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Abstract: Global warming affects the hydrological characteristics of the cryosphere. In arid and
semi-arid regions where precipitation is scarce, glaciers and snowmelt water assume important
recharge sources for downstream rivers. Therefore, the simulation of snowmelt water runoff in
mountainous areas is of great significance in hydrological research. In this paper, taking the Hutubi
River Basin in the Tianshan Mountains as the study area, we used the “MODIS Daily Cloud-free
Snow Cover 500 m Dataset over China” (MODIS_CGF_SCE) to carry out the Snowmelt Runoff Model
(SRM) simulation and evaluated the simulation accuracy. The results showed that: (1) The SRM
preferably simulated the characteristics of the average daily flow variation of the Hutubi River from
May to October, from 2003–2009. The monthly total runoff was maximum in July and minimum in
October. Extreme precipitation events influenced the formation of flood peaks, and the interannual
variation trend of total runoff from May to October was increased. (2) The mean value of the volume
difference (DV) during the model validation period was 8.85%, and the coefficient of determination
(R2) was 0.73. In general, the SRM underestimates the runoff of the Hutubi River, and the simulation
accuracy is more accurate in the normal water period than in the high-water period. (3) By analyzing
MODIS_CGF_SCE from 2003 to 2009, areas above 3200 m elevation in the Hutubi River Basin were
classified as permanent snow areas, and areas below 3200 m were classified as seasonal snow areas. In
October, the snow area in the Hutubi River Basin gradually increased, and the increase in snow cover
in the permanent snow area was greater than that in the seasonal snow area. The snowmelt period
was from March to May in the seasonal snow area and from May to early July in the permanent snow
area, and the minimum snow cover was 0.7%.

Keywords: snowmelt runoff model; MODIS snow cover dataset; Tianshan; Hutubi River

1. Introduction

Global snowmelt-dominated rivers are mainly distributed above 45◦ in the northern
and southern hemispheres, and high-altitude mountainous regions are the most widely
distributed areas for snowmelt runoff [1,2]. Snowpack and glaciers are natural freshwater
reservoirs that provide stable water recharge for downstream rivers. Especially in arid
regions where rainfall is scarce, meltwater greatly affects the year-round needs for down-
stream irrigation, domestic water, and industrial processing [3–6]. The Tianshan Mountains
are the largest mountain range in Central Asia and are known as the “Water Tower of
Central Asia”. They are located in the hinterland of the Eurasian continent and have a
wide distribution of snow and glaciers in the mountainous region. About 98% of the rivers
originate in the mountainous region [7–9]. The snowmelt water accounts for 20–60% of
the rivers and provides important river recharge for the arid regions of Central Asia. With
global warming, the snow and glacier coverage in the northern hemisphere has begun
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to gradually shrink, the snow period has been shortened, the snowmelt period has been
early, and the frequency of spring floods has increased [10–12]. In recent years, the alpine
snow area in the Tianshan region has decreased by 26.8–36.7% due to global warming [13],
and the trend of shrinking is basically consistent with the worldwide snow accumulation
change [14,15], but there are still differences in some partial mountainous areas. The change
in snow cover leads to the change in hydrological characteristics of snowmelt runoff. There-
fore, in order to utilize the snowmelt runoff resources more effectively and reduce the loss
of life and property caused by floods, it is important to carry out the simulation study of
snowmelt runoff in the Tianshan region.

In recent years, many scholars have carried out research on snowmelt runoff in the
Tianshan Mountains. Shen, Y.-J. et al. [16] combined station data with APHRODITE data
through the Mann–Kendall test and found that the snowmelt runoff in the Toxkon, Kumalik,
Kaidu, and Huangshuigou basins, in the southern foothills of Tianshan, significantly
increased in spring and winter. Deng, H. et al. [17] integrated literature, remote sensing
data, and runoff data to analyze the glacial snow water resources in the middle Tianshan
region. They have found that glacier thickness is decreasing and snow meltwater is
increasing, which leads to the increase in river flow in this area, among which Aksu River
has the most significant increase. Chen, H. et al. [18] used a large amount of hydrological,
meteorological, and glacial data to quantify the difference in the contribution to a runoff
between glacier and snowmelt for northern and central Tianshan. The results showed that
the contribution of snow accumulation in northern Tianshan is 36%, which is 31% higher
than the contribution of the glacier. With the rapid development of hydrological models [19],
the numerical simulation of snowmelt runoff in mountainous areas has received great
attention [20,21], and scholars in China have achieved valuable results in snowmelt runoff
simulation experiments in the Tianshan region. Liu, Y. et al. [22] used an improved energy
balance model, namely “UEBGrid”, to simulate the proportion of rainfall, glacial meltwater,
and snow meltwater, in the three typical spring flood formations in the Manas River on the
northern slope of the Tianshan Mountains. The results showed that the floods are mainly
caused by snow meltwater in low-altitude mountains, which accounts for 90% of the total
runoff. Wang, X. et al. [23] also conducted runoff simulations in the Manas River Basin
using an improved HBV model and concluded that from April to June, the runoff recharge
in the Manas River is mainly snowmelt. Zhao, Q. et al. [24] found that, compared with the
traditional VIC, the VIC coupled with the glacier ablation model has higher accuracy. In
addition, affected by climate warming, the ablation rate of snow and ice in the Toxkan and
Kunma Like basins, which are mainly recharged by snow and ice meltwater, increased, the
ablation period was extended, and the snowmelt runoff in spring and autumn increased
significantly. Ma, H. and Cheng, G. [25], earlier, applied the Snowmelt Runoff Model to
mountainous areas in northwest China and performed a runoff simulation in the Gongnaisi
River Basin of western Tianshan Mountains as the study area. The results confirmed the
applicability of the model in the watershed, while the occurrence of snowmelt runoff would
be advanced to early spring under the assumed 4 ◦C temperature increase scenario.

