, 1)
C32 (0.5, 0.745, 1) (0.667, 0.942, 1) (0.5, 0.776, 1) (0.551, 0.815, 1)
C33 (0.5, 0.776, 1) (0.667, 0.833, 1) (0.5, 0.745, 1) (0.551, 0.783, 1)
C41 (0.5, 0.745, 1) (0.5, 0.714, 1) (0.5, 0.684, 1) (0.5, 0.716, 1)
C42 (0.5, 0.756, 1) (0.667, 0.833, 1) (0.5, 0.684, 1) (0.551, 0.756, 1)
C43 (0.5, 0.756, 1) (0.333, 0.58, 0.833) (0.167, 0.362, 0.667) (0.217, 0.428, 0.717)
C44 (0.167, 0.437, 0.667) (0.167, 0.425, 0.667) (0.333, 0.5, 0.667) (0.22, 0.453, 0.667)
C51 (0.5, 0.76, 1) (0.333, 0.5, 0.667) (0.333, 0.58, 0.833) (0.396, 0.624, 0.846)
C52 (0.333, 0.612, 0.833) (0.167, 0.362, 0.667) (0.333, 0.58, 0.833) (0.283, 0.526, 0.783)

5.7. Fuzzy Synthetic Operation of Risk Assessment

In this step, TFNs of all criteria are aggregated based on the fuzzy synthetic evaluation
method. Taking “economic risk” as an example, the risk fuzzy synthetic calculation is
as follows:

hc1 = Wc1·Rc1 = (0.2031, 0.3352, 0.0978, 0.3639)


(0.449, 0.677, 0.896)
(0.677, 0.882, 1)
(0.28, 0.497, 0.73)
(0.667, 0.9, 1)

 = (0.6, 0.828, 0.977)

The risk fuzzy calculation results of other indicators are: hc2 = (0.475, 0.699, 0.921),
hc3 = (0.551, 0.788, 1), hc4 = (0.391, 0.609, 0.86), hc5 = (0.356, 0.589, 0.824).

Then, the overall risk assessment results of the hybrid offshore wind–solar PV power
generation project can be calculated as follows:

R = Wi·Rc = (0.3145, 0.1903, 0.2501, 0.1519, 0.0932)


(0.6, 0.828, 0.977)
(0.475, 0.699, 0.921)
(0.551, 0.788, 1)

(0.391, 0.609, 0.86)
(0.356, 0.589, 0.824)

 = (0.509, 0.738, 0.94)
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5.8. Defuzzification Process

The overall risk evaluation results are compared with the evaluation items, and the
results are between “slightly high” and “high”. In order to determine a certain overall
risk level, the similarity between the evaluation results and the two items is calculated
as follows:

Sd(R, s4) = 1− |R
L−sL

4 |+|RM−sM
4 |+|RU−sU

4 |
3

= 1− |0.509−0.5|+|0.738−0.667|+|0.94−0.833|
3

= 0.938

Sd(R, s5) = 1− |R
L−sL

5 |+|RM−sM
5 |+|RU−sU

5 |
3

= 1− |0.509−0.667|+|0.738−0.833|+|0.94−1|
3

= 0.896

As can be seen from the above, the overall risk level of the hybrid offshore wind–
solar PV power generation project is closer to slightly high. As calculated using the
defuzzification process, the risk level of C1 is high, the risk level of C2, C3, C4, is slightly
high, and C5 is medium. Figure 7 shows the specific process of the case study.
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5.9. Sensitivity Analysis

In order to test the robustness of the proposed risk assessment framework, the per-
turbation method was used to conduct a sensitivity analysis on the weight of evaluation
criteria; that is, the corresponding changes in the overall risk level of each indicator group
and project after the weight of evaluation criteria is slightly disturbed in the decision-
making process. ωj is the initial weight of the criterion Cj, after disturbance it is written
as ω′j = ςωj, where 0 ≤ ω′j ≤ 1, and the variation range of parameter ς is 0 ≤ ς ≤ 1/ω′j.
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According to the normalization of weight, the weight of the other criteria will change
accordingly, which is written as ω′k = φωk, k 6= j, k = 1, 2, · · · , m, and satisfies:

