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Abstract: Improving total factor productivity is an important way for China’s economy to avoid the
middle income trap. Demographic changes are believed to have significant impacts on productivity
growth. Using the census and socioeconomic data of 358 prefecture cities in mainland China, this
paper analyzes the changes in the global and local spatial dependence of total factor productivity.
We then employ spatial regression methods to investigate the role of changes in population factors
in productivity growth in 2000 and 2010. We draw three observations from the analysis. First,
population density plays an important role in both years. There is an inverted U-shaped relationship
between population density and productivity growth. Second, human capital stock has a significant
positive impact while human capital inequality becomes insignificant in 2010. This is likely a result of
China’s education equality policies. Third, the impact of the aging of workers and their migration
status on productivity growth also changed over the decade. Different cohorts of workers and
migrants have had different influences on productivity growth because of their different access to
higher education. The study provides important insights over how demographic factors impact
China’s productivity growth.

Keywords: demographic factors; total factor productivity; exploratory spatial data analysis (ESDA);
spatial regression models

1. Introduction

After decades of rapid growth, China’s economy has gradually slowed down in recent
years. At the same time, inevitable population aging, rising resource and environment
tensions, and severe international trading pressure have brought challenges for China’s
economic development. How to avoid the middle income trap has become a popular
topic, and it has attracted increasing attention from both scholars and governmental of-
ficials [1,2]. The transition from resource and a labor intensive, low quality model to an
advanced, knowledge based development mode, is considered to be the ongoing goal for
China’s economy in the new century [1,3]. Among various economic factors, total factor
productivity is an indicator used to reflect the efficiency and intensity of inputs used in
economic production and that have critical impacts on economic fluctuation, growth, and
convergence [4–7]. Furthermore, some studies have suggested that total factor productivity
growth might even determine how soon a country becomes a high income economy [2,8].
The Chinese government has noticed the importance of improving total factor productivity
and regarded it as a major strategy of future economic development. In the 13th Five-Year
Plan for Economic and Social Development, improving total factor productivity has been put
on agenda. This was again reemphasized at the 19th CPC National Congress. It is of great
significance to identify the effects of different factors on total factor productivity, which has
attracted the attention of many researchers [9–11].
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With rapid economic growth, China’s population age structure, distribution and qual-
ity are also undergoing a series of changes. Specifically, as a result of the decline in total
birth rate and the increase in expected life expectancy, China’s population is aging quickly.
According to the National Bureau of Statistics, the population aged 65 and over in China
accounted for more than 7 percent of the total population in 2000, which means that China
became an aging society. In 2017, this proportion exceeded 11 percent, and the elderly
population exceeded 150 million. In addition, unbalanced regional development leads to
massive numbers of young, temporary, migrant workers. In 2015, there were about 247 mil-
lion temporary migrant workers in China, which accounted for 18% of the total population.
A total of 51.1% of these migrants were less than 33 years old [12]. Internal migration also
alters the population distribution and age structure in different regions [13]. Furthermore,
the improvement in educational level has accumulated a large quantity of highly educated
and skilled human capital. In 2016, the total number of students studying in higher edu-
cation in China reached 36.99 million, and the gross enrollment rate of higher education
reached 42.7%. As producers and consumers in economic activities, the population plays
an important role in productivity growth. Relevant research has been conducted in the
United States [14], Japan [15,16], OECD countries [17] and some other countries [18–20].
The changes in demographic factors in China took place under the guidance of a series of
policies and institutions, such as the strict one child policy and unique household registra-
tion institution, which have distinct characteristics different from those in other countries.
In addition, rapid and dramatic population changes have raised concerns about China’s
industrial upgrading, technological progress and innovative development [21–23], which
are considered as the source of economic productivity growth. However, most of existing
studies only focus on one aspect of demographic factors, especially population aging, and
comprehensive analyses are relatively limited. The role of changes in demographic factors
on economic productivity in China remains a valuable research topic for in depth study.

To this end, the purpose of this paper is to investigate how demographic factors impact
on productivity growth changes from 2000 to 2010 in China. We attempt to contribute to
the conversation of how demographic influences economic development in China in three
aspects. First, largely due to data limitations, previous studies on this topic often focus
on the discussion of a single population factor (such as age structure, human capital or
migration) [18,20,24] and use observations at a relatively coarse geographic scale (such as
provincial or national levels) [3,25–27]. Studies with multiple demographic factors at a finer
spatial scale merit further investigation. Given the vast territory and unbalanced develop-
ment in China, geographical differences within provinces are as vast as across provinces.
Data aggregated at large geographic units might mask potentially subtle, yet important,
differences that can only be detected at a finer scale. Using census data from 2000 and 2010,
we are able to acquire a rich set of population factors over 358 prefecture level cities in
China. A prefecture is an administrative unit in China that ranks below province but
contains multiple counties. We attempt to employ this data set to help us better understand
how population factors impact productivity growth in China. Second, China has estab-
lished a socialist market economy system since opening up in 1978. Economic development
among neighboring cities has become increasingly interconnected. Geographical location
becomes an important factor to understand the economic performance of regions due to
spatial interaction and interconnection. The spatial effect of data brings a challenge to the
traditional data analysis techniques. Spatial data analytical approaches have been proposed
in the late 1980s and seen great advancement in recent decades to facilitate the proper
analysis of geographically referenced information [28–34]. In the current study, we apply
exploratory spatial data analysis (ESDA) to measure the global and local spatial autocor-
relation of productivity. We then employ spatial econometrics methods to investigate the
role of changes in population factors on productivity growth from 2000 to 2010. Third,
with the population changes in China, the relationship between population and economy
has undergone major transformations. The traditional demographic dividend [35], which
was based on a high proportion of working age labors, is disappearing. Meanwhile, pop-



Sustainability 2022, 14, 4195 3 of 19

ulation quality has gained more momentum in driving China’s economic development.
Comprehensive studies that consider both the quantity and quality of China’s population
on productivity could contribute to the further understanding of China’s contemporary
demographic dynamics and how it is entwined with the economic system. Total factor
productivity is an important index to measure economic growth equality [36,37]. Therefore,
we believe that investigating the impact of demographic factors on total factor productivity
from the perspective of a cross temporal comparison will provide better practice for both
demographic and economic policies.

The rest of this paper is organized as follows. Section 2 reviews the relative theories
and literatures. Section 3 introduces data sources, data preprocessing, variable selection in
linear model, and the analysis methods used in the paper. Section 4 presents the findings of
the exploratory spatial data analysis on total factor productivity and the spatial regression
models. We also discuss our findings extensively in this section. Section 5 concludes with
a summary of the findings, presents the limitations of the study, and discusses practical
policy implications.

2. Literature Review
2.1. The Demographic Effects on Productivity

Since Malthus put forward two assumptions of population growth and food pro-
duction in his famous essay in 1798 [38], how to improve productivity and avoid the
Malthusian trap has become a hot research topic. Unified growth theory [8,39,40] explores
the theoretical discussion about the relationship between population factors, technological
progress, productivity, and economic growth. In the Malthusian epoch, population growth
was an engine for accumulation of new ideas, but labor productivity might become stag-
nant, sometimes even fall back, due to the limited availability of land. When technological
innovation passed a threshold point and the growth rate of output is greater than that
of the population, the Malthusian trap can then be broken, and economic development
transfers to the post-Malthusian phase. In this phase, increased fertility rates and migration
from traditional agricultural areas provide sufficient labor forces to encourage a growth
in overall productivity. At a certain point, the rising demand for skills and knowledge
embodied in human capital leads to the decline in fertility rate, which might temporarily
increase the proportion of a working age population (because of the increased number of
female workers). With demographic transitions and the accumulation of human capital, the
economy will gradually enter the third phase of modern economic growth, which is mainly
sustained by technology based productivity growth [8,39]. The impact of demographic
factors on productivity growth is multifaceted, complicated, and varying over time, we,
hence, contend it will provide more insights if we study this topic from a multifaceted
perspective.