The sparse distribution of ground stations and the scarcity of data information are
major challenges for the simulation of snowmelt runoff in mountainous areas [26]. With
the development of remote sensing technology, remote sensing data with high spatial and
temporal resolution can make up for the lack of ground data [27]. Among the hydrological
models, the Snowmelt Runoff Model (SRM) has been widely used to simulate snowmelt
runoff in mountainous areas. The SRM is a conceptual hydrological model, based on the
degree-day factor [28,29]. It is also one of the typical hydrological models that use remotely
sensed data as the main input variable [30]. Therefore, it is more suitable for simulating
snowmelt runoff in mountainous areas, where information is scarce.

MOD10A2 is an 8-day snow cover composite product that is a composite of 2 to 8
daily snow cover products from the Moderate Resolution Imaging Spectroradiometer [31].
MOD10A2 is the most commonly used remote sensing data for snow cover area (SCA) and
has been used in many mountain snowmelt runoff simulation studies [32,33]. Some scholars
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also used the remote sensing data of Landsat 7 and MOD10A2 to retrieve snow areas to
drive SRM and achieved good results [34]. In the last five years (2017–2021), research on
SRM had improved the availability and simulation accuracy of the SRM in areas where
data is scarce. On the other hand, it highlighted the ability of SRM to predict snow and ice
meltwater runoff under climate change. Javeria Saleem et al. [35] performed SRM in the
Hunza watershed and the results showed that regional warming affects local hydrological
characteristics. Caitriona Steele et al. [36] compared the accuracy of the application of snow
cover product from MODIS and Landsat TM in the SRM, and the two products were in high
agreement in terms of snow cover area, but Landsat TM snow cover product MODSCAG
was more suitable for the SRM when the study watershed area was less than 4000 km2.
Huma Hayat et al. [37] used the Digital Elevation Model (DEM) of Japanese Advanced Land
Observation Satellite (ALOS), with 12.5 m spatial resolution, to analyze the accuracy of the
runoff simulation by basin and zones. The results showed that the accuracy of the basin
was higher in the same study region. Muhammad Adnan et al. [38] predicted changes
in temperature and rainfall in the Gilgit River Basin using the regional climate model
PRECIS, and the runoff would increase by 35–40% under the scenario of a 3 ◦C increase in
the average temperature of the year. Meanwhile, the expansion of snow and glacier area
due to greater precipitation would also increase the runoff volume. Muhammad Azmat
et al. [30] carried out future runoff simulation prediction using SRM, HEC-HMS, and the
increase in the runoff for the former scenario was less than that of the latter under higher
temperature and greater precipitation. All these findings will contribute to the research on
the hydrology of the cryosphere under climate change.

In 2020, the National Cryosphere Desert Data Center in China released the first version
of the “China MODIS daily cloud-free 500 m snow area product dataset” (MODIS_CGF_SCE
V01) [39], which has a higher temporal resolution than MOD10A2 and better meets the
needs of snow variables in SRM. However, there are very few applications that use this
dataset in SRM, and little is known about whether the dataset is more suitable to obtain
better results in SRM. Therefore, in this paper, we used the MODIS_CGF_SCE as the data
source to calculate the snow area and carry out the snowmelt runoff simulation experi-
ments in the Hutubi River Basin, in the middle part of the northern slope of the Tianshan
Mountains. The results of the simulation were taken to evaluate the applicability of the
SRM in the Hutubi River Basin.

2. Materials and Methods
2.1. Study Area

The Hutubi River Basin is located in the middle of the northern slope of the Tianshan
Mountains in China (86◦05′–87◦08′ N, 43◦07′–45◦20′ E) and is about 258 km long from north
to south and 40 km wide from east to west, with a total area of 10,255 km2. The topography
of the basin is higher in the south and lower in the north, with 35% mountains, 40% plain,
and 25% desert distributed from south to north. The geological characteristics of the plains
are characterized by the transformation from pebbles and gravels to gravelly coarse sand,
medium-coarse sand, and fine sand. The irrigated agricultural area is distributed in the
plain area with an area of 867 km2 [40]. The Hutubi River Basin has a continental climate,
with hot summer and cold winter. The area is abundantly illuminated with a multi-year
average temperature of 6.7 ◦C, average precipitation of 171.2 mm, and the annual runoff is
about 4.7 × 108 m3. The basin is rich in snow and ice resources, with an annual snowmelt
volume of about 0.524 × 108 m3 [41]. In the spring, the runoff recharge is mainly snow
meltwater, and more than 50% of water resources in the irrigation area come from snow
meltwater [42]. The study area of this paper is the catchment area above the Shimen
hydrological station of Hutubi River, with an area of 1840 km2, a mean elevation of 2984 m,
and a river longitudinal drop ratio of 23.13%. This area is the main area of runoff formation,
the river is 88 km long, the total surface flow accounts for 93.6% of the whole river, and
the interannual variation is small [43]. Thus, this area is unique and representative in the
simulation of snowmelt runoff in the Tianshan region. The study area is shown in Figure 1.
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Figure 1. Schematic diagram of the study area.

