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Abstract: Soil erosion causes land degradation which negatively impacts not only natural resources
but also livelihoods of people due to low agricultural productivity. Cambodia is prone to soil
erosion due to poor agricultural practices. In this research we use Battambang province as a case
study to quantify impact of land use and land cover change (LULC) on soil erosion. This study
assessed the impact from LULC changes to soil erosion. LULC change maps were analyzed based
on Landsat satellite imagery of 1998, 2008, and 2018, computed in QGIS 6.2.9, while the soil erosion
loss was estimated by the integration of remote sensing, GIS tools, and Revised Universal Soil Loss
Equation (RUSLE) model. The results showed that the area of agricultural land of Battambang
province significantly increased from 44.50% in 1998 to 61.11% in 2008 and 68.40% in 2018. The
forest cover significantly decreased from 29.82% in 1998 to 6.18% in 2018. Various soil erosion factors
were estimated using LULC and slope. Based on that, the mean soil loss was 2.92 t/ha.yr in 1998,
4.20 t/ha.yr in 2008, and 4.98 t/ha.yr in 2018. Whereas the total annual soil loss was 3.49 million tons
in 1998, 5.03 million tons in 2008, and 5.93 million tons in 2018. The annual soil loss at the agricultural
land dramatically increased from 190,9347.9 tons (54%) in 1998 to 3,543,659 tons (70.43%) in 2008
and to 4,267,439 tons (71.91%) in 2018 due to agricultural land expansion and agricultural practices.
These losses were directly correlated with LULC, especially agricultural land expansion and forest
cover decline. Our results highlight the need to develop appropriate land use and crop management
practices to decrease land degradation and soil erosion. These data are useful to bring about public
awareness of land degradation and alert local citizens, researchers, policy makers, and actors towards
land rehabilitation to bring the area of land back to a state which is safe for increasing biodiversity
and agricultural productivity. Measures to reduce or prevent soil erosion and the use of conservation
agriculture practices, along with water and soil conservation, management, agroforestry practices,
vegetation cover restoration, the creation of slope terraces, and the use of direct sowing mulch-based
cropping systems should be considered.

Keywords: soil erosion; land use and land cover change; RUSLE; GIS; land degradation; agricultural
land; forestland; Cambodia

1. Introduction

Soil erosion due to land degradation negatively impacts not only natural resources but
also livelihoods of people as a result of low agricultural productivity [1–5]. Land degrada-
tion reduces economic yield from agricultural, forest, grass, or shrub lands, decreases soil
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fertility, biodiversity and ecosystem services, and ultimately farmers’ economy [6–8]. The
major factors of land degradation are soil erosion, loss of topsoil with fertility, decrease of
agricultural production, poor water quality, and flooding [6,9,10]. Furthermore, developing
countries are currently faced with immediate concerns that relate to land degradation,
freshwater shortages, food insecurity, and air and water pollution. Climate change will
further exacerbate these concerns, leading to rapid water shortages, land degradation, and
desertification [11].

Generally, the negative impact of soil erosion has two kinds, including the on-site or
long-term adverse impacts on soil quality and productivity, and the offsite or short-term
impacts [12–14]. Soil erosion impacts the decrease in agricultural productivity through a
decrease in soil structure and reduction in effective rooting depth, loss of plant nutrients and
soil organic carbon (SOC), loss of plant-available water and available water content (AWC),
loss of land area, and seedling damage, resulting in serious problems such as drought
stress, crust formation, compaction, and poor emergence of seedling and crop stands [12,15].
Lal [16] reported that USD 40 million was annually expended for extra fertilizer cost to
restore soil quality impacted by erosion in order to increase agricultural yields in the United
States. Similarly, it was reported that in southern Alberta, crop yield decreased from 10% to
39%, while 5–20 cm top soil was eroded [17]. Furthermore, soil erosion also impacts water
quality [2,12]. Moreover, the intensive utilization of agrochemicals is an inevitable effect of
increasing population pressures in Asia and Africa. The risks of the adverse consequence
of erosion-induced transport of chemicals into water bodies are likely to increase [12].

In the Cambodian context, forest clearance, LULC change, agricultural land expansion,
and improper crop, soil, and water management practices resulted in land degradation [10].
The northwestern part of Cambodia is facing severe land degradation and soil erosion [18].
According to Chuenchum et al. [2], FAO [19], and Van Oost et al. [20], over 20 t/ha/yr top-
soil was eroded from agricultural land in many tropical regions and countries in Southeast
Asia. For example, soil erosion of 6.5 t/ha.yr was reported in Thailand [21] and 2 t/ha.yr
in Viet Nam in 1992 [22]. Chuenchum et al. [2] estimated that annual soil erosion along
the Mekong River ranged from 7 to 100 t/ha.yr in 2019. Cambodia shares similarities with
many countries in the region (e.g., Thailand, Viet Nam, and Laos) and is impacted by soil
erosion [2,23,24]. Previous findings showed that the average annual soil erosion rate in
Cambodia was in the range from 7 to less than 100 t/ha.yr [2]. The problem is more serious
upland due to steep topography, rapid deforestation, and agricultural expansion [18,24–26].
For example, a cassava field eroded around 60 to 119 t/ha/262 days in the upland area of
Battambang [27]. Another study estimated that in land with more than 30-degree slope,
the soil erosion ranged from 16.3 t/ha.yr in 2002 to 27.6 t/ha.yr in 2015 due to LULC
change [25].