Previous studies often look at the influences of population size, age structure, human
capital, and migration on productivity. Studies have found the impact of each factor on
productivity growth to be complex and, sometimes, even contradictory [16,20,27,41–44].
Kremer [45], in his study on population growth and technological change, found that
population size positively influences technological progress over a long historical period.
Similar statements can be found in North [46]. Generally, it is easy to understand that a
larger population promotes productivity growth due to more potential inventors, more
intensive intellectual contacts, greater labor specialization and a bigger size of markets.
Some empirical research has argued for the effect of population size on productivity growth
as well [16,45]. On the other hand, when population size becomes overly large, a larger
population might decrease productivity because of the increased duplication of efforts
and decreased available capital stock per capita (the typical crowding effect) [45]. These
studies suggest that there is a turning point in the influence curve of population size on
productivity growth.

Aging is another important population factor that attracts much attention in the
studies on productivity growth. From a physiological perspective, Shephard [41] argues
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that, because aging is associated with progressive changes in power, thermoregulation,
reaction speed and the acuity of the special senses, the productivity of the elderly will
decrease, particularly in self paced activities. In addition, compared to younger people, the
aged are believed to be less innovative and receptive to new technologies, which blocks
productivity improvement [47]. On the other hand, Gordo and Skirbekk [24] find that
older workers are better able to adapt to technological changes. Ang and Madsen [42]
point out that aging need not to be a drag on productivity. They argue that experience and
knowledge developed tends to improve older workers’ productivity.

Although it is widely believed that human capital investment is conducive to long-
term economic growth, a consensus is yet to be reached about the impact of human capital
on productivity [10,43,44]. Benhabib and Spiegel [43] argue that human capital helps
workers to create, learn and use more advanced and newer technologies, thus it is helpful
to improve productivity by promoting technology progress and diffusion. Miller and
Upadhyay [9] point out that the effect of human capital on productivity in low income
countries is changeable. It moves from negative to positive as the country moves from low
to high levels of openness. Pritchett [44] even shows a significant negative relationship
between human capital and total factor productivity. Gong [3] focuses on both the stock
and inequality of human capital and believes that high quality human capital has a positive
effect on productivity by affecting technology innovation, and human capital inequality
has a negative effect on productivity by affecting technology diffusion.

The dualistic economic structure theory proposed by Arthur Lewis [48] is often used
to explain the phenomenon of migration on productivity. It is assumed that urban sec-
tors have higher productivity. Rural–urban migration could promote overall economic
productivity. In other words, population migration is essentially a reallocation of human
resources, and it brings obvious impacts on productivity for both inflow and outflow areas,
which is a Pareto improvement for individuals, enterprises, and countries [12,49]. However,
the empirical research on this topic has failed to reach a consensus [20,27]. Paserman [19]
argues that, because of the different characteristics of migrants, especially their skill levels,
they play various roles in the dissemination of new ideas and technologies. Low skilled
migrants have little impact on technological diffusion in the receiving areas, and an exces-
sive dependence on manual labor is not conducive for enterprises to improve production
efficiency. In summary, the influence mechanism of migration on productivity is mainly
in technology adoption, human capital formation, innovation process and knowledge
spillovers [19,50,51].

2.2. Productivity Measure and Other Control Variables

There are many indices for measuring overall economic productivity, such as per
capita output, labor productivity (LP), multifactor productivity (MFP) and total factor
productivity (TFP). Among them, we contend that total factor productivity might provide
a more comprehensive understanding of the productivity changes caused by the different
factors input of production. Total factor productivity is a preferable measure to productivity
in many previous studies [3,6,19,52]. To fully understand how population factors impact
on productivity, we need to control for other factors affecting productivity. Studies suggest
that openness, trade orientation, foreign direct investment, industry structure, government
expenditure, and geographical location are important factors [3,9–11,52–54].

2.3. The Advance and Application of Spatial Data Analysis Methods

In empirical studies of the social sciences, regional socioeconomic data are often used
in many studies [3,6,27,52]. When conventional econometric methods are used, these
studies implicitly assume that the observations collected with geographical information
are independent and there is no connection between regions. However, according to the
First Law of Geography [55], spatial data are inherently interconnected and interdependent
between different spatial units, and the strength of such interdependence depends on geo-
graphical distance. This suggests that socioeconomic development in a certain region might



Sustainability 2022, 14, 4195 5 of 19

very likely be closely related to the surrounding regions. Such interconnectedness and
interdependence are often collectively called spatial autocorrelation among observations
collected over geographic space [28,56]. The existence of spatial autocorrelation violates the
independence assumption of observations in traditional statistical analysis. For instance,
when investigating relationships between demographic factors and productivity, if we
employ the common OLS regression estimator for geographic data, we might produce
potentially unreliable and even misleading results due to the potential existence of spatial
autocorrelation in the regression residuals. Instead, the estimator based on the maximum
likelihood (ML) method is usually proposed as an effective alternative [28]. Some existing
studies have noticed the limitations of using traditional regression methods to analyze
spatial data [6,49] and scholars have tried to use spatial econometric methods to explain
the influence mechanism on productivity [52,54].

There are two objectives that we intend to achieve by employing spatial data analysis
methods in the investigation of demographic factors’ impacts on regional productivity.
First, we attempt to investigate the interconnectedness of productivity in different regions
to tell a more informative story about the development process of productivity. Second,
the application of spatial regression methods in empirical research helps us capture and
control spatial effects, hence providing a more convincing result. With more reasonable
regression results, we might have a better understanding of the influence mechanism of
population factors on productivity growth at a city level.

3. Data and Methodology
3.1. Data Sources and Preprocess

Since the first population census in 1953, China has conducted seven population cen-
suses. Although the most recent census was conducted in 2020, data needed for calculating
variables such as the number of net immigrants and human capital Gini coefficient, for the
current analysis, have not yet been released at the city level. For this reason, the census
data in 2000 and 2010 are used instead. Admittedly, population dynamics and economic
productivity in China have experienced great changes over the decade from 2010 to 2020;
we hope the current study still sheds light on how demographic factors impact productivity
in China during its fastest growing periods of both population and economic dynamics. In
addition, it is often difficult (if not impossible) to obtain detailed population data in non-
census years, particularly at city level. Our study attempts to focus on census data because
censuses offer significant demographic information and provide a great opportunity to
study topics concerning population factors at finer spatial scales.

The original data used in the paper are compiled from the following sources. For
demographic information, we include total resident population, total registered population,
population aged 50–59, population with different education levels, and total working
population. For other socioeconomic control factors, and data to calculate total factor
productivity, we include investment in fixed asset, the proportion of secondary and tertiary
industries, government expenditure, foreign direct investment, and land area of a city. The
data on population factors are mainly from Tabulation on the Population Census of China by
County in 2000 and 2010. These data sets are published by the China Statistics Press. It
collects detailed information on population statistics at both the county and city levels,
such as the total resident population, total household registration population, population
by sex, population by residence, population by age group, population by educational level,
population by marriage status and other indexes such as family size and employment.
Second, economic indicators, such as city level GDP, total investment in fixed assets,
industrial structure, and government expenditure, come from the China City Statistical
Yearbook and China Statistical Yearbook for Regional Economy. The yearbooks of some western
provinces also offer a useful supplement in cases when data is missing in the above two
yearbooks. Third, due to the serious lack of foreign direct investment data in some cities, we
use an alternative indicator by summing up the foreign capital of industrial enterprises in
each city. The original data are collected from the China Industry Business Performance Data,
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which is a large data source that includes the capital composition of industrial enterprises.
All price related economic data are converted to comparable prices based on the price level
in 2000.