2.2. Materials

The data used in this paper include remotely sensed data, meteorological data, and
hydrological data. The remotely sensed data are Digital Elevation Model (DEM) data and
snow product data. The DEM data, which is the basis of terrain analysis in the study area,
was derived from ASTER GDEM V2 (https://www.gscloud.cn, accessed on 1 January
2020). The DEM data was developed and improved with the participation of NASA
and had a spatial resolution of 30 m. The snow data is “MODIS Daily Cloud-free Snow
Cover 500 m Dataset over China“ (MODIS_CGF_SCE) (http://www.crensed.ac.cn/portal/,
accessed on 1 January 2020), which was calculated based on MODIS day-by-day surface
reflectivity products MOD09GA and MYD09GA [44] with a spatial resolution of 500 m and
a daily temporal resolution. The data cover all regions of China. The meteorological data
and hydrological data were obtained from the Hutubi River Shimen hydrological station,
including daily precipitation, average daily temperature, and average daily flow. The time
range of the data is 2003–2009.

2.3. SRM and Parameter Determination
2.3.1. Model Structure

The SRM is a conceptual hydrological model based on the degree-day factor developed
by J. Martinec [28]. The initial experiments were carried out in a small watershed of
43.3 km2 in Europe. With the development of remote sensing technology, the acquisition of
snow areas by satellite has made the application of SRM more extensive, and the maximum
watershed area has now reached 9.17 × 105 km2 with a maximum elevation of 8840 m [45].
The model converts the daily snowmelt and rainfall in different elevation range into the
average daily flow, which can be calculated by Equation (1):

Qn+1 = [CS · a · (Tn + 4T) · Sn + Cr · Pn] ·
A · 10, 000

86, 400
· (1 − kn+1) + Qn · kn+1 (1)

where Q represents the average daily flow (m3·s−1), CS is the snowmelt runoff coefficient,
Cr is the rainfall-runoff coefficient, a represents the degree-day factor (cm·◦C−1·d−1), T
represents the number of degree-day factors (◦C·d),4T represents the modified value of
the degree-day factor (◦C·d), S is the ratio of the snow cover area to the total area, P is the
daily precipitation (cm), A is the watershed area (km2), 10,000/86,400 converts units to
m3·s−1, k represents the runoff recession coefficient, and n is the sequence of days during

https://www.gscloud.cn
http://www.crensed.ac.cn/portal/
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the discharge computation period. In addition, based on climate trends, the SRM can
predict forward runoff based on the rainfall, temperature, and snow characteristics of the
predicted scenarios. The structure of the SRM is illustrated in Figure 2.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 23 
 

nSn+1 n r n n+1 n n+1

A 10,000
Q = [ a ( + T) S + C P ] 1 k + Q kC T

86,400


     − （ ）  (1) 

where Q represents the average daily flow ( m3 · s−1 ), SC  is the snowmelt runoff 

coefficient, rC is the rainfall-runoff coefficient, a  represents the degree-day factor (cm ·

°C−1 · d−1), T represents the number of degree-day factors (°C · d), T  represents the 

modified value of the degree-day factor (°C · d), S is the ratio of the snow cover area to the 

total area, P is the daily precipitation (cm), A  is the watershed area (km2), 10,000/86,400 

converts units to m3 · s−1 , k represents the runoff recession coefficient, and n is the 

sequence of days during the discharge computation period. In addition, based on climate 

trends, the SRM can predict forward runoff based on the rainfall, temperature, and snow 

characteristics of the predicted scenarios. The structure of the SRM is illustrated in Figure 

2. 

Observed,for
ecast,or 

normalied  
meteorologi

cal data

Temperature (daily 
average or 
max/min)

Precipitation data

Remote 
Sensing data

Daily snow 
cover/ice extent of 
each zone or unit

Daily average 
temperature for 

each elevation zone 
or hydrological unit

Lapse 
rate

Climate Change 
Algorithm

Daily precipitation 
(type,total) for each 

zone or unit

Critical 
temperature

Climate Change 
Algorithm

Degree Day Total
Zone or Unit 

Snowmelt

Degree Day 
Coeffcient

Rainfall

Transitory Snowfall

Zone or Unit 
Runoff

Runoff 
Coeffcient

Basin Runoff

Lag 
Time

 

Figure 2. Working principle and structure of SRM. 

The simulation accuracy of SRM is generally evaluated by two coefficients, i.e., the 

coefficient of determination (R2) and the volume difference (DV), which can be calculated 

by the following equations: 

n n
2 ' 2 2

i i i
i=1 i=1

R = 1 (Q Q ) (Q Q) − − −  (2) 

'
V R R RD = 100 V V V−（ ）  (3) 

where iQ  and '
iQ  are the measured and simulated average daily flows, respectively; 

Q  is the simulated period average flows, 𝑛 is the simulated time series, and RV  and 

'
RV  are the total measured and simulated runoff (m3), respectively. R2 is in the range of 

0–1. The closer the value of R2 to 1, the higher the simulation accuracy; the closer the 

absolute value of DV to 0, the higher the simulation accuracy. In addition, the simulation 

accuracy was also evaluated by Pearson correlation coefficient r. 

2.3.2. Elevation Zone 

Elevation zoning is the basic treatment before the model runs, and the study 

watershed is divided into several sub-regions according to the elevation intervals. In this 

paper, the study area was divided into 7 elevation zones with a 500-m elevation interval, 

and the area of each elevation zone was calculated separately. The elevation at one-half of 

the area is determined, which is referred to as the mean elevation. The mean elevation is 

Figure 2. Working principle and structure of SRM.