The spatial distribution and mapping of soil erosion in steep slopes is important infor-
mation needed to develop a sustainable plan for appropriate land management, agricultural
management focused on minimizing land degradation [28]. There are several models and
tools such as the Agricultural Policy/Environmental eXtender (APEX), Soil and Water
Assessment Tool (SWAT), Universal Soil Loss Equation (USLE) or Revised Universal Soil
Loss Equation (RUSLE), Environmental Policy Integrated Climate (EPIC), Water Erosion
Prediction Project (WEPP), the Erosion Productivity Impact Calculator (EPIC), and the
Agricultural Nonpoint Source (AGNPS) to estimate soil loss [25,28–30]. Neges et al. [28]
concluded that a combination of remote sensing and geographic information system (GIS)
with other models is beneficial. For example, RUSLE is commonly used to study soil
erosion in different regions around the world. The RUSLE with the integration of GIS was
developed by Wischmeier and Smith [31]. It was employed by many researchers in the
Mekong regions [2,23,25,32], Thailand [21,33], Ethiopia [9,28,34–37], China [38–40], and
Nepal [41] to predict soil erosion. The RUSLE was employed to predict soil erosion in
regions when the measured data are limited [28,30,31,42]. There are five factors of the
RUSLE model, namely rainfall erosivity (R), soil erodibility (K), topography (LS), cover and
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management (C), and support practice (P) used to estimate the long-term average erosion
rate, annually [31].

Many researchers [2,23,30] used the combination of GIS and remote sensing with the
RUSLE model to estimate soil erosion in Mekong regions. However, these studies were not
conducted over long time periods, using cover and management factor (C) estimated using
NDVI based on the satellite images. Nut et al. [25] estimated soil erosion and mapped
soil risks in Stung Sangkae catchment, Cambodia. However, the cover and management
factor (C) and supported practice (P) were extracted from existing LULC, made by Japan
International Cooperation Agency (JICA) in 2002 and Mekong River Commission (MRC) in
2015 during the estimation of soil loss using RUSLE.

In our recent study [26], we evaluated LULC changes and its drivers in Battambang
province from 1998 to 2018. However, we did not quantify the impact of LULC on soil
erosion. A complete picture of assessing the impact of LULC on soil erosion for a long-term
period in the entire Battambang province is not well understood and needs attention. It
is important to thoroughly understand the estimates and pattern of soil erosion risk for
developing better agricultural management practices, improved land use policies, and
efficient management of natural resources in order to rehabilitate the land. In this regard,
this research study for assessing the impact of LULC on soil erosion in the year 1998,
2008, and 2018 was carried out in the entire Battambang province of Cambodia using a
combination of GIS, remote sensing data, and RUSLE model. The study attempted to
answer three specific questions: (1) How did the spatial distribution pattern of soil erosion
change from 1998 to 2018? (2) What was the long-term annual average soil loss rate?
(3) Where are the prioritized zones of soil erosion risk for planning and implementation of
conservation measures? To answer these questions, we used Landsat 5 TM and Landsat
8 OLI images to produce LULC maps. These were used to estimate C factor, and the
combination between LULC and slope was used to predict P factor.

2. Materials and Methods
2.1. Description of Study Area

The study area of Battambang province is located in the northwestern part of Cam-
bodia (Figure 1a). It was categorized by four ecological zones: upland area, semi-upland
area, lowland area, and floodplain along Tonle Sap Lake and was noted to have a mixture
of various land uses. According to JICA 2002 [43], there were seven classes of LULC,
namely: (1) built-up area, (2) water feature, (3) grassland, (4) shrubland, (5) agricultural
land, (6) barren land, and (7) forest cover. In addition, currently, it also has economic
land concession (ELC) and protected areas (Figure 1b). In only one decade (2006 to 2016),
65% of forest cover was lost, while agricultural land dramatically rose from 1% in 1997 to
61% in 2016 in the northwestern uplands of Battambang and Pailin provinces [24]. The
deforestation of the uplands negatively impacted soil erosion. The study area has a major
Sangkae stream with a catchment area of 605,170 hectares [25]. It also has approximately
3951 streams/canals with a total 7313 km length, and the maximum and mean length of
the canal were 47 km and 1.90 km, respectively (Figure 1a).

The elevation in the study area ranged from 0 to 1333 m above mean sea level (MSL) [26,44].
The average annual rainfall was 1280 mm between 1995 and 2018 (Figure 2). The maximum
yearly rainfall was 1566 mm in 2011 and minimum yearly rainfall was 947 mm in 2014 [45].
Battambang, not different from the national climate conditions, is under the influence of tropical
monsoon climate, which consists of two main seasons: rainy season and dry season [46]. The
rainy season starts in May and ends in October, while the dry season period is from November
to April [46]. The province has an average annual temperature of 27.7 ◦C [45].

More than 50% of the total area had a very gentle slope to a gentle slope, and approxi-
mately 22% of total areas ranged from strong slope to very steep slope (Table 1).

A significant increase in population was noticed for the province, from 793,129 in
1998 to 997,169 in 2018 [47], which can negatively impact the land use, natural resources,
environment, and particularly, soil erosion. There are nine different soil types: Acrisols,
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Arenosols, Cambisols, Ferralsols, Fluvisols, Gleysols, Lixisols, Luvisols, and Vertisols.
However, approximately 94% of the total area was covered predominantly by Acrisols,
Fluvisols, and Cambisols.
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Figure 1. Study area: (a) different land use and land cover (LULC) areas in 2002, protected areas,
economic land concession (ELC), and streams/canals; and (b) Battambang Province in Cambodia
and rainfall stations.
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Figure 2. Rainfall from 1995–2018 extracted from six weather stations combined with satellite image.