3.2. TFP and Demographic Variables

In the following analysis, most variables can be extracted directly from the collected
data. Some variables need to be calculated, including the total factor productivity, human
capital Gini coefficient and the number of net immigrants. Specifically, the measurement
of total factor productivity is based on conventional Solow residual value method with
no scale return assumption. This is a preferable method and has been employed in many
studies [3,20,42,57]. The idea of Solow residual value method is relatively straightforward
for understanding total factor productivity. We first estimate the total production function.
We then eliminate the contribution of factor input in economic output. What is left is the
estimation of total factor productivity, indicating the contribution of technological progress,
resource reallocation, institutional improvement, and other factors to economic output. It
is often assumed that the total production function takes the Cobb–Douglas form:

Y = AKαLβ (1)

where Y denotes the total output (GDP in our case), K denotes the capital stock and is
calculated by applying the perpetual inventory method with 5% annual depreciation [49,57],
L denotes labor and A denotes total factor productivity. Take the natural logarithm on both
sides and we get:

ln Y = ln A + α ln K + β ln L (2)

With relevant data and an ordinary least square regression, we can estimate α and β.
We assume that the return on scale remains the same, which means that the coefficients
for K and L shall sum to 1. To calculate TFP, we then transform the estimated coefficients,
α and β, to be:

α∗ = α/(α + β), β∗ = β/(α + β) (3)

Then total factor productivity is measured using formula:

A = Y/(Kα∗Lβ∗) (4)

To evaluate the demographic factors’ impact on TFP, we consider both the quality
and quantity of the population, as well as the mobility of the population. The quality of
population is represented by the number of people with college and above level of educa-
tion, and the portion of population that is 50–59 years old (the older working population in
China). Total number of residents is used to represent the quantity of population. Mobility
of the population is represented by the number of net immigrants for each prefecture. The
number of net immigrants is calculated by subtracting the number of household registered
population from the total resident population. The unique household registration system
in China requires each person to register his/her household address, which is usually their
birthplace, so the number of net immigrants in cities can be roughly obtained by comparing
the difference between registered population and current residents.

The descriptive statistics for the key variables in 2000 and 2010 are reported in Table 1.
From 2000 to 2010, the mean of total factor productivity (TFP) has almost doubled from
46.443 to 83.642, indicating that China has promoted overall economic productivity signifi-
cantly over this period. When it comes to population factors, the total resident population
(POP) increases slightly due to strict one child policy and declining fertility rate. The por-
tion of elderly population is increasing rapidly. The mean of proportion of population aged
50–59 (OLD) in 2010 is 11.624, with an increase by nearly 3 percentage points from 2000.
Human capital stock, represented by the number of people with college education and over
(HCS), increases remarkably. Migration between regions becomes more frequent as well,
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which is represented by the changes in minimum and maximum value of the number of
net immigrants (MIG) from 2000 to 2010.

Table 1. The descriptive statistics for the key variables.

Variable Unit Mean Std.Dv Min Max

TFP2000 46.443 18.413 8.851 134.018
POP2000 million 3.466 2.868 0.077 30.513
OLD2000 % 8.509 1.431 2.371 12.718
HCS2000 thousand 122.748 209.759 1.007 2284.850
MIG2000 million 0.023 0.572 −1.208 5.786
TFP2010 83.642 37.226 22.519 256.869
POP2010 million 3.720 3.197 0.076 28.846
OLD2010 % 11.624 2.581 4.368 19.362
HCS2010 thousand 328.919 562.886 6.273 6177.772
MIG2010 million −0.013 1.107 −4.304 8.834

3.3. Control Variables and Models

Other than the demographic factors, there are also socioeconomic factors that likely
influence on total factor productivity. To fully understand how demographic factors influ-
ence TFP, we also need to control relevant socioeconomic factors that could influence TFP.
Literature review suggests that, in China, governmental investment (represented by fixed
assets investment), industrial structures (portion of secondary and tertiary industries in
the economy), government financial expenses, and the overall openness of a prefecture are
commonly believed to have significant impact on total factor productivity [10,11,52,58–63].
Details of the control variables follow.

Fixed assets investment (INV): fixed assets investment is an important link in the pro-
cess of economic reproduction. Reasonable investments are conducive to the improvement
in per capita capital stock and encourage technological progress.

Industrial structure (SEC and TER): economic development is a process of gradual
transformation of industrial structure. Industrial agglomeration can promote division
of labor, technology exchange and scale effect. Industrial diversification and density
can promote the production efficiency of industries to increase productivity. We use the
proportion of the secondary and tertiary industry to examine the impact of the industrial
structure on productivity growth.

Government expenditure (GOV): local government has played an important role in
promoting regional economic development in China. Every year, the government invests
heavily in infrastructure construction, public safety, education and scientific research and
social security. This helps speed up the flow of production factors, promotes the diffusion of
knowledge and technology, reduces market transaction costs, and improves the efficiency
of resource allocation.

Openness (FDI): with expanding openness, foreign capital has participated in China’s
economic activities through direct investment or other forms of investment. Advanced
production technology and management experience have been introduced, and domestic
enterprises have greatly improved production efficiency through “learning by doing”.

Based on our preliminary exploratory analyses, the relationships between TFP and the
demographic factors, as well as other socioeconomic influencing factors, are a combination
of approximately exponential and linear. The influencing factor model of total factor
productivity is then constructed as follows:

ln(TFP) = β0 + β1POP + β2OLD + β3 ln(HCS) + β3 MIG + β4 ln(INV) + β5SEC + β6TER + β7 ln(GOV) + β8 ln(FDI) + ε (5)

In the above formula, the outcome variable ln(TFP) is the natural logarithmic value of
total factor productivity. The growth rate of total factor productivity is obtained through
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this transformation because of a likely exponential relationship between impact factors and
total factor productivity [3,9,20].

In addition, as the size of population increases, the marginal benefit of added labor
force could potentially be countered by limited economic carrying capacity. We intend
to examine whether there is an inverted U-shaped relationship between population size
and productivity growth. Moreover, as argued in Klasen and Nestmann [26] and Rizov
and Zhang [64], when evaluating population’s impact on productivity, population density,
rather than size, could be the critical influencing factor on productivity growth. We intend
to replace population size with density to see the difference. Although education quality
is proxied in the model with the number of people who have college and above level
education, it is also noted that education levels in China are vastly unequal across different
regions. Other than examining the education level’s impact on total factor productivity,
we also introduce the human capital Gini coefficient (HCI) to represent human capital
inequality and model its impact on total factor productivity. According to Thomas, Wang
and Fan [65] and Gong [3], human capital Gini coefficient is formulated as follows:

HCI =
1
H ∑n

i=2 ∑n
i=1, j=1 |Ei − Ej|PiPj (6)

where Ei and Ej denote the years of different education levels with education level at
illiteracy E1 = 0, primary E2 = 6, junior E3 = 9, senior and secondary technical E4 = 12,
and junior college and above E5 = 16, based on China’s current educational system (the
years of schooling at each level of education). Pi and Pj denote the proportion of the
population at each education level; and H denotes the weighted education years and takes
the form:

H = E1P1 + E2P2 + E3P3 + E4P4 + E5P5 (7)

The HCI, just as the Gini coefficient is often used in gauging economic inequality,
measures the education distribution among a prefecture’s population, the coefficient ranges
from 0 to 1 with higher coefficient suggesting higher inequality [65]. In his work, Gong [3]
suggests that higher human capital inequality will negatively affect technology diffusion,
hence, TFP, which is different from human capital quality’s influence, which is usually
considered a positive factor for TFP because it promotes technological introduction and
innovation.

To model all these effects, we call the model in Equation (5) the base model (model 1).
From the base model, model 2 adds the squared term of population size (POP_sq). In
model 3, we replace POP and POP_sq in model 2 with population density (PD) and its
squared term (PD_sq). At last, model 4 adds the human capital Gini coefficient (HCI).

3.4. Methodology
3.4.1. Exploratory Spatial Data Analysis (ESDA)

Exploratory spatial data analysis is an effective means to explore the potential spatial
effects and patterns in geographic data [66]. We use the global and local version of the
Moran’s Index to explore the spatial patterns of total factor productivity at the prefecture
level in China. The Moran’s Index takes the form [66]:

I =
n ∑n

i=1 ∑n
j 6=i wij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 ∑n
i=1 ∑n

j 6=i wij
(8)

where x represents the observed values and wij refers to the spatial weight between two
spatial units i and j. The spatial weight matrix Wn is an n ∗ n matrix that defines the spatial
influence strength between spatial units and their neighbors. The diagonal elements of
the matrix are set to zero and they are usually row standardized to ensure all the weights
are between 0 and 1. In this paper, we construct two types of spatial weight matrices:
simple binary spatial matrix (Wadj) with Queen contiguity rule and inverse distance weight
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spatial contiguity matrix (Wdis), to test how different spatial configurations impact on
spatial effects.