ω′j +
m

∑
k 6=j,k=1

ω′k = 1⇒ ςωj + φ
m

∑
k 6=j,k=1

ωk = 1 (33)

then, φ = (1− ςωj)/(1−ωj) is obtained. Firstly, the weight of criteria fluctuated with 20%
less and more than the based weight, and the changes in the risk result can be observed
intuitively for robustness analysis and sensitive criteria selection. Taking the indicator C12
as an example, we increase the weight by 20%, take ς = 1.2, then get the global weight
ωC12 = 0.1265, the local weight ωC1i = (0.1886, 0.3817, 0.091, 0.3386), and the weight of the
indicator group ωCi = (0.3307, 0.1857, 0.2441, 0.1483, 0.091). The triangular fuzzy number
is calculated as R = (0.512, 0.74, 0.941). The overall risk level of the project is slightly high,
and the risk level of each indicator group has no significant change. When decreasing the
weight by 20%, taking ς = 0.8, and the calculation process is the same as above. A total
of 38 experiments were conducted for each criterion, and the overall risk level results of
the project are shown in Table 14. Because the result is represented by a triangular fuzzy
number, the change in the result is not obvious. Hence, the sensitivity analysis in this
paper is based on similarity measures Sd(R, s4) with slightly high language term s4. The
similarity measure results are shown in Table 15 and Figure 8. It can be seen from Table 15
that the original similarity measure result is Sd(R, s4)= 0.938. When the weight of each
indicator changes, the result is relatively stable, indicating that the model has high stability.

Table 14. Sensitivity analysis results.

Indicator −20% Initial +20%

C11 (0.507, 0.733, 0.933) (0.509, 0.738, 0.94) (0.505, 0.73, 0.932)
C12 (0.502, 0.732, 0.951) (0.509, 0.738, 0.94) (0.512, 0.74, 0.941)
C13 (0.509, 0.736, 0.937) (0.509, 0.738, 0.94) (0.504, 0.731, 0.931)
C14 (0.501, 0.737, 0.93) (0.509, 0.738, 0.94) (0.51, 0.736, 0.934)
C21 (0.51, 0.739, 0.941) (0.509, 0.738, 0.94) (0.509, 0.737, 0.939)
C22 (0.51, 0.738, 0.941) (0.509, 0.738, 0.94) (0.509, 0.737, 0.939)
C23 (0.512, 0.742, 0.945) (0.509, 0.738, 0.94) (0.507, 0.734, 0.935)
C24 (0.51, 0.74, 0.943) (0.509, 0.738, 0.94) (0.508, 0.735, 0.937)
C25 (0.509, 0.738, 0.94) (0.509, 0.738, 0.94) (0.509, 0.738, 0.94)
C26 (0.511, 0.74, 0.942) (0.509, 0.738, 0.94) (0.508, 0.736, 0.938)
C31 (0.51, 0.739, 0.941) (0.509, 0.738, 0.94) (0.509, 0.737, 0.939)
C32 (0.51, 0.738, 0.942) (0.509, 0.738, 0.94) (0.509, 0.736, 0.941)
C33 (0.509, 0.737, 0.939) (0.509, 0.738, 0.94) (0.509, 0.736, 0.941)
C41 (0.511, 0.739, 0.94) (0.509, 0.738, 0.94) (0.509, 0.737, 0.939)
C42 (0.509, 0.738, 0.941) (0.509, 0.738, 0.94) (0.509, 0.737, 0.941)
C43 (0.509, 0.738, 0.94) (0.509, 0.738, 0.94) (0.509, 0.733, 0.94)
C44 (0.513, 0.741, 0.943) (0.509, 0.738, 0.94) (0.507, 0.735, 0.938)
C51 (0.509, 0.737, 0.939) (0.509, 0.738, 0.94) (0.509, 0.738, 0.941)
C52 (0.513, 0.742, 0.944) (0.509, 0.738, 0.94) (0.506, 0.734, 0.936)

Table 15. Similarity measure results of the sensitivity analysis.

Index C11 C12 C13 C14 C21 C22 C23 C24 C25 C26

−20% 0.942 0.938 0.939 0.945 0.937 0.937 0.934 0.936 0.938 0.936
+20% 0.944 0.936 0.941 0.94 0.938 0.938 0.941 0.942 0.938 0.939
Index C31 C32 C33 C41 C42 C43 C44 C51 C52
−20% 0.937 0.937 0.938 0.937 0.938 0.938 0.934 0.938 0.934
+20% 0.938 0.939 0.937 0.938 0.938 0.938 0.94 0.937 0.941
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In Table 15, C11, C14, and C23 are two of the most sensitive indicators. When the
weight of these two indicators changes, the results change significantly, but the degree of
change is less than 1%. Relevant personnel should pay more attention to operation and
maintenance costs and project profitability in the early stage of project construction and
take precautions to ensure the smooth implementation of the project. In addition, C25, C42,
and C43 are the least sensitive indicators. When the weights of these indicators change, the
results remain essentially the same.