2.2. Land Use/Land Cover

The main data for LULC change categories in the study area were obtained from
Landsat images. These included Landsat 5 TM and Landsat 8 OLI scenes for the years
1998, 2008, and 2018. The Landsat images were derived from the United States Geological
Survey (USGS) website [48]. All Landsat data were acquired in the same dry season from
December to April. Accuracy assessment was conducted using a total of 121, 163, and
317 validation points randomly selected in 1998, 2008, and 2018, respectively. This approach
was followed by many researchers and is well documented [49–52]. The reference data
for each LULC class in 2018 were collected by field visit, using drone and handheld GPS.
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However, the reference data for 1998 and 2008 were obtained from the existing maps of
land use of 1993 from the Geographic Department and the land use map of 2002 from
the JICA. The forest cover maps of 2002, 2006, and 2010 were obtained from Ministry of
Agriculture, Forestry and Fisheries (MAFF) and Google Earth images supplemented by
field visits, focused group discussions, key informant surveys, and in-depth interviews
with elders in the study area. Overall accuracy, user’s accuracy, producer’s accuracy, and
Kappa coefficient were defined as the common measures of classification accuracy obtained
from the error matrix [50,53,54].

Table 1. Slope severity in the study area based on FAO slope classification.

Slope Severity Slope Class (%)
Area

(ha) (%)

Flat to very gentle slope 0–2 326,342 27.11
Gentle slope >2–5 314,096 26.1

Medium slope >5–10 302,890 25.16
Strong slope >10–15 121,368 10.08

Moderately steep >15–30 93,715 7.79
Steep >30–60 39,972 3.32

Very steep >60 5245 0.44

Total 1,203,628 100

2.3. Soil Erosion Estimation

The soil erosion estimation model of RUSLE [31] was integrated with spatial analysis
of GIS and remote sensing [55,56]. According to Bahadur [57]; Chuenchum et al. [2,32];
Thuy and Lee [23], the model was used effectively and it was simple to estimate soil erosion
in the Mekong River region. The model is based on five parameters and its equation is
shown below (Equation (1)).

A = R × K × LS × C × P (1)

where: A is the soil loss in t/ha/yr, R is the rainfall erosivity factor in (MJ mm/ha/hr/year);
K is the soil erodibility factor (t ha hr/ha/(MJ mm)); LS is the topographic factor (dimen-
sionless); C is the cropping management factor (dimensionless); and P is the soil and water
conservation practices factor (dimensionless). The soil erosion estimations were analyzed
by ArcGIS 10.3. The conceptual framework is given in Figure 3.

2.3.1. Rainfall Erosivity (R) Factor Prediction

Rainfall data (1995–2018) were obtained from Ministry of Water Resources and Meteo-
rology (MoWRM) and downloaded from satellite image by conducting bias correction to
estimate the rainfall erosivity (R) factor of RUSLE based on the formula established by [58]
and used by [59]. It was used to compute in ArcGIS 10.3 raster calculation.

R = 38.5 + 0.35 r (2)

where r is annual rainfall (mm)

2.3.2. Soil Erodibility (K) Factor Prediction

The K factor was estimated based on soil characteristics and soil properties; in partic-
ular, soil particle size and soil texture ranged from 0 to 1. The local existing soil data in
Cambodia, and particularly Battambang province, are rarely available. Thus, the digital
soil map was obtained from the Soil Grids database of ISRIC-World Soil Information [60].
The spatial resolution of the soil type map was 250 m. This soil map data was used by
researchers in the world for areas such as Mekong region and Ethiopia. Ref. [61] developed
the equation to estimate K factor, which was used in this study.
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KRusle = f csand × f orgC × f hisand (3)

fcsand = 0.2 + 0.3 Exp
[
−0.256 × Ms ×

(
1 − Msilt

100

)]
(4)

fcl−si =

(
Msilt

Mc + Msilt

)0.3
(5)

forgC =
0.0256 × Mo

Mo + Exp[3.72 − (2.95 × Mo)]
(6)

f hisand = 1 − 0.7 ×
1 − Ms

100(
1 − Ms

100

)
+ exp

[
−5.51 + 22.9 ×

(
1 − Ms

100

)] (7)

where KRusle is the soil erodibility factor, fcsand is a function of the high coarse sand content
of the soil, forgC is a function of the organic carbon content of the soil, fhisand is the function
of high sand content in the soil, Ms is the % sand, Msilt is % silt, fcl-si is a function of the clay
and silt of the soil, Mc is the % clay, and Mo is % organic matter.
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2.3.3. Topographic Parameters (LS) Factor Prediction

The two significant parameters of topographic factors, slope length and steepness,
were determined by GIS application with 30 m resolution using Digital Elevation Model
(DEM) [62] derived from USGS. The LS factor was estimated as per equation (Equation (8)) [63].

LS = (Flow Accumulation × 30/22.1)m) × (0.065 + 0.045 × slope + 0.0065 × slope × slope) (8)

where m values, of the slope classes: <1, 1 ≤ Slope < 3, 3 ≤ Slope < 5 and > 5 are 0.2, 0.3,
0.4, and 0.5, respectively.

2.3.4. Land Cover and Management (C) Factor Prediction

Land cover and management (C) factor significantly impacts soil erosion [34]. The
C factor in this study was calculated from LULC maps from 1998 to 2018 and existing data
from other researchers [34,35,64]. Based on LULC classes, the C factor values of agricultural
land, forest land, shrubland, grassland, built-up area, and barren land classes are 0.50, 0.01,
0.014, 0.08, 0.1, and 0.35, respectively (Table 2).
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Table 2. Land cover and management (C) factor for different land use and land cover (LULC) types.