The simulation accuracy of SRM is generally evaluated by two coefficients, i.e., the
coefficient of determination (R2) and the volume difference (DV), which can be calculated
by the following equations:

R2 = 1−
n

∑
i=1

(Qi −Q′i)
2/

n

∑
i=1

(Qi −Q)
2 (2)

DV = 100 · (VR −V′R
)
/VR (3)

where Qi and Q′i are the measured and simulated average daily flows, respectively; Q is
the simulated period average flows, n is the simulated time series, and VR and V′R are the
total measured and simulated runoff (m3), respectively. R2 is in the range of 0–1. The closer
the value of R2 to 1, the higher the simulation accuracy; the closer the absolute value of
DV to 0, the higher the simulation accuracy. In addition, the simulation accuracy was also
evaluated by Pearson correlation coefficient r.

2.3.2. Elevation Zone

Elevation zoning is the basic treatment before the model runs, and the study watershed
is divided into several sub-regions according to the elevation intervals. In this paper, the
study area was divided into 7 elevation zones with a 500-m elevation interval, and the area
of each elevation zone was calculated separately. The elevation at one-half of the area is
determined, which is referred to as the mean elevation. The mean elevation is an important
parameter of the model input variables. The distribution of elevation zones in the study
area is shown in Figure 3, and Table 1 shows the information of each elevation zone.
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Table 1. A–G elevation zones information sheet.

Zone Elevation Range/m Average Elevation/m Area/km2

A 1196–1696 1565 57
B 1696–2196 1864 223
C 2196–2696 2450 390.25
D 2696–3196 2960 439.75
E 3196–3696 3542 583
F 3696–4196 3850 324.25
G 4196–4696 4292 12.5

2.3.3. Model Variables

Daily snow cover area (SCA), average daily temperature, and daily precipitation are
the three input variables of SRM. SCA is the ratio of snow area to the total area in an
elevation zone. The snow area was obtained from the MODIS_CGF_SCE and divided into
six types of features. As shown in Table 2, each image value represents a land type.
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Table 2. MODIS_CGF_SCE pixel digital number and representative land type.

Pixel Digital Number Land Type

0 Land
1 snow cover
2 Snow water equivalent interpolation of snow
3 Inland water or ocean
4 Glacier

255 Filling value

Since there is no experiment on the application of MODIS_CGF_SCE in the SRM
model, this simulation extracted the pixel digital number with the values of 1, 2, and 4 as
the snow-covered surface types and combined them with the elevation zone to determine
the snow coverage rate. The temperature and precipitation data were obtained from the
Shimen hydrological station. The temperature and precipitation at the mean elevation
were used as input to the SRM model. Thus, when the station elevation disagreed with
the mean elevation of the elevation zone, the temperature and precipitation at the mean
elevation were determined by the derivation of station values. The temperature is generally
calculated according to the formula for the direct temperature drop rate.

T = T +4T (4)

4 T = γ(hst − h)/100 (5)

where T is the average daily temperature at the mean elevation (◦C·d), T is the average
daily temperature at the station, 4T is the temperature correction value, γ is the direct
temperature drop rate, which is taken as 0.3 ◦C/100 m, 0.67 ◦C/100 m, and 0.26 ◦C/100 m,
respectively, depending on the season [46]. hst is the elevation where the station is located,
and h is the mean elevation of the elevation zone. The derivation of precipitation is similar
to that of temperature. In general, precipitation in mountainous areas increases with
elevation. In this paper, we refer to the results of Ji, X. and Chen, Y. [47], and adopt different
precipitation change rates in three elevation ranges (<2500 m; 2500–3700 m; >3700 m).

2.3.4. Model Parameters

The main parameters of the model include degree-day factor a (cm·◦C−1·d−1), runoff
coefficient C, critical temperature TCRIT (◦C), runoff recession coefficient k, lag time L (h),
and temperature lapse rate γ. The degree-day factor indicates the depth of snowmelt per
1 ◦C increase in temperature and is often expressed by the empirical formula between snow
density and water density.

a = 1.1ρs/ρw (6)

where ρS refers to the snow density, and ρW is the water density. The runoff coefficient in-
cludes snowmelt runoff coefficient (CS) and rainfall-runoff coefficient (Cr), which represent
the contribution of snowmelt and rainfall to runoff, respectively. The critical temperature
TCRIT is used to determine the precipitation pattern. When the average daily temperature is
higher than the critical temperature, the precipitation is considered rainfall and is controlled
by the rainfall-runoff coefficient, which is directly applied to the runoff simulation. On
the contrary, when the average daily temperature is lower than the critical temperature,
the precipitation is considered snowfall and is stored on the surface, which is calculated
as snow meltwater when the temperature rises. Usually, the critical temperature value
is larger at the beginning of snowmelt and smaller at the end. Runoff recession factor k
represents the natural decrease in the percentage of runoff volume in the absence of rainfall
or snowmelt to recharge runoff. The value of k is defined as the ratio of two adjacent days
of runoff data, as shown in the following equation:

kn = Qn+1/Qn (7)



Sustainability 2022, 14, 4067 8 of 20

where Qn and Qn+1 are the average daily flow of the current day and the next day in the
unit of m3·s−1, respectively. Since the runoff rate changes from time to time, the values of k
can be further expressed as

kn+1 = x ·Q−y
n (8)

where x and y are constants, whose values can be obtained by logarithmical solving:

log k1 = log x− y log Q1 (9)

log k2 = log x− y log Q2 (10)

Then, the values of x, y, and k under the time series can be determined. L refers to the
delay time for the recharge source to reach the hydrographic cross-section. Equations (1)–(10)
were derived from the research of J. Martinec et al. [45]. The study area of this paper is
the Hutubi River Basin where no scholars have worked on SRM research, and there is a
lack of snowpack and meteorological data. Therefore, in this paper, we referred to the
results of the research on SRM models in Xinjiang to determine the initial parameter range
and then conducted simulation experiments with 3 years of data through the empirical
regression analysis, with the final parameter scheme determined when the results reached
the optimum [48]. The parameters γ and k have been proposed as calibration methods in
the previous section, and the a, C, TCRIT, and L are the main calibrated parameters in this
paper. Statistically, the range of values of a, C, TCRIT, and L [25,49–52] for research on SRM
in Xinjiang mountainous region are shown in Table 3.