5.10. Comparative Analysis

The methods proposed by Wu et al. [14], Gao et al. [15], and Jia et al. [39] were applied
to verify the rationality and effectiveness of the proposed hybrid offshore wind–solar PV
generation project risk assessment framework. Wu et al. [14] established a comprehensive
evaluation model. In their work, the hesitant fuzzy linguistic term sets were applied to
depict the risk assessment information; ANP was then adopted to calculate the criteria
weights; moreover, the evaluations were transformed into the triangular fuzzy sets to
facilitate calculation. Gao et al. [15] used probabilistic language terms to evaluate criterion
values and proposed a probabilistic linguistic ordered average Choquet integral (PLOAC)
operator to aggregate criterion values and deal with the correlation between criteria and the
established expert weight determination model based on the PLTS entropy and interaction
entropy measures. Jia et al. [39] proposed a risk assessment model integrating the hesitant
fuzzy linguistic term sets, triangular fuzzy sets, and eigenvalue method.

In order to make the results comparable, the input risk assessment information is
shown in Table 9. In Wu et al. [14], the weight of expert committees is ωi = (0.25, 0.5, 0.25)
and the weights of indicators are shown in Table 8. In Gao et al. [15], the weight of experts
is ωi = (0.3237, 0.339, 0.3372) and fuzzy measure was used to calculate the weights of
indicators. In Jia et al. [39], the importance degree of each expert is the same, and the
method does not consider the correlation between indicators when calculating the weight
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of indicators. By using the above methods, the risk level of the project in Wu et al. [14] and
Gao et al. [15] is slightly high. The risk level of the project in Jia et al. [39] is medium. Hence,
the method proposed in this paper is reasonable. However, there are some differences in
the similarity measure results of projects obtained by different methods. Table 16 shows
the similarity measure results calculated by the three methods.

Table 16. Similarity measure results.

Method This Paper Wu et al. Gao et al.

Sd(R, s4) 0.938 0.927 0.93

As can be seen from the table, the results calculated by the method proposed in this
paper are slightly different from Wu et al. [14] and Gao et al. [15]. As for Gao et al. [15],
the reason why such deviation is produced may be that the subjective and objective
characteristics of experts are not considered comprehensively in the determination of
expert weight. As for Wu et al. [14], there may be two reasons for this deviation: on one
hand, hesitant fuzzy linguistic term sets cannot characterize the probability information of
each linguistic term; on the other hand, subjectively assigned expert weight may result in
different results. In Jia et al. [39], the overall risk assessment result of the project is medium,
and the risk level of C3 and C4 is medium, which has some difference with the method
proposed. There may be two reasons for this difference: on one hand, this method does not
consider the correlation between indicators, which may lead to inappropriate results; on
the other hand, it is assumed that the importance of each expert is equal and each expert
has the same weight.

According to the above analysis, the superiorities of this paper are concluded as
follows: (i) The probabilistic linguistic fuzzy sets are applied to describe the uncertainties
inherent to the risk assessment of the hybrid offshore wind–solar PV generation project.
Compared to the hesitant fuzzy linguistic term sets, the probabilistic linguistic evaluation
offers detailed probability information for their hesitant evaluation elements, which retains
more of the original evaluation information. (ii) The determination of risk indicator weights
takes into account the correlation between indicators, which makes the evaluation result
more reasonable. (iii) The expert weight determination model adopts the method of
combining subjective and objective weights to make the expert weight determination more
consistent with reality.

6. Discussion

In Section 5, we conducted a case study and calculated that the overall risk assessment
result is R = (0.509, 0.738, 0.94) and the risk level of the project is slightly high with the
similarity measure result is Sd(R, s4) = 0.938. Through sensitivity analysis and comparative
analysis, we can see that the proposed risk assessment framework is robust, scientific, and
reasonable. For hybrid offshore wind–solar PV power generation projects, investors in
related energy projects should carefully consider whether to invest or not. In addition, it
is necessary for the project leader in B city to take effective risk management measures
to ensure smooth implementation of the project and reasonable operation. Therefore,
this article in view of the general situation of risk management, combining with the
characteristics of the hybrid offshore wind–solar PV power generation projects, put forward
the corresponding countermeasure and the suggestion, which can provide reference and
management implications for policy making and related management personnel.