LULC Type C Factor References

1. Built-up area 0.1 [2,25,64]
2. Water feature 0.01 [2,25,64]

3. Grassland 0.08 [25,64]
4. Shrubland 0.014 [25,64]

5. Agricultural land 0.5 [25,64]
6. Barren land 0.35 [2,25,64]
7. Forest cover 0.01 [2,25,64]

2.3.5. Management Practices (P) Factor Prediction

The management practices (P) factor is used to reduce the impact of LULC on soil
erosion by managing water flow through agricultural conservation practices which includes
contouring, buffer strips, and terraces contour farming [5,31,36,65]. Two methods com-
monly used to estimate P factors include the following: the first approach is the agricultural
conservation practices and the second approach is the combination between slope and
LULC [66]. In this study, the second approach was used to determine P factor of RUSLE.
The annual soil loss rate is affected by the P factor with soil and water conservation [34,65].
The range of the P factor is from 0 to 1, which is the highest value. Referring to [34],
adopted RUSLE P factor values for watershed conservation practices are given in Table 3.
In addition, a combinatorial and spatial analyst tool of ArcGIS 10.3 was used to overlay
slope and LULC types to estimate P factors, and then a look-up spatial analyst tool was
used to extract the map layer of the P values.

Table 3. The management practice (P) factor of Revised Universal Soil Loss Equation (RUSLE) used
in this study [31].

Land Use and Land Cover Categories Slope % P factor

Agricultural land

0 to 5 0.1

>5 to 10 0.12

>10 to 20 0.14

>20 to 30 0.19

>30 to 50 0.25

>50 to 100 0.33

Other land use and land cover categories All 1.0

3. Results
3.1. Land Use and Land Cover Change Detection

The LULC data and maps were categorized into seven classes, namely, built-up area,
grassland, shrubland, agricultural land, barren land, forest cover, and water feature (Table 4;
Figure 4). LULC maps of 1998, 2008, and 2018 were made from multi-temporal Landsat
images with significant overall accuracy and Kappa coefficients [67,68]. They were 93%
and 0.92 in 1998, 94% and 0.93 in 2008, and 84% and 0.80 in 2018, respectively. Detailed
and more granular changes are shown for five different times series (1998, 2003, 2008, 2013,
and 2018) published before [26]. Here, we are providing a summary of area and percentage
change (Table 4) and spatial distribution (Figure 4) of major LULC changes between the
three time frames (1998, 2008, and 2018)

The LULC category map of 1998 shows that the second largest area occupied in Battam-
bang was forest cover with 359,000 ha (30%), followed by agricultural land with 535,600 ha
(45%), while the smallest area was barren land with 16 ha (0.004%). In 2008, forest cover
decreased, while there was rapid expansion of agricultural land (61.11%) and other classes,
namely, grassland (17%) and shrubland (15%). There were also increases in water feature



Sustainability 2022, 14, 4066 8 of 24

(0.4%), built-up area (0.03%), and barren land (0.02%). In the year 2018, there was further
expansion in agricultural land and shrubland to 68% and 18%, respectively. However, the
extent of forest cover and grassland experienced a decrease to approximately 6% (Table 4).

Table 4. Total area and percentage of LULC by the years 1998, 2008, and 2018 and LULC changes
during 2008–1998, 2018–2008, and 2018–1998.

LULC Type Area (1998) Area (2008) Area (2018) 1998–2008 2008–2018 1998–2018

Hectares % Hectares % Hectares % Hectares % Hectares % Hectares %

1. Built-up area 48 0.00 302 0.03 4698 0.39 300 527 4400 1455 4600 9651
2. Water feature 2309 0.19 4707 0.39 10,637 0.88 2400 104 5900 126 8300 361

3. Grassland 151,753 12.61 208,051 17.29 75,683 6.29 56,300 37 −132,400 −64 −76,100 −50
4. Shrubland 154,916 12.87 178,717 14.85 213,575 17.74 23,800 15 34,900 20 58,700 38

5. Agricultural land 535,627 44.50 735,584 61.11 823,225 68.40 200,000 37 87,600 12 287,600 54
6. Barren land 16 0.00 224 0.02 1395 0.12 200 1327 1200 521 1400 8766
7. Forest cover 358,960 29.82 76,042 6.32 74,416 6.18 −282,900 −79 −1600 −2 −284,500 −79

Grand Total 1,203,628 1,203,628 1,203,628 1,203,628
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3.2. Soil Erosion Loss Estimation
3.2.1. Rainfall Erosivity (R) Factor

The average annual rainfall in 1995–2018 (Table 5) was obtained from six stations of
the Ministry of Water Resources and Meteorology (MoWRM) of Cambodia and the satellite
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image was obtained by performing bias correction to be used to estimate erosivity R factor
for the study area based on Equation (2). The interpolation tool (Inverse Distance Weighting
(IDW)) of ArcGIS 10.3 was used to compute the R factor with a spatial resolution of 30 m.
Figure 5a illustrates the range of R factor value from 412.17 to 556.28 MJ.mm/(ha.hr.yr) with
an average of 480.73 MJ.mm/(ha.hr.yr) and the standard deviation of 26.26. The highest R
factor was recorded at the upland of the southwestern study area, while the lowest R factor
was recorded at some parts of the northern study area in low land (Table 5).

Table 5. Meteorological station, average of annual rainfall and R factor.