Table 3. Initial parameter range.

Parameter Value Range

a 0.15–0.36
CS 0.2–0.73
Cr 0.05–0.9

TCRIT 0–3
L 3–18

Table 3 was applied as the initial parameter substituted to the database of 2003–2005
for runoff simulation, and the parameters of SRM were calibrated according to the method
of Martince et al. [44]. Martince et al. suggested that the degree-day factor was a value
that varied with the snowmelt season and was non-constant, with illumination and wind
speed affecting the value. It should be noted that when glaciers are involved in the study
area, a is usually greater than 0.6 cm·◦C−1·d−1, which decreases in the advanced period of
snowmelt, under the influence of snowfall. The C is larger in the early stage of snowmelt
and decreases in the later stage. It is due to the insignificant loss of recharge of runoff
from snowmelt and precipitation in the early stage. As the snowmelt process continues,
vegetation and soil are exposed on the ground surface, which retains part of the surface
runoff, thus causing the C to be decreased. During simulation months of May–October,
the trend of temperature change during this period increases and then decreases, and the
rainfall mainly occurs in June–August, so the C is higher in June–August and lowers in May,
September, and October. For abnormal weather such as heavy rainfall, the temperature
suddenly declines and then rises steeply, and the daily runoff coefficients need to be
specifically adjusted. With heavy rainfall, the Cr would need to be adjusted downward
suitably; with a steep rise in temperature, the Cs need to be increased. This situation was
observed from May to October in 2003–2005. The a of this calibration result was different
compared with Table 3. Considering the presence of glaciers in the Hutubi River Basin, the
runoff simulation results with a maximum a value of 0.36 cm·◦C−1·d−1 did not achieve
the best accuracy, but when the value was increased to 0.5 cm·◦C−1·d−1, the simulation
results were closer to the measured data. The critical temperature is basically consistent
with Table 3. The precipitation pattern at high temperatures is mainly rainfall, so the Tcrit is
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lower in the high-temperature season [52]. L has a correlation with the size of the watershed
area, referring to Martinec’s research, the 2170 km2 runoff lag time is 12.5 h, our study area
is 2029.5 km2, so the value is taken as 12 h in this paper. Parameter calibration is a cyclical
process, and the results of this simulation were finally determined after several adjustments
as shown in Table 4.

Table 4. Variation range/value of each parameter of SRM.

Month a CS Cr TCRIT x y γ

May 0.08–0.2 0.1–0.5 0.1–0.15 2

1.02 0.1

0.3June 0.2–0.35 0.5–0.8 0.15–0.7 1.5
July 0.2–0.35 0.8–1 0.2–0.6 0.5

0.67August 0.35–0.5 0.58–1 0.2–0.5 0.5
September 0.28–0.5 0.3–0.5 0.1–0.5 1.5

0.23October 0.35 0.3 0.1 1.5

3. Results
3.1. Snow Cover Characteristics

By analyzing the annual trend of SCA in each elevation zone, it can be observed that
the zero-snow cover occurred continuously in the A–D elevation zones (1196–3196 m),
between July and August, so the area below 3200 m elevation was classified as seasonal
snow area (1110 km2), and the area above 3200 m as permanent snow area (919.75 km2)
in this paper. The seasonal snow area accounts for more than half of the total area of the
study area. According to the change curves of SCA, between the seasonal snow area and
permanent snow area in the Hutubi watershed from 2003 to 2009 (Figure 4), the following
observations can be obtained: (1) The trends of SCA of the seasonal snow area (black solid
line) and permanent snow area (red solid line) are generally the same, and the SCA of
the permanent snow area is usually larger than that of the seasonal snow area. (2) The
seasonal snow starts to accumulate gradually in October, and the SCA is less than 0.1 from
October to early November. The SCA increases significantly from mid-November, and
the main period of seasonal snow distribution is from mid-November to February, with a
maximum annual mean SCA of 0.3. The seasonal snow gradually melts in March, and the
melting process ends at the end of May. (3) In summer (July–August), the snow cover in
the study area is minimal, and the minimum annual mean SCA in the permanent snow
area is 0.007. Compared with the seasonal snow area, the SCA in the permanent snow area
increases significantly in early October, with an SCA of 0.34. The SCA in the permanent
snow area increases again in early November, and the main period of permanent snow area
distribution is from mid-November to mid-May, with high snow cover lasting for 6 months
and a maximum annual mean SCA of 0.46. The maximum average annual SCA is 0.46. The
ablation process in the permanent snow area mainly occurs from late May to early July.

3.2. Runoff Characteristics

The measured average daily flow (black solid line) and the simulated average daily
flow (red solid line) of the Hutubi River from 2003 to 2009 are shown in Figure 5. From the
figure, 2003–2005 is the rate period and 2006–2009 is the validation period. From May to
October, the flow of the Hutubi River first increases and then decreases. The flood peak
is concentrated from June to August, which is the high-water period in the Hutubi River.
The maximum average daily flow from 2003 to 2009 was 171 m3·s−1, which occurred on
10 July 2007. May, September, and October are normal water periods, with relatively stable
variations in the average daily flow.
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Figure 4. Characteristics of SCA in the Hutubi River Basin.
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Figure 5. Average daily flow change curve in the Hutubi River from 2003 to 2009.