To assess the regional structure of spatial autocorrelation, we turn our attention to the
local version of Moran’s Index and the Moran’s scatterplot. Moran scatterplot plots the
spatial lag values against the original values. The scatterplot is divided into four different
quadrants according to the four types of local spatial association. HH means a region with
high value surrounded by regions with high values and HL means a region with high value
surrounded by regions with low values [66]. Although the Moran scatterplot can be used
to detect atypical regions, it does not give any indications of significant spatial clustering or
hot spots. Local Moran’s I [67] is produced to visualize potential “clusters” or “hot spots”.
It takes the form:

Ii =
(n− 1)(xi − x)

∑n
j 6=i

(
xj − x

) n

∑
j 6=i

wij
(
xj − x

)
(9)

3.4.2. Spatial Regression Models

When spatial data is involved in a regression analysis, the traditional estimator, or-
dinary least squares, is no longer valid because of possible spatial autocorrelation in
regression residuals. Anselin [28–30], among many others, proposed the maximum like-
lihood estimator as an alternative, since it is not restricted by independent regression
residuals. Based on the possible sources of spatial autocorrelation in regression residuals,
there are two types of spatial autoregressive models that are often considered in empirical
studies [60]. If the source is from a spatially autocorrelated dependent variable, we have
a spatial lag specification. If, however, spatial autocorrelation in the residual is from an
omitted but spatially autocorrelated explanatory variable, then we will have a spatial error
specification. Elhorst [68] has outlined a taxonomy of different spatial models. We focus on
the spatial lag (SLM) and spatial error (SEM) specification in our current study. The spatial
lag autoregressive model can be specified as follows:

y = ρWy + βX + ε (10)

where y is the dependent variable, W is a spatial weight matrix describing the spatial
influence among different areas, Wy is a spatially lagged dependent variable, and ρ is the
coefficient of Wy measuring the spatial dependence on dependent variable. X is a matrix of
independent variables and a constant term, β is the coefficient vector of independent vari-
ables, and ε is a well behaved error term with mean zero. The spatial error autoregressive
model has the following expression:

y = βX + ε

ε = λWε + µ
(11)

where λ is the coefficient of the error measuring the spatial mismatch, and µ is a well
behaved error term. The other symbols are defined as in the spatial lag model. As ar-
gued in Anselin [28] and Anselin, Bera, Florax and Yoon [29], Lagrange multiplier (LM)
robust diagnostic tests based on ordinary least square (OLS) residuals can help us choose
a more appropriate model between SLM and SEM. The model that has a larger and sig-
nificant robust LM statistics often is the more appropriate specification. Since the spatial
autoregressive model is estimated via the maximum likelihood estimator, the likelihood
based information criteria, such as the Akaike information criterion, is used for the test
of goodness of fit and comparison among the models. The model with smaller AIC is
considered the better fit for the data [60]. All the calculation of the above statistics and
models is conducted using the SPDEP package in R [31,32], freely available through the R
project website.
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4. Results and Discussion
4.1. Examining Spatial Autocorrelation with ESDA

Since the reform and opening up in 1978, economic development has become the cen-
tral task of the Chinese government. During the reform period, the exchange of production
factors—including labor, capital, resources, and technologies—between regions became
increasingly frequent. This has led to a transformation of the regional economy, from
self-governing to interdependence. We calculated global and local Moran’s I to investigate
the change in the spatial dependence of total factor productivity from 2000 to 2010, in
an attempt to capture such a change. The results of global Moran’s I and the responding
significance tests with different spatial weight matrices are reported in Table 2.

Table 2. Significance test of global Moran’s I for total factor productivity.

(Wadj) (Wdis)
I p-Value I p-Value

TFP2000 0.405 <2.2 × 10−16 0.452 <2.2 × 10−16

TFP2010 0.452 <2.2 × 10−16 0.453 <2.2 × 10−16

It can be seen that the Moran’s I values of total factor productivity are significantly
positive for both years, indicating there is a strong similarity or dependence between the
total factor productivity of neighboring cities in these two years in China. The difference
between using a different weight matrix, however, remains negligible, which suggests the
spatial autocorrelation of productivity in China is the result of increased interconnectedness
among cities after the economic reform, regardless of how a neighborhood is defined. When
looking at the change from 2000 to 2010, we find that the Moran’s I of total factor produc-
tivity becomes larger, which means a general trend of increasing spatial autocorrelation
in these ten years (increased interconnectedness). The other interesting finding is that the
difference in Moran’s I in 2010 with different weighting strategies is less than that in 2000. In
other words, the impact of geographical distance on the spatial dependence of productivity
becomes smaller in 2010. This might be explained by the improvement in China’s transport
facilities leading to the decrease in the impediment effect of geographical distance, which is
a relatively important factor in the exchange of technologies, talents and production factors.
In 2000, the road mileage in China was 1.4 million km and railway mileage 58,700 km.
These two figures increased to 4 million km and 90,000 km in 2010. Moreover, the high
speed railway construction project was launched in 2008, and its mileage reached beyond
5000 km in 2010, which promoted a more integrated regional productivity landscape.

The local Moran’s I is mapped in Figures 1 and 2. From the figures, we can see that
the number of L-L clustered cities in 2010 is less than that in 2000, which is opposite
to the H-H type. The rapid growth in total factor productivity in Xinjiang has led to
the change from a gradient pattern decreasing from east to west in 2000 to a sandwich
like pattern in 2010. The grand western development program initiated in 2000 helped
Xinjiang develop at a high speed. In addition, Xinjiang is a province with net immigrants
in western China and the number of net immigrants was more than 1.5 million in 2010.
Xinjiang also has 10,635 people with junior college and above degrees per 100,000 persons
in 2010, ranking sixth among the 31 provincial administrative units in mainland China.
Population immigration and the large proportion of people with higher education might be
a critical factor for Xinjiang to promote its productivity. We will examine the mechanisms
for productivity growth in the following section.
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4.2. Regression Results

For the regression analysis, we conducted a regular OLS estimation with the four
demographic factors, namely, population size (POP), aging of workers (OLD), human
capital stock (HCS) and migration (MIG), and other control variables, and report the results
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for 2000 and 2010 in Table 3. The Lagrange multiplier (LM) tests were then conducted with
different weight matrices and reported in Table 3.

Table 3. OLS results for Model 1 in 2000 and 2010.

2000 2010
Coefficient Std. Error t Value Estimate Std. Error t Value

(Intercept) 4.703 *** 0.351 13.411 8.585 *** 0.502 17.086
POP −0.002 0.009 −0.188 0.005 0.01 0.533
OLD −0.003 0.013 −0.226 0.020 ** 0.008 2.534

lnHCS 0.192 *** 0.034 5.726 0.462 *** 0.048 9.628
MIG 0.014 0.036 0.401 0.072 *** 0.019 3.765

lnINV −0.182 *** 0.031 −5.823 −0.301 *** 0.049 −6.118
SEC 0.008 *** 0.002 4.547 −0.003 0.002 −1.531
TER −0.004 0.003 −1.648 −0.016 *** 0.003 −5.139

lnGOV 0.013 0.025 0.516 −0.160 *** 0.054 −2.931
lnFDI 0.031 *** 0.004 7.055 0.042 *** 0.005 7.791

Model summary
Adjusted R-squared: 0.408 0.399

F-statistic: 28.32 on 9 and 348 df, p = 0.000 27.37 on 9 and 348 df, p = 0.000
Spatial autocorrelation test for residuals

Wadj Wdis Wadj Wdis
Moran’s I 0.258 *** 0.287 *** 0.328 *** 0.326 ***

Notes: the dependent variables are lnTFP2000 in 2000 and lnTFP2010 in 2010; *** and ** denote 1% and 5% levels
of significance, respectively.

Results from Table 4 reveal that there is significant spatial autocorrelation in the OLS’s
regression residuals. As the LM tests suggest, the likely cause for the spatial autocorre-
lation in the regression residuals is from the spatially autocorrelated dependent variable.
According to selection criteria proposed in Anselin [28] and Elhorst [68], the spatial lag
autoregressive model might be a more appropriate alternative, indicating a strong spatial
dependence and connection among neighboring cities in terms of productivity. We then
present the spatial lag estimation results in Table 5. The additional models’ results are
presented in Table 6.

Table 4. LM tests for OLS models with different spatial weight matrices.

2000 2010
Wadj Wdis Wadj Wdis

LM-err 59.387 *** 56.27 *** 96.017 *** 72.518 ***
LM-lag 64.834 *** 61.084 *** 118.82 *** 93.153 ***

RLM-err 3.384 * 2.704 2.209 0.326
RLM-lag 8.831 *** 7.517 *** 25.012 *** 20.961 ***

Note: *** and * denote 1% and 10% levels of significance, respectively.