Station Name
Location

Province
Elevation Average of Annual Rainfall R Factor

Longitude Latitude (m) (1995–2018) (MJ/(mm.ha.hr.yr)

Battambang 103.204 13.0989 Battambang 94 1263.77 480.82
Samlout 102.8594 12.61453 Battambang 153 1479.38 556.28

Rotanak Mondol 102.9674 12.89267 Battambang 258 1203.05 459.57
Moung Ruessei 103.4457 12.77753 Battambang 29 1251.06 476.37

Bovel 102.875 13.25614 Battambang 30 1067.62 412.17
Pailin 102.6115 12.85589 Pailin 95 1414.50 533.58
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3.2.2. Soil Erodibility (K) Factor

There are nine soil types: Acrisols, Arenosols, Cambisols, Ferralsols, Fluvisols, Gleysols,
Lixisols, Luvisols, and Vertisols (Table 6). The soil type of Acrisols (Loam) was the largest
soil area with 42.1% (507,041 ha), followed by Fluvisols (Clay Loam) with 30.7% (369,122 ha).
In contrast to the most prominent site of soil types, the size of Arenosols and Lixisols was
less than 500 hundred hectares. The soil erodibility (K) factor value of the study area ranged
from 0.21 to 0.28 t/(hr.MJ.mm) (Figure 5b).

3.2.3. Topographic (LS) Factor

The flowing water from precipitation and runoff made soil erosion heavier depending
on topographical factor [2]. Equation (8) was used to estimate the LS factor by using
30 m spatial resolution DEM, acquired from the Advanced Spaceborne Thermal Emission
and Reflection (ASTER) global digital elevation map via the website of USGS [44]. The
altitude range in Battambang province is from 0 to 1341 m above mean sea level (MSL). The
high elevation site was mainly located in the mountain at the southwest of the province.
The result of the LS factor estimation ranged from 0 to 321.22 (Figure 6). Its average and
standard deviation were 0.53 and 1.97, respectively. In addition, the range of LS factor from
0 to 5 occupied predominantly 98.22% (1,182,154 ha), while 50–312.22 of LS was almost
zero percentage (Table 7). Furthermore, the highest LS factor was observed at the mountain
and the lowest LS factor was mostly located in the lowland.
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Table 6. Soil types, soil texture, and K factors.

No. Soil Type Soil Texture
Area K Factor

(ha) % t/(hr.MJ.mm)

1 Acrisols Loam 507,041 42.1% 0.27
2 Arenosols Loam 21 0.0% 0.27
3 Cambisols Clay Loam 262,484 21.8% 0.27
4 Ferralsols Sandy Clay Loam 7227 0.6% 0.23
5 Fluvisols Clay Loam 369,122 30.7% 0.21
6 Gleysols Clay Loam 42,568 3.5% 0.22
7 Lixisols Loam 31 0.0% 0.28
8 Luvisols Clay Loam 6814 0.6% 0.26
9 Vertisols Clay Loam 803 0.7% 0.26

Total 1,203,628 100%
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3.2.4. Cropping Management (C) Factor

The C factor was estimated by using the LULC map based on the literature review.
The result of the C factors value ranged from 0.01 to 0.50 (Figure 7). The C average and the
standard deviation were 0.24 and 0.23 in 1998, 0.32 and 0.22 in 2008, and 0.35 and 0.22 in
2018, respectively. In 1998, the predominant land of Battambang was forest cover in the
west and southwest of the study area, especially Phnom Samkos wildlife sanctuary and
Roneam Daunsam wildlife sanctuary, while the most forest cover in 2008 and 2018 almost
finished at part of the western study area. The mean of C factor significantly increased
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from 0.24 to 0.35 over the last two decades, in line with the decrease of forest cover from
30% to 6.18% (Table 4).

Table 7. Range of topographic factor (LS) and its area.

Range of LS factor Area Mean of LS Factor Range
(ha) %

0–5 1,182,154 98.22 0.34
>5–15 17,408 1.45 8.24

>15–25 2808 0.23 18.83
>25–35 772 0.06 29.05
>35–50 332 0.03 40.83

>50–312.22 152 0.01 67.89
Total 1,203,628
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3.2.5. Supporting Practice (P) Factor

The supporting factor (P) varied from 0.1 to 1. The mean of P factor value in 1998,
2008, and 2018 was 0.61, 0.46, and 0.4, respectively, while its standard deviation was also
0.44, 0.43, and 0.41, respectively. For 2018, the largest area of a range of LS factor was 0 to
0.1, followed by the range of LS factor, 0.35 to 1. They were 37.44% and 31.96%, respectively.
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In contrast to the largest area of the range of LS in 2018, the range of LS, 0.35–1, was the
biggest in 1998 and 2008. They were 55.6% and 38.98%, respectively (Table 8 and Figure 8).

Table 8. Range of P factor responding to the area in 1998 to 2018.

Range of P Factor
Area (2018) Area (2008) Area (1998)

(ha) % (ha) % (ha) %

0–0.1 450,690 37.44 424,341 35.26 329,770 27.4
>0.1–0.12 221,805 18.43 199,088 16.54 136,906 11.4

>0.12–0.14 117,693 9.78 94,173 7.82 59,909 5.0
>0.14–0.19 18,487 1.54 11,407 0.95 6215 0.5
>0.19–0.25 8081 0.67 4304 0.36 1535 0.1
>0.25–0.35 2230 0.19 1346 0.11 336 0.0

>0.35–1 384,641 31.96 468,970 38.96 668,957 55.6

Total 1,203,628 1,203,628 1,203,628
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3.2.6. Potential Soil Erosion and Actual Soil Erosion Estimation