Figure 6 shows the characteristics of the statistical distribution of the average daily
flow by month from May to October in 2003–2009. The average monthly flow rate in July
is the largest, and the measured and simulated values are 50.9 m3·s−1 and 44.4 m3·s−1,
respectively. The measured values range from 30.5 m3·s−1 to 74.7 m3·s−1 and the simulated
values range from 14.2 m3·s−1 to 92.7 m3·s−1; thus, the simulated values fluctuate more
than the measured values in the distribution range of 10–90%. The average monthly
flow is the smallest in October, and the measured and simulated values are 8.4 m3·s−1
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and 7.9 m3·s−1, respectively. The measured flow varies from 6.0 m3·s−1 to 11.2 m3·s−1

in the distribution range of 10–90%, while the simulated values vary from 1.9 m3·s−1 to
19.5 m3·s−1, with a larger fluctuation range than the measured values.
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Figure 6. Distribution characteristics of average daily flow in 2003–2009.

Figure 7 shows the characteristics of monthly runoff and total flow from May to
October in 2003–2009. The maximum values of the measured monthly runoff in May,
July, August, September, and October were observed in 2007, which were 4.21 × 107 m3,
1.91 × 108 m3, 1.62 × 108 m3, 6.39 × 107 m3, and 2.92 × 107 m3, respectively. The total
measured flow from May to October in 2003–2009 was 4.10 × 108 m3, 3.66 × 108 m3,
4.05 × 108 m3, 3.57 × 108 m3, 5.66 × 108 m3, 3.99 × 108 m3, and 4.58 × 108 m3, respec-
tively, with a generally increasing trend. The total flow from May to October in 2007 was
the largest.

The simulated monthly flow results from 2003 to 2009 are consistent with the measured
values. The simulated values are smaller than the measured values in May of 2004, 2007
and 2008, June of 2003, 2004 and 2006, and September of 2003, 2005, 2007 and 2009. The
difference between the simulated and measured values is most prominent in July and
August of 2003 to 2009, and the simulated values are smaller than the measured values
in July and August of 2003 to 2009. The simulated values in October of 2003, 2004, and
2005 are smaller than the measured values, and the differences between the simulated and
measured values in October of 2007, 2008, and 2009 are small, which are 2.2%, 2.0%, and
0.5% of the measured values, respectively. The total flow variation from May to October in
2003–2009 shows that the simulated value of each year is smaller than the measured value.
In summary, the simulated value is generally smaller than the measured value.

3.3. Simulation Accuracy Evaluation

The model coefficient of determination (R2) and the volume difference (DV) from 2003
to 2009 are shown in Table 5. According to the results of the snowmelt runoff simulation
accuracy comparison, conducted by the World Meteorological Organization (WMO) in 1986,
the mean volume difference (DV) of the SRM model was 5.97% and the mean coefficient of
determination (R2) was 0.81 in the test basins. The R2 of the calibration period outperforms
the WMO statistics. The DV values of 2003 and 2004 are 9.81% and 8.55%, respectively,
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which are both greater than 5.97%, and the DV value of 2005 is 4.48%, which is less than
5.97%. The overall simulation accuracy of 2005 is the best of the calibration period. Overall,
the simulation accuracy of the calibration period is better. The simulation accuracy of
the validation period is lower than that of the calibration period, and the best simulation
accuracy is in 2009, with R2 and DV of 5.07% and 0.77, respectively. The mean value of R2

in the validation period is 0.73, and the mean value of DV is 8.85. Statistically, the mean
accuracy coefficients of R2 and DV for the validation period of SRM in other watersheds
of the Tianshan region in China (Yarkant River, Kashi River, Urumqi River, Manas River,
Kuitun River, and Tashikuergan River [49,53–57]) in the last decade are 0.79 and 6.24%,
respectively. This shows that the accuracy of this SRM simulation in the Hutubi River Basin
is at the same level as the overall accuracy of rivers in the Tianshan region, which confirms
the adaptability of SRM for the snowmelt runoff simulation in the Hutubi River Basin.
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Figure 7. Variation curve of monthly runoff volume in 2003–2009.

Table 5. Model accuracy coefficients in 2003–2009.

Time DV R2

Calibration period
2003 9.81% 0.81
2004 8.55% 0.82
2005 4.48% 0.83

Validation period

2006 8.13% 0.76
2007 13.46% 0.71
2008 8.75% 0.66
2009 5.07% 0.77

The Pearson correlation coefficients r between the measured and simulated aver-
age daily flows during the normal water period (May, September, and October) and the
high-water period (June, July, and August) were compared. The results showed that the
correlation between the measured and simulated values was higher and the runoff simu-
lation was better during the normal water period. The correlations between the normal
water period and the high-water period, from 2003 to 2009, are shown in Figure 8. From
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the figure, it can be seen that the value of r in the normal water period is 0.83, and the value
of r in the high-water period is 0.77.
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Figure 8. Correlation between the measured and simulated values in the Hutubi River Basin in
2003–2009.

4. Discussion
4.1. Impact of Extreme Weather Events on Runoff

With global climate change, the general trend of annual precipitation and tempera-
ture in the Xinjiang region is increasing [58], and the frequency of extreme precipitation
and extreme temperature (high and low temperature) events is increasing, affecting the
characteristics of river flow.