By observing the results from Tables 5 and 6 and comparing them with Table 3, we
have a few interesting results. First, as shown by the log likelihood and AIC values in
Table 5, the spatial regression models have significantly improved over the OLS models,
regardless of which spatial weight matrix we use. The log likelihood values increase by
nearly 30 (40) in 2000 (2010) and AIC values decrease by nearly 50 (70) in 2010. The ρ values
in spatial lag models are significant at 99% confidence level, indicating that a strong spatial
autocorrelation does exist and the total factor productivity in the surrounding regions
has a strong positive diffusive effect. The spatial autocorrelation tests for the spatial lag
model’s residuals suggest the residuals are no longer autocorrelated, which means that
the spatial effect is well dealt with by adding the spatial lag terms. In addition, compared
with the results of OLS models (Table 3), the coefficients of the independent variables have
changed in different directions in the spatial lag models. For example, the coefficient of
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population size (POP) turns to positive in the spatial lag model for 2000 and the coefficient
of migration (MIG) becomes smaller in the spatial lag models for both years. The correction
of the coefficients by the spatial regression models provides potentially a more realistic
understanding of the impact of each explanatory variable.

Table 5. Spatial regression results for Model 1 in 2000 and 2010.

2000 2010
Wadj Wdis Wadj Wdis

(Intercept) 3.263 *** 3.343 *** 5.402 *** 5.755 ***
(0.381) (0.372) (0.523) (0.522)

POP 0.005 0.004 0.003 0.002
(0.008) (0.008) (0.008) (0.008)

OLD −0.011 −0.013 *** 0.016 ** 0.014 **
(0.012) (0.012) (0.007) (0.007)

lnHCS 0.172 *** 0.166 *** 0.387 *** 0.388 ***
(0.031) (0.031) (0.042) (0.042)

MIG 0.007 0.008 0.037 ** 0.042 **
(0.032) (0.032) (0.016) (0.017)

lnINV −0.194 *** −0.184 *** −0.302 *** −0.298 ***
(0.028) (0.028) (0.042) (0.043)

SEC 0.007 *** 0.008 *** −0.001 −0.002
(0.002) (0.002) (0.002) (0.002)

TER −0.003 −0.003 −0.012 *** −0.012 ***
(0.002) (0.002) (0.003) (0.003)

lnGOV 0.025 0.020 −0.050 −0.064
(0.022) (0.022) (0.047) (0.048)

lnFDI 0.019 *** 0.019 *** 0.032 *** 0.033 ***
(0.004) (0.004) (0.005) (0.005)

ρ 0.439 *** 0.412 *** 0.476 *** 0.428 ***
(0.054) (0.051) (0.051) (0.050)

Model summary
Log likelihood: −43.903 −43.422 −62.538 −68.450

Log likelihood for OLS: −72.007 −72.007 −105.840 −105.840
AIC: 111.81 110.84 149.08 160.90

AIC for OLS: 166.01 166.01 233.68 233.68
Spatial autocorrelation test for residuals

Moran’s I −0.009 −0.002 −0.025 −0.050
p-value 0.579 0.454 0.751 0.892

Notes: the dependent variables are lnTFP2000 in 2000 and lnTFP2010 in 2010; figures in the parentheses indicate
standard errors; *** and ** denote 1%, and 5% levels of significance, respectively.

Table 6. Spatial regression results for Model 2–4 in 2000 and 2010.

Model 2 Model 3 Model 4
2000 2010 2000 2010 2000 2010

(Intercept) 3.339 *** 5.757 *** 3.449 *** 5.712 *** 3.463 *** 5.325 ***
(0.37) (0.524) (0.368) (0.506) (0.372) (0.482)

POP (PD) 0.017 0.002 0.323 *** 0.193 * 0.329 *** 0.207 **
(0.015) (0.017) (0.116) (0.099) (0.115) (0.098)

POP_sq (PD_sq) −0.001 0.000 −0.242 *** −0.095 ** −0.247 *** −0.111 **
(0.001) (0.001) (0.079) (0.046) (0.079) (0.045)

OLD −0.013 0.014 ** −0.019 0.014 * −0.018 −0.001
(0.012) (0.007) (0.012) (0.007) (0.012) (0.008)

lnHCS 0.152 *** 0.387 *** 0.166 *** 0.378 *** 0.136 *** 0.313 ***
(0.033) (0.046) (0.028) (0.04) (0.032) (0.033)

MIG 0.007 0.042 ** 0.076 * 0.059 *** 0.070 0.069 ***
(0.032) (0.017) (0.043) (0.022) (0.043) (0.021)

HCI −0.455 ** 0.106
(0.23) (0.38)
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Table 6. Cont.

Model 2 Model 3 Model 4
2000 2010 2000 2010 2000 2010

lnINV −0.186 *** −0.298 *** −0.188 *** −0.311 *** −0.180 *** −0.285 ***
(0.028) (0.043) (0.027) (0.043) (0.028) (0.042)

SEC 0.008 *** −0.002 0.007 *** −0.002 0.007 *** 0.000
(0.002) (0.002) (0.001) (0.002) (0.001) (0.002)

TER −0.002 −0.012 *** −0.003 −0.012 *** −0.003 −0.008 ***
(0.002) (0.003) (0.002) (0.003) (0.002) (0.003)

lnGOV 0.022 −0.064 0.022 −0.043 0.040 * −0.003
(0.022) (0.048) (0.021) (0.047) (0.023) (0.045)

lnFDI 0.019 *** 0.033 *** 0.018 *** 0.032 *** 0.017 *** 0.026 ***
(0.004) (0.005) (0.004) (0.005) (0.004) (0.005)

ρ 0.410 *** 0.428 *** 0.409 *** 0.429 *** 0.384 *** 0.450 ***
(0.051) (0.05) (0.051) (0.05) (0.052) (0.05)

Model summary
Log likelihood: −42.857 −68.45 −38.881 −66.22 −36.99 −64.417

Log likelihood for OLS: −71.212 −105.579 −66.724 −102.569 −60.359 −104.102
AIC: 111.71 162.9 103.76 158.44 101.98 156.83

AIC for OLS: 166.42 235.16 157.45 229.14 146.72 234.2

Notes: the dependent variables in all models are lnTFP2000 in 2000 and lnTFP2010 in 2010; figures in the
parentheses indicate standard errors; ***, ** and * denote 1%, 5% and 10% levels of significance, respectively.

Second, population size seems to have no effect on productivity growth in both years.
The population size in China is large. The average population size of cities in 2010 is
3.72 million. The least populous city is Shennongjia in Hubei Province, which had more
than 70 thousand people in 2010. The reason why population size does not improve produc-
tivity might be that, in the post-Malthusian period, innovation and technological progress
mainly come from the secondary and tertiary industries rather than agriculture, which do
not depend on population size. Another explanation, from Klasen and Nestmann [26], is
that population density, instead of size, plays an important role in knowledge creation and
diffusion, market expansion and technological progress. We will examine this argument
in further exploration. On the contrary, human capital stock (HCS) is found to have a
significant positive impact on productivity growth in both years. The coefficient in 2010
is larger than that in 2000, indicating an increasing growth effect of human capital stock
on productivity. The rapid accumulation of human capital might be largely due to the
expansion of China’s higher education. According to official statistics, the annual enroll-
ment in higher education in China has increased from 3.90 million in 2000 to 9.56 million
in 2010, an increase of 2.5 times within a decade. The other two population factors, aging
and migration, have changed their impact on productivity growth with varying symbols
and significance levels. As shown in Table 5, the coefficient of aging workers (OLD) is
negative in 2000 and is not significant with the simple spatial contiguity matrix (Wadj).
However, in 2010, the coefficient becomes positive and significant at a 5% level with both
weight matrices, indicating the increase in the proportion of older workers in the labor
force, and they became a significant driving effect on productivity growth. As argued
by Ang and Madsen [42], the productivity growth effects of elderly workers with higher
education are substantially higher than those of their younger counterparts, due to the
accumulation of experience and knowledge. Compared with their counterparts in 2000, the
elderly workers born between 1951 and 1960 have a better chance to gain higher education.
As the college entrance examination system in China was interrupted from 1966 to 1976
and was not restored until 1977, people born between 1941 to 1950 were often less exposed
to higher education. As a result, the elderly workers in 2010 might have higher creativity
and management quality to improve productivity than their counterparts in 2000. This
change in the impact of different cohorts on productivity has also been observed in the
United States [14].
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Third, the coefficients of migration (MIG) become larger and significant in 2010, though
they are positive in 2000, but not statistically significant (Table 5). This might suggest
that migrants in 2000 are mainly unskilled surplus labor from rural areas (the typical
“Nongmin Gong”, or peasant workers) and they often work in labor intensive industries,
such as clothing and construction, which contributes little to productivity improvement.
In 2010, the proportion of skilled workers, such as high tech talents and college students,
has increased substantially. Migration becomes an important way of human resource
reallocation. Migration factor in 2010, hence, generated a significant impact on local
productivity. In summary, human capital stock might be the most important population
factor for productivity growth, and the impact of other factors largely depends on it.