The soil erosion was calculated by the RUSLE model in combination with the raster
calculator of ArcGIS 10.3 over the last two decades. The actual and potential soil erosion
was estimated. The supporting practice (P) and the cropping management factor (C) are
significantly impacted on soil erosion [28]. Thus, only four factors, namely LS (L and S),
R, and K factors, were used to estimate the potential soil erosion considered as a natural
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erosion process without C and P factors [2]. The actual soil erosion was fully computed
based on RUSLE variables. The potential soil erosion ranged from 0 to 17,090 t/ha.yr
with an annual average and standard deviations were 68.39 t/ha.yr and 275.38 t/ha.yr,
respectively (Figures 9 and 10). The mean of actual soil erosion experienced an increase of
almost two times from 1998 to 2018 which was 2.92 t/ha.yr and 4.98 t/ha.yr, respectively
(Figures 10 and 11). Most soil erosion occurred at the upland, particularly mountains,
where forest cover decreased rapidly (Figure 11). The actual and potential soil erosion
results were reported very differently due to the C and P factors, which were estimated by
forest and cultivated areas. The results illustrated that C and P factors could reduce the
rate of soil erosion from 2.65 to 4.52 times.
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3.2.7. Soil Erosion Risk under Severity Classes

The revised RUSLE model in combination with ArcGIS 10.3 was used to estimate and
to map soil erosion risk in accordance with reclassification and zonal statistics as the table of
the spatial analyst tool, used to compute severity class of soil erosion rate over the last two
decades (1998–2018) as given in Table 9. The actual soil erosion was categorized into five
classes of severity such as: very low erosion (<5 t/ha.yr), low erosion (>5–25 t/ha.yr), fair
erosion (>25–50 t/ha.yr), high erosion (>50–80 t/ha.yr), and very high erosion (>80 t/ha.yr)
(Table 9 and Figure 8).

The predominant class in the study area was of very low erosion in 1998, 2008, and
2018. They were in 1,071,831 ha (89.05%), 1,014,429 ha (84.28%), and 1,012,021 ha (84.08%),
respectively. In addition, the annual soil loss rate was 0.6 t/ha.yr in 1998, 0.61 t/ha.yr in
2008, and 0.58 t/ha.yr in 2018. In contrast to the largest area of severity class of soil erosion,
the area cover of very high erosion (>80 t/ha.yr) of year 1998, 2008, and 2018 was 5803 ha
(0.48%), 8881 ha (0.74%), and 11,945 ha (0.99%), respectively. The mean of annual soil loss
rate was 2.92 t/ha.yr in 1998, 4.92 t/ha.yr in 2008, and 4.98 t/ha.yr in 2018. The fair severity
class of 1998, 2008, and 2018 was 11,278 ha (0.94%), 17,539 ha (1.46%), and 16,454 ha (1.37%),
respectively (Table 8; Figure 8).

3.2.8. Soil Erosion under LULC Classes

The spatial distribution of soil loss in the study area under LULC classes is shown in
Table 10. The annual soil loss across agricultural land increased significantly from 1,909,348
(54.76%), 3,543,659 ton (70.43%), and 4,267,439 ton (71.91%) at the period of 1998–2018.
Similarly, soil loss in 1998, 2008, and 2018 across shrubland experienced an increase of
244,976 ton (7.03%), 466,592 ton (9.27%), and 773,717 ton (13.04%), respectively. In contrast
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to the rise of soil loss across LULC classes, forest cover and grassland decreased. Figure 12a
also presents a local crop practice, leading to soil erosion.
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3.2.9. Soil Erosion across Soil Types and Slope

There were a total 9 (nine) soil types, of which Acrisols, Cambisols, and Fluvisols were
most predominant, with more than 94% of the study area (Table 11). Soil loss rate across
different soil types was estimated as presented in Table 11. The soil erosion rates across
almost all soil types changed, with the exception of the soil erosion rate across Arenosols.
The soil erosion rates under Acrisols, Luvisols, and Ferralsols were found to be higher
risk. The soil erosion rates across Acrisols (507,256 ha or 42.14%) were 4.15 t/ha.yr in 1998,
7.03 t/ha.yr. in 2008, and 8.71 t/ha.yr in 2018.

Topography is one of the major factors that impacts soil erosion. The slope of the
study area was classified into 7 (seven) variety classes [28], namely; flat to very gentle
slope, gentle slope, medium slope, strong slope, moderately steep, steep, and very steep,
as illustrated in Table 12. The decrease of total annual soil loss across very gentle slope to
medium slope was 52.28% to 42.38% over two decades. In contrast to the decrease, the total
annual soil loss under moderately steep slope to very steep slope increased from 32% to
42% at the period of 1998–2018 (Table 12). Furthermore, Figure 12b showed the actual soil
erosion under slope area along Sangkae stream in Samlout district, Battambang province.
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Table 9. Soil erosion responding to severity classes in Battambang province.

Severity Class
Soil Loss

LULC Net Change
1998 2008 2018

Area Soil Loss Total Annual Area Soil Loss Total Annual Area Soil Loss Total Annual 1998–2008 2008–2018 1998–2018

(t/ha/y) (ha) % (t/ha/y) (ton) % (ha) % (t/ha/y) (ton) % (ha) % (t/ha/y) (ton) % (ha) (ha) (ha)

Very low erosion ≤5 1,071,831 89.05 0.6 614,541 17.62 1,014,429 84.28 0.61 614,808 12.22 1,012,021 84.08 0.58 588,722 9.92 −57402 −2409 −59810
Low erosion >5–25 107,282 8.91 10.4 1,112,077 31.89 150,318 12.49 10.67 1,604,603 31.89 143,992 11.96 10.70 1,540,322 25.95 43036 −6326 36710
Fair erosion >25–50 11,278 0.94 34.5 388,651 11.15 17,53 1.46 34.19 599,683 11.92 16,454 1.37 34.18 562,426 9.48 6261 −1085 5176