Using percentiles [59], extreme precipitation events from May to October (2003–2009)
were classified with the 95% quantile as the threshold, and daily precipitation events greater
than 17.2 mm were judged as extreme precipitation events. Extremely high temperature and
extremely low temperature were classified using the 95% and 5% quantile as the threshold.
The events higher than 24.1 ◦C were judged as extremely high temperature and those lower
than 4.2 ◦C were judged as extremely low temperature. From May to October, there were
21 extreme precipitation events, among which 7 extreme precipitation events occurred
in May, with a probability of 33%, 5 extreme precipitation events occurred in June, and
6 extreme precipitation events occurred in July. The probability of extreme precipitation
events occurring in August and September was low, and there was only one extreme
precipitation event in September, and no extreme precipitation event in October. May had
the highest frequency of extreme precipitation events, but its direct impact on runoff was
relatively minor and there was no significant growth of flow, which may be explained
by the fact that May was in a period of fluctuating temperature rise, with lower average
temperatures and even extreme cold weather. When the temperature is low, precipitation
is stored on the surface, in the form of snow, and continues to recharge the runoff as the
temperature rises. For example, the maximum extreme precipitation of the simulated
period from 2003 to 2009 occurred on 25 May 2009, with 42.5 mm of precipitation and an
average daily flow of 17.4 m3·s−1. On the next day, the extremely low temperature was
4.1 ◦C and the average daily flow was 14.9 m3·s−1, which was less than the flow on May 25.
Although the flow on May 25 and 26 did not increase significantly, the snow cover in the
study area increased from 20% to 73%. The difference between the snow area in the study
area on 25 and 26 May 2009 is shown in Figure 9.
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Figure 9. Change in snow area under maximum extreme events in May 2009 (accessed on
10 January 2020).

Extreme precipitation events from June to July are one of the most important factors
influencing flood peak formation, which may form on the same day or the day after
extreme precipitation occurs during that period. The most prominent flow variation was
observed on 10 July 2007, when the extreme precipitation was 20 mm and the flow was
171 m3·s−1. Compared to the previous day’s flow of 45.4 m3·s−1, the difference was
125.6 m3·s−1. In addition to extreme precipitation events, the occurrence of continuous
non-extreme precipitation may also lead to the formation of flood peaks. For example, in
2007, precipitation occurred from 22 to 28 July, and the flow on 29 July was 154 m3·s−1,
which was increased by 71.1 m3·s−1 from 82.9 m3·s−1 on 28 July. Figure 10 shows the
average daily flow and precipitation variation in July 2007. The reason for the smaller
effect of extremely high temperature on flow variation from June to July, compared to
extreme precipitation, is that June and July are the periods of minimal snow cover and
minimal snowmelt recharge. The probability of extreme precipitation events from August
to September is small. Thus, the flood formation in August is related to continuous
precipitation, and the flow gradually decreases, starting in September. October is the main
period when extremely low temperature events occur, and precipitation starts to change
from rainfall to snowfall, which, in turn, is stored as snow and rarely recharges to runoff.
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Figure 10. The average daily flow and precipitation variation in July 2007.

4.2. Uncertainty Analysis and Optimization

In this study, the simulation results are generally smaller than the measured values.
The uncertainties in the hydrological model simulations arise from the model structure,
input variables, and parameters. The SRM model establishes the relationship between
snow, rainfall, and runoff, and achieves better simulation results in different watersheds.
Although snow and rainfall are the main recharge for snowmelt runoff in mountainous
areas, groundwater is also one of the sources of water recharge for rivers in the Tianshan
region [60]. Therefore, the lack of groundwater recharge may cause the simulated values
to be lower than the measured values. In contrast to the uncertainties arising from the
model structure, researchers have focused on the uncertainties arising from the variables
and parameters and studied their optimization methods.

Insufficient precipitation data is one of the factors contributing to the high uncertainty
of SRM input variables. Therefore, when the actual precipitation at a high elevation is
greater than that at a low elevation, using low elevation precipitation data as the overall
input will underestimate the precipitation and lead to smaller simulation results than
the measured values. To optimize this uncertainty, attempts have been made to improve
the accuracy of precipitation variables by combining remotely sensed precipitation data
to compensate for the lack of site data. For example, in 2018, Liu, J. et al. [61] analyzed
the applicability of four types of precipitation data, i.e., TRMM 3B42RT, TRMM 3B42V7,
CMORPH RAW, and CMORPH CRT, in the simulation of runoff in the Yurungkash River
Basin in Xinjiang, and found that TRMM 3B42V7 has a better simulation accuracy. The Eu-
ropean Centre for Medium-Range Weather Forecasts’ (ECMWF) precipitation data, with a
higher spatial accuracy, also achieved higher accuracy in the runoff simulation of the Budhi
Gandaki River in Nepal, and the value of R2 was greater than 0.88 [48]. In addition, the cal-
culation method of temperature variables can also be optimized to be more consistent with
the natural environmental variability. For example, Li, L.-h et al. [62] used the average effec-
tive activity temperature instead of the traditional average daily temperature to exclude the
effect of temperature below 0 ◦C on the average temperature; Muaitar et al. [53] improved
the elevation zone division method and the temperature calculation formula, based on
the slope and aspect of the watershed. Although the uncertainty of snow accumulation
variables stems from the accuracy of remote sensing data, the temporal and spatial resolu-
tions of the source data of this snow accumulation input variable, i.e., MODIS_CGF_SCE,
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meet the requirements of snow accumulation variables of the SRM model and better reflect
the accumulation and melting process of seasonal snow and permanent snow. When the
remote sensing data underestimate the actual snow accumulation area, the recharge of
meltwater to runoff is smaller than the actual value, resulting in a lower simulated value
than the measured value. Combined with this simulation error analysis, MODIS_CGF_SCE
may also have underestimated the snow accumulation area.