Fourth, as for the other control variables, some meaningful findings emerge from the
regression results as well. Fixed asset investment (INV) shows a significant negative effect
in both years, which might be a result of China’s economic policies changing during that
time. For a long time after the reform and opening up, China served as a “world factory.”
China’s economic growth has been mainly dependent on massive investments of labor,
physical capital, mineral and energy resources. The development pattern with high mate-
rial consumption is obviously harmful to productivity growth in 2000. In 2008, to ease the
downward pressure on the economy caused by the world financial crisis, the Chinese gov-
ernment put forward the four trillion investment fiscal policy. The strong stimulus policy
successfully completed the task of “maintaining the growth.” Firm investment became less
efficient due to the increase of bank loans and government subsidies [69]. The problems of
a rigid economic structure, high energy consumption and high pollution in China have not
been effectively addressed, and still play a restraining role in the productivity growth. The
change in the symbol of government expenditure (GOV) and the change in the significance
of industry structure (SEC or TER), might also be attributed to the change in economic
policies during this period, for similar reasons. The openness (FDI) is always positive at the
99% confidence level, which is in line with previous studies [9,10]. In today’s globalized
world, openness promotes market expansion, technology introduction and talent exchange
between countries, and it plays an increasingly important role in productivity growth.

Fifth, from the model summary in Table 6, compared with their corresponding OLS
models, the log likelihood values become larger and AIC values become smaller in all
spatial regression models, indicating the spatial models fit the data better. The direction
and significance of the coefficients of most independent variables—including the same
population variables, control variables and spatial lag term—in Model 2–4 are consistent
with those in Model 1. This suggests that the findings are relatively robust and credi-
ble. However, despite the addition of the squared term, the population size is always
insignificant concerning affecting productivity growth, which suggests that the inverted-U
effect of population size on productivity growth does not exist at the prefecture level in
China. On the other hand, the estimation results of population density and its squared
term in Model 3 and Model 4 show that population density does affect productivity growth
and that there is an inverted U-shaped relationship between them. In other words, when
population density is below a threshold point, a higher density improves productivity
growth. Once population density reaches and passes the threshold point, higher density
exerts a negative impact on productivity growth. This result suggests that the concentra-
tion of the population, instead of the sheer number of population, is one of the primary
demographic factors in driving the prefectures’ productivity growth. The coefficient of
human capital inequality has changed from significantly negative in 2000 to insignificantly
positive in 2010. The Chinese government attaches great importance to education and has
invested heavily to raise the national education level. In 2006, China fully implemented the
nine year free compulsory education system to promote fairness and eliminate inequality in
education. This is also reflected in the change in the human capital Gini coefficient, which
has decreased from 0.250 in 2000 to 0.213 in 2010. Apparently, increased human capital
equality practically removed the negative effect it had on TFP in the early 2000s, though
the potential positive effect still needs to fully manifest in the future.



Sustainability 2022, 14, 4195 16 of 19

5. Conclusions

This study employs spatial data analysis methods, ESDA and the spatial autoregressive
model, to investigate the change of global and local spatial autocorrelation of total factor
productivity and examine the impact of demographic factors on productivity growth. By
comparing the results of exploratory and empirical analysis in 2000 and 2010, we have the
following main conclusions.

First, there is a strong spatial autocorrelation between total factor productivity among
cities, and it has increased from 2000 to 2010. That means that the spatial spillover effect
of productivity becomes stronger with the expansion of transportation networks and the
improvement in other infrastructure. Local Moran’s I significance maps show that total
factor productivity has changed from a gradient pattern, decreasing from east to west
in 2000, to a sandwichlike pattern in 2010.

Second, the role of population factors in productivity growth has changed from 2000
to 2010. According to the results of spatial regression models, population density (rather
than population size) and human capital stock are important factors in both years and there
is an inverted U-shaped relationship between population density and productivity growth.
Due, largely, to the specific educational background of different cohorts, the growth effect
of elderly workers and migration has changed from insignificant in 2000 to significantly
positive in 2010. With the improvement in educational fairness in China, human capital
inequality seems to be no longer a critical factor affecting productivity growth.

Third, among nonpopulation factors, fixed asset investment always has a significant
negative effect, while openness is always the positive factor on productivity growth. In
addition, the impact of industrial structure and government expenditure has changed from
2000 to 2010, which might be attributed to the special economic policies implemented
during the study period.

These findings complement current literature on China’s population and productivity
and provide certain insights into demographic and economic policies. First, the spatial
interdependence effect should be taken into account in regional policymaking. As shown
in the results of spatial autocorrelation analysis, economic productivity growth in a city
is closely related to the surrounding cities. Therefore, policies to promote productivity
need to consider not only the local conditions, but also the opportunities and challenges
of the surrounding regions. This means that there is a need for interregional cooperation
and communication from a higher administrative level in order to narrow divergence
among regions and promote common development. Second, population age structure,
migration, and quality, rather than population size, are the core issues of present and future
policies. The change in the impacts of population on productivity from 2000 to 2010 is the
epitome of the periodic transition of the relationship between population and economy
in China. According to the current trend, China’s population size will decline in the next
few years, while the proportion of the elderly, the proportion of urban residents and the
proportion of the highly educated population will continue to rise. Relevant policies
should be adapted to these demographic changes and make full use of the positive roles
of demographic factors in promoting economic productivity and quality. For example,
population regulation policies should be strictly implemented in megacities, such as Beijing,
Shanghai, and Shenzhen, to avoid population density exceeding the threshold point. With
the deepening of the economic reform and globalization, the Chinese government has been
committed to the relaxation of the household registration system, promoting urbanization,
and expanding investment in education and scientific research. It is believed that the
migration and cluster of populations with high education levels and skills will improve
China’s economic productivity and quality in the future.

This study has several limitations that are expected to be improved in the future
work. First, as aforementioned, the census data we used in the study needs to be updated
when the newest data is released to provide a more up to date picture of the population-
productivity dynamics. Additionally, although the spatial lag regression model has more
advantages than the traditional OLS model in analyzing spatial data, it is still a global
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model in essence. This means that the impact of each population factor on productivity
growth is spatially unchanged, so the coefficients are constant. However, due to regional
differences and spatial diversity, the real economic behavior in China is geographically
changeable and there is no stable spatial pattern of total factor productivity [52]. Our future
research will attempt to evaluate and model such potential spatially varying relationships
to gain detailed insights into China’s demographic and economic development.

Author Contributions: Conceptualization, X.W. (Xiaoxi Wang), Y.Z. and D.Y.; methodology, X.W.
(Xiaoxi Wang), Y.Z. and D.Y.; software, X.W. (Xiaoxi Wang) and D.Y.; validation, X.W. (Xiaoxi Wang),
Y.Z., D.Y., X.W. (Xiwei Wu) and D.L.; formal analysis, X.W. (Xiaoxi Wang) and D.Y.; Investigation: X.W.
(Xiaoxi Wang) and Y.Z.; resources, X.W. (Xiaoxi Wang), Y.Z., X.W. (Xiwei Wu) and D.L.; data curation,
X.W. (Xiaoxi Wang); writing—original draft preparation: X.W. (Xiaoxi Wang); writing—review and
editing: X.W. (Xiaoxi Wang), Y.Z. and D.Y.; visualization: X.W. (Xiaoxi Wang); supervision, Y.Z. and
D.Y.; project administration: Y.Z. and D.Y.; funding acquisition: Y.Z. and D.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant numbers
71373275 and 41461035.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Song, L.; Fang, C.; Johnston, L. China’s Path towards New Growth: Drivers of Human Capital, Innovation and Technological

Change. In China’s New Sources of Economic Growth; Fang, C., Johnston, L., Garnaut, R., Eds.; ANU Press: Canberra, Australia,
2017; Volume 2, pp. 1–19.