High erosion >50–80 5125 0.43 62.4 319,877 9.17 7752 0.64 62.43 484,009 9.62 8579 0.71 62.87 539,375 9.09 2627 827 3454
Very high erosion >80 5803 0.48 181.3 1,051,806 30.16 8881 0.74 194.64 1,728,660 34.35 11,945 0.99 226.37 2,703,944 45.56 3079 3063 6142

Water 2309 0.19 0.0 0.00 0.00 4707 0.39 0.00 0.00 0.00 10,637 0.88 0.00 0.00 0.00
1,203,628 100 3,486,953 100 1,203,628 100 5,031,762 100 1,203,628 100 5,934,789 100

Table 10. Distribution of soil loss across LULC classes.

No. LULC Classes

LULC

1998 2008 2018

Area Total Annual Area Total Annual Area Total Annual

(ha) % (ton) % (ha) % (ton) % (ha) % (ton) %

1 Built-up Areas 48 0.00 127 0.00 302 0.03 57722 1.15 4698 0.39 35,100 0.59
2 Water Features 2309 0.19 0.00 0.00 4707 0.39 0.00 0.00 10,637 0.88 0.00 0.00
3 Grasslands 151,753 12.61 513,747 14.73 208,051 17.29 520,712 10.35 75,683 6.29 340,091 5.73
4 Shrublands 154,916 12.87 244,976 7.03 178,717 14.85 466,592 9.27 213,574 17.74 773,717 13.04
5 Agricultural lands 535,626 44.50 1,909,348 54.76 735,584 61.11 3,543,659 70.43 823,225 68.40 4,267,439 71.91
6 Barren land 16 0.00 54 0.00 224 0.02 13,068 0.26 1395 0.12 17,255 0.29
7 Forest covers 358,960 29.82 818,701 23.48 76,042 6.32 430,009 8.55 74,416 6.18 501,186 8.44

Total 1,203,628 100 3,486,953 100 1,203,628 100 5,031,762 100 1,203,628 100 5,934,789 100
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Table 11. Soil erosion across different soil types during 1998, 2008, and 2018.

Soil type
Area

1998 2008 2018

Total Annual Soil Loss
Rate

(t/ha.yr)

Total Annual Soil Loss
Rate

(t/ha.yr)

Total Annual Soil Loss
Rate

(t/ha.yr)(ha) % (ton) % (ton) % (ton) %

Acrisols 507,256 42.14 2,104,435 60.35 4.15 3,565,557 70.86 7.03 4,419,002 74.46 8.71
Arenosols 25 0.00 8 0.00 0.33 8 0.00 0.33 8 0.00 0.33
Cambisols 262,777 21.83 753,860 21.62 2.87 812,010 16.14 3.09 838,594 14.13 3.19
Ferralsols 6991 0.58 22,300 0.64 3.19 26,524 0.53 3.79 28,936 0.49 4.14
Fluvisols 368,939 30.65 499,288 14.32 1.35 522,376 10.38 1.42 527,537 8.89 1.43
Gleysols 42,550 3.54 70,205 2.01 1.65 65,429 1.30 1.54 70,875 1.19 1.67
Lixisols 319 0.03 229 0.01 0.72 842 0.02 2.64 871 0.01 2.73
Luvisols 6762 0.56 20,441 0.59 3.02 23,114 0.46 3.42 31,857 0.54 4.71
Vertisols 8008 0.67 16,186 0.46 2.02 15,902 0.32 1.99 17,109 0.29 2.14

Total 1,2036,28 100 3,486,953 100 5,031,762 100 5,934,789 100

Table 12. Soil loss under slope severity classes.

Slope Severity Slope class
(%)

Area
1998 2008 2018

Total Annual Total Annual Total Annual

(ha) (%) (ton) % (ton) % (ton) %

Flat to very
gentle slope 0–2 326,342 27.11 378,806 10.86 464,212 9.23 484,303 8.16

Gentle slope >2–5 314,096 26.10 600,649 17.23 752,902 14.96 815,747 13.75
Medium Slope >5–10 302,890 25.16 843,537 24.19 1,127,127 22.40 1,215,121 20.47

Strong slope >10–15 121,368 10.08 554,015 15.89 784006 15.58 927,776 15.63
Moderately steep

slope >15–30 93,715 7.79 643,776 18.46 1,009,772 20.07 1,344,796 22.66

Steep slope >30–60 39,972 3.32 368,737 10.57 717,680 14.26 924,668 15.58
Very steep slope >60 5245 0.44 97,434 2.79 176,062 3.50 222,379 3.75

Total 1,203,628 100 3,486,953 100 5,031,762 100 5,934,789 100

4. Discussion

The study used the Landsat 5 TM and Landsat 8 OLI images to produce LULC in 1998,
2008, and 2018. C factor and P factor were computed based on LULC and the combination
between LULC and slope, respectively. In addition, soil data of the Soil Grids database of
ISRIC-World Soil Information, DEM data, rainfall data, and satellite image were combined
together to estimate soil loss in Battambang province. Overall, during the period from
1998 to 2018, the agricultural land experienced an increase of 54% equal to 287,600 ha
(Table 4). This aligns with the estimation of World Bank (2015) which showed that a
large share of past agricultural growth was driven by the expansion of cultivated areas
from 2004 to 2012. On average, farmland increased annually by 4.7% over 2004–2012
due to deforestation [69,70]. They found that the forest cover declined dramatically to
−79% (−284,500 ha) over 20 years. Similarly, Kong et al. [24] indicated that the forest
cover of northwest of Battambang declined to 65% between 2006 and 2016. There was
increase in built-up area due to population growth, infrastructure, and socioeconomic
development [71–74]. The growth of migration of poor and landless farmers who accessed
agricultural lands impacted LULC [24,75].