In mountainous regions, where snow and meteorological data are sparse, especially
in watersheds where no previous work on SRM has been conducted, relevant research
under the same region can be of great assistance in improving the efficiency of parameter
calibration. What is most critical, is to perform test simulations with sufficient calibration
data and, thus, determine the appropriate parameter scheme for the current study basin.
For example, instead of the commonly used value of 0.65 for the temperature lapse rate,
the results of Ji. X et al. in the Tianshan Mountains, following multi-site data analysis (0.3,
0.67, 0.23), were chosen in this paper, which is more suitable for this basin. However, in
terms of the determination of the degree-day factor, the values of other watersheds in the
mountainous areas of Xinjiang were basically no higher than 0.36, and the maximum value
of the degree-day factor in the Hutubi River Basin was more suitable when it was set to
0.5, after the simulation experiments with regular data of the calibration. Figure 11 shows
the results of the 2003–2005 runoff simulation, with a temperature lapse rate of 0.65 and
a maximum degree-day factor of 0.36. Table 6 shows the model accuracy coefficients in
2003–2009 with different parameters.

Figure 11. Runoff simulation results from 2003 to 2005 with different parameters (amax is the maxi-
mum degree-day factor (cm·◦C−1·d−1), γ is the temperature lapse rate (◦C /100 m), Deviation A is
the variance between the measured flow and the simulated flow for parameter amax of 0.5 and γ of
0.3, 0.67, 0.23. Deviation B is the variance between the simulated flow for parameter amax of 0.5 and γ

of 0.3, 0.67, 0.23 and the simulated flow for parameter amax of 0.36 and γ of 0.3, 0.67, 0.23. Deviation
C is the variance between the simulated flow for parameter amax of 0.5 and γ of 0.3, 0.67, 0.23 and the
simulated flow for parameter amax of 0.5 and γ of 0.65).
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Table 6. Model accuracy coefficients in 2003–2009 with different parameters.

Parameters Time DV R2

amax = 0.5
γ = 0.3, 0.67, 0.23

2003 9.81% 0.81
2004 8.55% 0.82
2005 4.48% 0.83

amax = 0.36
γ = 0.3, 0.67, 0.23

2003 13.1% 0.79
2004 13.7% 0.76
2005 7.5% 0.78

amax = 0.5
γ = 0.65

2003 18.6% 0.77
2004 17.9% 0.80
2005 14.3% 0.76

The role of glaciers may be underestimated when the degree-day factor takes a value
of 0.36, so the simulated values of summer runoff were lower in the overwhelming majority
of instances. The effects of temperature lapse rate were more frequently observed in May to
June (0.3) and September to October (0.23), which were lower in this simulation than July
to August (0.67). When the temperature lapse rate is smaller, the temperature difference
between high- and low-elevation areas is narrower, so it is speculated that when high
temperature occurs at low-elevation stations, the temperature at high-elevation areas with
more snow cover is also higher, snowmelt intensifies and runoff increases. In general,
the parameters in the model in this paper refer to the previous research results, and the
optimized parameters are determined by the data rate from 2003 to 2005, which is more
empirical. Due to the differences in the natural environment in different study areas, the
optimized parameter scheme determined in this simulation experiment needs to be further
improved. For example, Xie, S. et al. [63] corrected the simulation parameters using the
improved segmental optimization algorithm to improve the model simulation accuracy.

This simulation only verified the adaptability of SRM in the Hutubi River Basin but
using the model to predict future changes in snowmelt runoff in the context of global
warming is more consistent with the expectations of hydrological models. Therefore, while
improving the accuracy of the SRM simulations in the Hutubi River Basin, the future
change characteristics of this river need to be further investigated.

5. Conclusions

The areas below 3200 m elevation in the Hutubi watershed are seasonal snow areas,
and above 3200 m are permanent snow areas. The snow cover in the seasonal snow area
and permanent snow area has the same trend, and the snow cover of the permanent snow
area is usually larger than that of the seasonal snow area. The snowpack in both snow areas
starts in October, but the snow increase rate in the permanent snow area is greater than that
in the seasonal snow area during the same period. The seasonal snowmelt in the seasonal
snow area starts earlier and lasts for a shorter period. The snowmelt time in the seasonal
snow area is from March to May, and in the permanent snow area is from May to July, with
a minimum snow coverage rate of 0.7%.

The SRM model better simulates the characteristics of runoff changes in the Hutubi
River from May to October in 2003–2009. June to August is the high-water period, with
a high average daily flow and high frequency of flood peaks. Extreme and continuous
precipitation from June to July is one of the influencing factors for the formation of flood
peaks. May, September, and October have small and stable flows and are the normal
water period. In this period, the frequency of extreme precipitation events is the highest.
However, due to the low average temperature and the high probability of extremely low
temperature events, the extreme precipitation in May is easily transformed into the snow,
and its recharge of runoff continues to play a role in the time series, following the extreme
precipitation. During 2003 to 2009, there was an upward trend in the total flow from May
to October, with a significant increase in May and a slight decrease in September.
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Overall, the simulated value is smaller than the measured value. The Pearson cor-
relation coefficient r between the simulated value and the measured value is 0.83 in the
normal water period and 0.77 in the high-water period. The simulation accuracy is higher
in the normal water period. The simulation accuracy coefficients R2 are greater than 0.81
in the calibration period, and the mean value of the simulation accuracy coefficient R2 in
the validation period is 0.73. The mean value of DV is 8.85, which is comparable to the
total mean accuracy level of the SRM model in other rivers’ research results in the Xinjiang
region, demonstrating that SRM is suitable for snowmelt runoff simulation in the Hutubi
River Basin. To further improve the simulation accuracy, the optimization of input variables
and parameters should be further developed, and the prediction of future runoff changes
under climate variation is also significant for water resources utilization and management
in the Hutubi River Basin.
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