2. Mirjalili, S.H.; Cheraghlou, A.M.; Sa’Adat, H. Avoiding Middle-income Trap in Muslim Majority Countries: The Effect of Total
Factor Productivity, Human Capital, and Age Dependency Ratio. Int. J. Bus. Dev. Stud. 2018, 10, 5–21.

3. Gong, C. Impact of Human Capital Inequality on Total Factor Productivity in China. Mod. Econ. 2016, 7, 561–566. [CrossRef]
4. Comin, D. Total factor productivity. In Economic Growth; Springer: Berlin/Heidelberg, Germany, 2010; pp. 260–263.
5. Yalçınkaya, Ö.; Hüseyni, I.; Çelik, A.K. The Impact of Total Factor Productivity on Economic Growth for Developed and Emerging

Countries: A Second-generation Panel Data Analysis. Margin J. Appl. Econ. Res. 2017, 11, 404–417. [CrossRef]
6. Otsuka, A.; Goto, M. Total factor productivity and the convergence of disparities in Japanese regions. Ann. Reg. Sci. 2016, 56,

419–432. [CrossRef]
7. Harris, R.; Moffat, J. The UK productivity puzzle, 2008–2012: Evidence using plant-level estimates of total factor productivity.

Oxf. Econ. Pap. 2016, 69, 529–549. [CrossRef]
8. Lu, D. China’s Growth Slowdown and Prospects for Becoming a High-Income Developed Economy. Asian Econ. Pap. 2017, 16,

89–113. [CrossRef]
9. Miller, S.M.; Upadhyay, M.P. The effects of openness, trade orientation, and human capital on total factor productivity. J. Dev.

Econ. 2000, 63, 399–423. [CrossRef]
10. Rath, B.N.; Parida, P.C. Did Openness and Human Capital Affect Total Factor Productivity? Evidence from the South Asian

Region. Glob. J. Emerg. Mark. Econ. 2014, 6, 103–118. [CrossRef]
11. Tao, F.; Zhang, H.; Hu, Y.; Duncan, A.A. Growth of Green Total Factor Productivity and Its Determinants of Cities in China: A

Spatial Econometric Approach. Emerg. Mark. Finance Trade 2017, 53, 2123–2140. [CrossRef]
12. Liu, T.; Feng, H.; Brandon, E. Would you like to leave Beijing, Shanghai, or Shenzhen? An empirical analysis of migration effect in

China. PLoS ONE 2018, 13, e0202030. [CrossRef] [PubMed]
13. Wang, F.; Zhao, L.; Zhao, Z. China’s family planning policies and their labor market consequences. J. Popul. Econ. 2017, 30, 31–68.

[CrossRef]
14. Feyrer, J. The US Productivity Slowdown, the Baby Boom, and Management Quality. J. Popul. Econ. 2011, 24, 267–284. [CrossRef]
15. Liu, Y.; Westelius, N. The Impact of Demographics on Productivity and Inflation in Japan. J. Int. Commer. Econ. Policy 2017,

8, 1750008. [CrossRef]
16. Kato, H. Empirical Analysis of Population and Technological Progress; Springer: Tokyo, Japan, 2016.
17. Lindh, T.; Malmberg, B. Age structure effects and growth in the OECD, 1950–1990. J. Popul. Econ. 1999, 12, 431–449. [CrossRef]
18. Pietrzak, M.B.; Balcerzak, A.P. Quality of human capital and total factor productivity in new EU member states. Inst. Econ. Res.

Work. Pap. 2016, 1, 1492–1501.

http://doi.org/10.4236/me.2016.75061
http://doi.org/10.1177/0973801017722266
http://doi.org/10.1007/s00168-016-0745-x
http://doi.org/10.1093/oep/gpw057
http://doi.org/10.1162/ASEP_a_00490
http://doi.org/10.1016/S0304-3878(00)00112-7
http://doi.org/10.1177/0974910114525535
http://doi.org/10.1080/1540496X.2016.1258359
http://doi.org/10.1371/journal.pone.0202030
http://www.ncbi.nlm.nih.gov/pubmed/30114254
http://doi.org/10.1007/s00148-016-0613-0
http://doi.org/10.1007/s00148-009-0294-z
http://doi.org/10.1142/S1793993317500089
http://doi.org/10.1007/s001480050107


Sustainability 2022, 14, 4195 18 of 19

19. Paserman, M.D. Do high-skill immigrants raise productivity? Evidence from Israeli manufacturing firms, 1990–1999. IZA J. Migr.
2013, 2, 6. [CrossRef]

20. Herzer, D. Refugee Immigration and Total Factor Productivity. Int. Econ. J. 2017, 31, 390–414. [CrossRef]
21. Liu, C.; Li, S.; Zhao, X. Research on the threshold effect of population aging on the industrial structure upgrading in China. Chin.

J. Popul. Resour. Environ. 2019, 17, 87–100. [CrossRef]
22. He, J.; Zhang, Y.; Tang, S. Population aging, technological progress and economic growth: A research based on the PSTR model. J.

Univ. Sci. Technol. China 2020, 50, 208–219.
23. Tan, Y.; Liu, X.; Sun, H.; Zeng, C. Population ageing, labour market rigidity and corporate innovation: Evidence from China. Res.

Policy 2021, 51, 104428. [CrossRef]
24. Gordo, L.R.; Skirbekk, V. Skill demand and the comparative advantage of age: Jobs tasks and earnings from the 1980s to the 2000s

in Germany. Labour Econ. 2013, 22, 61–69. [CrossRef]
25. Fan, C.C. Interprovincial Migration, Population Redistribution, and Regional Development in China: 1990 and 2000 Census

Comparisons. Prof. Geogr. 2005, 57, 295–311. [CrossRef]
26. Klasen, S.; Nestmann, T. Population, population density and technological change. J. Popul. Econ. 2006, 19, 611–626. [CrossRef]
27. Kangasniemi, M.; Mas, M.; Robinson, C.; Serrano, L. The economic impact of migration: Productivity analysis for Spain and the

UK. J. Prod. Anal. 2012, 38, 333–343. [CrossRef]
28. Anselin, L. Spatial Econometrics: Methods and Models; Springer: Dordrecht, The Netherlands, 1988; Volume XVI, 284p.
29. Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104.

[CrossRef]
30. Anselin, L. Spatial Externalities, Spatial Multipliers, And Spatial Econometrics. Int. Reg. Sci. Rev. 2003, 26, 153–166. [CrossRef]
31. Bivand, R. Spatial econometrics functions in R: Classes and methods. J. Geogr. Syst. 2002, 4, 405–421. [CrossRef]
32. Bivand, R.S. Spatial Econometric Functions in R. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications;

Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 53–71.
33. Beenstock, M.; Felsenstein, D. Spatial Data Analysis and Econometrics. In The Econometric Analysis of Non-Stationary Spatial Panel

Data; Springer Science and Business Media LLC: Cham, Switzerland, 2019; pp. 49–69.
34. Arbia, G. A Primer for Spatial Econometrics; Palgrave Macmillan: London, UK, 2014.
35. Bloom, D.; Williamson, J. Demographic Transitions and Economic Miracles in Emerging Asia. Demogr. Transit. Econ. Miracles

Emerg. Asia 1997, 12, 419–455.
36. Luo, S.; Shi, Y.; Sun, Y.; Zhao, Z.; Zhou, G. Can FDI and ODI two-way flows improve the quality of economic growth? Empirical

Evidence from China. Appl. Econ. 2021, 53, 5028–5050. [CrossRef]
37. Zhou, J.; Raza, A.; Sui, H. Infrastructure investment and economic growth quality: Empirical analysis of China’s regional

development. Appl. Econ. 2021, 53, 2615–2630. [CrossRef]
38. Malthus, T.R. An Essay on the Principle of Population; J. Johnson: London, UK, 1798.
39. Galor, O.; Weil, D.N. Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and

Beyond. Am. Econ. Rev. 2000, 90, 806–828. [CrossRef]
40. Galor, O. Unified Growth Theory and Comparative Development. In From Malthus’ Stagnation to Sustained Growth: Social,

Demographic and Economic Factors; Chiarini, B., Malanima, P., Eds.; Palgrave Macmillan: London, UK, 2012; pp. 5–17.
41. Shephard, R.J. Aging and productivity: Some physiological issues. Int. J. Ind. Ergon. 2000, 25, 535–545. [CrossRef]
42. Ang, J.B.; Madsen, J.B. Imitation versus innovation in an aging society: International evidence since. J. Popul. Econ. 2015, 28,

299–327. [CrossRef]
43. Benhabib, J.; Spiegel, M.M. The role of human capital in economic development evidence from aggregate cross-country data. J.