6.1. Economic Risk Countermeasures

High initial investment: Establish a cost control committee and strictly control cost
outflow. The combination of economic common sense and technical knowledge can be
used to locate and eliminate unnecessary project costs. In addition, BIM software can be
used as an auxiliary tool.
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High operation and maintenance costs: Use electroplating technology or materials
of stainless steel to improve the corrosion resistance of turbines and photovoltaic panel
equipment. In addition, professional training of maintenance personnel and real-time
monitoring of marine weather conditions to minimize operation and maintenance costs.

Financing risk: Project loans should be implemented before the construction of the
project, as much as possible, to use financing channels, disperse funds, and disperse risks.

Profitability risk: Improve project financial management control and arrange financial
affairs regularly. In addition, focusing on the profitability and solvency of enterprises and
improving the ability of projects to withstand economic risks to ensure the maximization of
investment returns.

6.2. Technical Risk Countermeasures

Site selection risk: The hybrid offshore wind–solar PV power generation project is a
multi-attribute decision-making problem with multiple factors such as resources, economy,
and environment. In the early stage of the project, relevant personnel should make full use
of the combination of GIS technology and the MCDM method to improve the reliability of
project selection and planning and reduce risks as much as possible.

Improper design of hybrid array: Relevant experts were invited to conduct several
simulation experiments to select the array design scheme with full utilization of resources
and the highest power generation efficiency.

Cable connection risk: Cable connection and integration are a fundamental and im-
portant task. People with experience should be invited to participate in the process of
designing cable connections. According to ocean tidal effects, cable connections should be
made of stronger and more durable materials than onshore energy projects.

System failure risk: In the early stage of the project, several field investigations were
carried out to avoid routes such as ship movement and bird migration as much as possible.
Digital monitoring technology could be used to predict faults through state monitoring
and background data analysis, to minimize the probability of system failures.

Onshore supporting condition risk: Terrain and traffic conditions should be considered
during the process of site selection. The project will be hampered by unfavorable traffic
conditions. Work roads should be built for large equipment when necessary. Meanwhile,
the related personnel of the project should actively communicate with the power grid
company to ensure the support for the land power grid.

Visual effect risk: In the process of site selection, the marine wetland ecological area
should be avoided as much as possible to avoid affecting the natural beauty. Meanwhile,
the reflection degree of photovoltaic panels should be tested in advance to avoid the impact
on surrounding residents as much as possible.

6.3. Environmental Risk Countermeasures

Wind resource risk: In the process of site selection, wind resource data in the past
60 years should be collected and studied as much as possible. Relevant personnel should
conduct field investigations and monitor changes in wind resources to ensure sufficient
wind resources at the site of the project and stable power output of the system.

Solar resource risk: In the process of site selection, the solar radiation data of the region
should be fully studied, and the annual change and long-term trend of solar resources can
be calculated through climate prediction. In addition, in order to ensure the accuracy of
data, on-site observation is essential.

Marine ecological damage: Firstly, the location of the hybrid offshore wind–solar
PV power generation project should be as far away as possible from marine life and
bird habitats, breeding sites, etc. Secondly, during the period of construction, an early
warning system for the marine environmental protection should be established to ensure
that problems can be resolved in the bud. After the completion of the project, related
personnel must apply to the environmental protection department for environmental
quality inspection and acceptance.
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6.4. Market Risk Countermeasures

Market competition risks: It is necessary to focus on innovative technologies to im-
prove the power generation stability of hybrid offshore wind–solar PV power generation
projects, to improve market competitiveness and expand market share.

Unclear feed-in tariff policy: We should investigate the power demand and electricity
price policy of the project location and surrounding area thoroughly and pay more attention
to the documents of governments at all levels and power grid companies related to the
electricity price policy of offshore energy projects.

Economic crisis risk: Invite relevant economic experts and set up an expert group. The
expert group will study the market based on the hybrid offshore wind–solar PV power
generation project and predict its short-term and long-term changes, to take preventive
measures in advance.

Human resource shortage risk: Enterprises can establish a human resource manage-
ment emergency mechanism to ensure the robustness of human resource management in
the event of a human resource crisis or emergencies. In addition, enterprises can expand
the scope of recruitment of employees, such as college graduates. Enterprises should
seize the opportunity, carry out staff training, and strengthen staff theoretical learning and
practical operation.

6.5. Management Risk Countermeasures

Public opposition risk: In the early stage of the project, the person in charge should
actively communicate with the government and surrounding residents and quickly solve
and implement the problems and suggestions raised by the residents. Good preparation
for the project should be undertaken in the early stage.

Inexperienced staff: Recruit employees with rich experience in offshore energy projects
and train them on the combination of theoretical and practical knowledge of hybrid offshore
wind–solar PV power projects. Finally, companies should strengthen cooperation with
academia to train excellent engineers and project managers.

7. Conclusions

In the past 20 years, due to the increasing consumption of fossil fuels, the storage of
energy has greatly reduced, and there are some signs of energy shortages. In addition, due
to the extensive use of fossil fuels, the discharge of pollutants into the environment has
increased. Therefore, reasonable development and utilization of clean energy is present
and the future trend of development. In recent years, many new energy power generation
projects began to be implemented. Hybrid offshore wind–solar PV power generation
projects have attracted much attention for their advantages of saving land resources, high
energy efficiency, high power generation efficiency, and stable power output. However, the
hybrid offshore wind–solar PV power generation project is still in its initial stage and all
aspects are not mature enough; it will inevitably face a series of risks in future investments
and construction. Therefore, it is particularly important to establish a related indicator
system and a comprehensive risk assessment framework for hybrid offshore wind–solar
PV power generation projects.

In this paper, we presented a MCGDM framework for hybrid offshore wind–solar
PV power generation projects’ risk assessment. Firstly, 19 risk factors were identified
and classified into five groups. The ANP method was used to determine the weight of
indicators by considering the mutual influence relationship among indicators. Probabilistic
linguistic term sets (PLTSs) were then introduced to evaluate the criteria values to depict
the uncertainty and fuzziness. Furthermore, the expert weight determination model was
built by combining subjective and objective weights. The subjective weighting method was
based on the position and project experience of the expert committee and so on, while the
objective weighting method was based on the entropy and interaction-entropy measures
of PLTSs. In addition, the expert evaluation information was aggregated by transforming
PLTSs into triangular fuzzy numbers based on the generalized weighted ordered weighted
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averaging (GWOWA) operator. Finally, we presented a case study on the risk assessment
of a hybrid offshore wind–solar PV power generation project in B city, and we calculated
that the overall risk assessment result is R= (0 .509, 0.738, 0 .94) and the risk level of the
project is slightly high with the similarity measure result Sd(R, s4) = 0.938. The results we
calculated can provide certain reference for investors and project managers.

The advantages of the MAGDM framework proposed in this paper are mainly reflected
in the following aspects: (1) We established an indicator system for risk assessment of hybrid
offshore wind–solar PV power generation projects through literature review, case study,
and expert consultation. In total, 19 risk factors of hybrid offshore wind–solar PV power
generation projects were determined and they were divided into five groups. (2) PLTS
was introduced to describe expert evaluation information. Compared with other forms
of fuzzy sets, such as hesitate fuzzy language term set, PLTS can better retain the original
evaluation information and make the decision results more credible and reliable. (3) Based
on expert information, the entropy measure, and interaction-entropy measure of PLTSs, the
expert weight determination model combining subjective and objective information was
established to make the decision more in line with reality. (4) The expert evaluation can be
transformed into triangular fuzzy number aggregation based on the GWOWA operator,
which can minimize the loss and distortion of risk assessment information.

However, there are still some limitations and deficiencies in this paper. Firstly, due to
the limited available information, there will inevitably be some omissions in the collection
of risk factors. In the future, we can continue to collect information and conduct in-depth
research to improve the indicator system. In addition, the risk assessment model and the
method of dealing with uncertainty and linguistic variables should be further improved in
future research.
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MAGDM multi-attribute group decision-making
PLTSs probabilistic linguistic term sets
DMs decision makers
GWOWA generalized weighted ordered weighted averaging
PV photovoltaic
MCDM multiple-criteria decision-making
FSE fuzzy synthetic evaluation method
ANP analytic network process
IE interaction-entropy measure
TFN triangle fuzzy number
FPV floating photovoltaic
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