Monetary Econ. 1994, 34, 143–173. [CrossRef]
44. Pritchett, L. Where Has All the Education Gone? World Bank Econ. Rev. 2001, 15, 367–391. [CrossRef]
45. Kremer, M. Population Growth and Technological Change: One Million B.C. to Q. J. Econ. 1993, 108, 681–716. [CrossRef]
46. North, D.C. The Rise of The Western World; Springer: Berlin/Heidelberg, Germany, 1998; pp. 13–28.
47. Canton, E.J.; de Groot, H.L.; Nahuis, R. Vested interests, population ageing and technology adoption. Eur. J. Politi. Econ. 2002, 18,

631–652. [CrossRef]
48. Lewis, W.A. Economic Development with Unlimited Supplies of Labour. Manch. Sch. 1954, 22, 139–191. [CrossRef]
49. Kwan, F.; Zhang, Y.; Zhuo, S. Labour reallocation, productivity growth and dualism: The case of China. Int. Rev. Econ. Finance

2018, 57, 198–210. [CrossRef]
50. Di Maria, C.; Lazarova, E.A. Migration, human capital formation, and growth: An empirical investigation. World Dev. 2012, 40,

938–955. [CrossRef]
51. Dustmann, C.; Glitz, A.; Frattini, T. The labour market impact of immigration. Oxf. Rev. Econ. Policy 2008, 24, 477–494. [CrossRef]
52. Chen, Y.; Liu, B.; Shen, Y.; Wang, X. Spatial analysis of change trend and influencing factors of total factor productivity in China’s

regional construction industry. Appl. Econ. 2018, 50, 2824–2843. [CrossRef]
53. Aiello, F.; Pupo, V.; Ricotta, F. Explaining Total Factor Productivity at Firm Level in Italy: Does Location Matter? Spat. Econ. Anal.

2014, 9, 51–70. [CrossRef]
54. Scherngell, T.; Borowiecki, M.; Hu, Y. Effects of knowledge capital on total factor productivity in China: A spatial econometric

perspective. China Econ. Rev. 2014, 29, 82–94. [CrossRef]

http://doi.org/10.1186/2193-9039-2-6
http://doi.org/10.1080/10168737.2017.1330356
http://doi.org/10.1080/10042857.2019.1574486
http://doi.org/10.1016/j.respol.2021.104428
http://doi.org/10.1016/j.labeco.2012.09.003
http://doi.org/10.1111/j.0033-0124.2005.00479.x
http://doi.org/10.1007/s00148-005-0031-1
http://doi.org/10.1007/s11123-012-0280-4
http://doi.org/10.1016/0166-0462(95)02111-6
http://doi.org/10.1177/0160017602250972
http://doi.org/10.1007/s101090300096
http://doi.org/10.1080/00036846.2021.1914318
http://doi.org/10.1080/00036846.2020.1863325
http://doi.org/10.1257/aer.90.4.806
http://doi.org/10.1016/S0169-8141(99)00036-0
http://doi.org/10.1007/s00148-014-0513-0
http://doi.org/10.1016/0304-3932(94)90047-7
http://doi.org/10.1093/wber/15.3.367
http://doi.org/10.2307/2118405
http://doi.org/10.1016/S0176-2680(02)00112-X
http://doi.org/10.1111/j.1467-9957.1954.tb00021.x
http://doi.org/10.1016/j.iref.2018.01.004
http://doi.org/10.1016/j.worlddev.2011.11.011
http://doi.org/10.1093/oxrep/grn024
http://doi.org/10.1080/00036846.2017.1409421
http://doi.org/10.1080/17421772.2013.863428
http://doi.org/10.1016/j.chieco.2014.03.003


Sustainability 2022, 14, 4195 19 of 19

55. Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [CrossRef]
56. Anselin, L. Spatial dependence and spatial structural instability in applied regression analysis. J. Reg. Sci. 1990, 30, 185–207.

[CrossRef]
57. Beugelsdijk, S.; Klasing, M.J.; Milionis, P. Regional economic development in Europe: The role of total factor productivity. Reg.

Stud. 2018, 52, 461–476. [CrossRef]
58. Yu, D.; Lv, B. Challenging the Current Measurement of China’s Provincial Total Factor Productivity: A Spatial Econometric

Perspective. China Soft Sci. 2009, 11, 160–170.
59. Yu, D.-L. Spatially varying development mechanisms in the Greater Beijing Area: A geographically weighted regression

investigation. Ann. Reg. Sci. 2006, 40, 173–190. [CrossRef]
60. Yu, D.; Wei, Y.D. Spatial data analysis of regional development in Greater Beijing, China, in a GIS environment. Pap. Reg. Sci.

2008, 87, 97–117. [CrossRef]
61. Yu, D. Understanding regional development mechanisms in Greater Beijing Area, China, 1995–2001, from a spatial–temporal

perspective. GeoJournal 2013, 79, 195–207. [CrossRef]
62. Ying, H.; Lv, B.Y.; Yu, D.L. How does spatial proximity to the high-speed railway system affect inter-city market segmentation in

China: A spatial panel analysis. Eurasian Geogr. Econ. 2021, 63, 55–81.
63. Yu, D.; Zhang, Y.; Wu, X.; Li, D.; Li, G. The varying effects of accessing high-speed rail system on China’s county development: A

geographically weighted panel regression analysis. Land Use Policy 2021, 100, 104935. [CrossRef]
64. Rizov, M.; Zhang, X. Regional disparities and productivity in China: Evidence from manufacturing micro data. Pap. Reg. Sci.

2013, 93, 321–339. [CrossRef]
65. Thomas, V.; Wang, Y.; Fan, X. Measuring Education Inequality: Gini Coefficients of Education; The World Bank: Washington, DC,

USA, 1999.
66. Gallo, J.; Ertur, C. Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980–1995. Pap. Reg.

Sci. 2005, 82, 175–201. [CrossRef]
67. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
68. Elhorst, J.P. Spatial Panel Data Models. In Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer:

Berlin/Heidelberg, Germany, 2014; pp. 37–93.
69. Huang, H.; Lv, C.; Lee, E. The Influence of “Four Trillion Investment” Policy on Firm Investment Efficiency. Account. Res. 2016, 2,

51–57.

http://doi.org/10.2307/143141
http://doi.org/10.1111/j.1467-9787.1990.tb00092.x
http://doi.org/10.1080/00343404.2017.1334118
http://doi.org/10.1007/s00168-005-0038-2
http://doi.org/10.1111/j.1435-5957.2007.00148.x
http://doi.org/10.1007/s10708-013-9500-3
http://doi.org/10.1016/j.landusepol.2020.104935
http://doi.org/10.1111/pirs.12051
http://doi.org/10.1111/j.1435-5597.2003.tb00010.x
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x

	Introduction 
	Literature Review 
	The Demographic Effects on Productivity 
	Productivity Measure and Other Control Variables 
	The Advance and Application of Spatial Data Analysis Methods 

	Data and Methodology 
	Data Sources and Preprocess 
	TFP and Demographic Variables 
	Control Variables and Models 
	Methodology 
	Exploratory Spatial Data Analysis (ESDA) 
	Spatial Regression Models 


	Results and Discussion 
	Examining Spatial Autocorrelation with ESDA 
	Regression Results 

	Conclusions 
	References