Soil erodibility, runoff rate, and soil exposure to erosion, as analyzed under the
standard unit of plot condition, are defined as the K factor [76]. The highest K factor in
our study was found at the upland areas and mountains, which is in agreement with
others [2,77]. Overall, there were five different soil erosion severity classes (Table 9).
This number of categories was based on Soil Erosion Standard Document–Technological
Standard of Soil and Water Conservation (SD238–87) [78], and was used by the study [2]
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for soil erosion prediction in the Mekong Lancang region, including Cambodia, as it does
not have soil erosion classification. As in our study, the soil erosion severity classes were
also reported in the Mekong Lancang region in 2019 [2]. In the previous research [2,23,79],
RUSLE with GIS and remote sensing data were used to estimate soil loss.

Our results showed that the mean annual soil loss was 2.92 t/ha.yr in 1998, 4.20 t/ha.yr
in 2008, and 4.98 t/ha.yr in 2018. Whereas the total annual soil loss was 3.49 million tons
in 1998, 5.03 million tons in 2008, and 5.93 million tons in 2018. These results were in
line with the finding of Nut et al. [25], which predicted that the soil loss would range
from 3.1 t/ha.yr in 2002 and 7.6 t/ha.yr in 2015 in Stung Sangkae catchment of Cambodia.
Chuenchum et al. [2] estimated the soil erosion rate in the Mekong Lancang region ranging
from 7 to 10 t/ha.yr with an average of 5.35 t/ha.yr. Suif et al. [80] and Thuy and Lee [23]
found that the annual mean of soil loss rate was 5 t/ha.yr in the Mekong Lancang. Sim-
ilarly, losses were observed in the tropical conditions of Africa, for example, a study by
Marondedze et al. [81] in Zimbabwe and Lufafa et al. [82] in Lake Victoria basin estimated
an annual average soil loss of 5 t/ha/yr. Our results are also in accordance with previous
studies made by [2,25,83], which showed that natural vegetation enables one to reduce
and to protect against soil erosion, especially in cultivated land. Additionally, we analyzed
the potential soil erosion (assuming C factor and P factor equal 1) and actual soil erosion
(actual C factor and P factor) in order to assess the C factor and P factor’s abilities to reduce
and protect soil erosion (Figures 9 and 10). The results illustrated that the potential soil
erosion was 2.65 to 4.25 times higher than the actual soil erosion due to the effect of the C
and the P factor. This was similar to the finding of Chuenchum et al. [2], who reported that
the C and P factors could reduce the rate of soil erosion from 2.5 to 7 times.

Furthermore, the results were also confirmed with a household survey in 2021 by
the authors. The results showed that all respondents claimed that during 20 years from
1998 to 2018, soil fertility declined significantly. Figure 13 presented that 44%, 35%, and
7% of respondents reported that the soil fertility was in fair decline, strong decline, and
very strong decline, respectively. However, according to the focus group discussion, the
agricultural yield only slightly declined due to more use of chemical fertilizer than before.
The chemical fertilizer consumption is increasing remarkably, and the local farmers spend
more on chemical fertilizer. Similarly, other researchers confirmed that the soil loss made
agricultural productivity decrease. The soil erosion could decrease corn productivity by
12% to 21% in Kentucky, 0–24% in Illinois, 25%–65% in Georgia, and 21% in Michigan,
USA [84–86]. Additionally, Jie [87] reported that food production would decrease by 40% if
the current rate of soil loss in China continues over the next 50 years.

The spatial distribution of soil loss under LULC classes varied in 1998, 2008, and
2018 (Table 10). The soil erosion rate change in the study area during 1998–2018 was
correlated with an increase or decrease of erosion based on LULC classes. For instance, the
annual soil loss across agricultural land increased significantly from 1,909,348 (54.76%) to
4,267,439 tons (71.91%) from 1998 to 2018 (Table 10). In contrast, the soil erosion un-
der forest cover and grassland was the lowest. These results are in agreement with
those of Chuenchum et al. [2,34] in the Mekong Lancang, Nut et al. [25] in Cambodia,
Niacsu et al. [83] in Romania, and Gashaw et al. [88,89] in Ethiopia, who reported that the
soil erosion rate broadly increased or decreased based on vulnerable LULC classes.

The agricultural land was the largest contributor to the total soil loss in Battambang
province. Similar observations were made by other researchers; Nut et al. [25] in Stung
Sangkae catchment of Cambodia, Fu et al. [90] in southeastern Washington State in USA,
and Karamage et al. [91] in Rwanda, Africa, in which 81.5%, 92.8%, and 95% of total soil
loss, respectively, was observed in agricultural land.

The study also found that forest cover, grassland, and shrubland were converted to
agricultural land. They are also susceptible to soil erosion. Table 10 presented that the
soil erosion under these areas was 45.24% in 1998, 28.17% in 2008, and 27.21% in 2018,
respectively, while the soil erosion under cropping land was the highest, when compared to
other layers. This finding also agreed with those of other researchers such as Nut et al. [25],
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Pimentel and Kounang [92], and Patric [93], who claimed that the rate of erosion under
agricultural land is more than that of these areas due to vegetation cover. If the agricultural
land expansion is still occurring from the conversion of forest cover and grassland, and the
poor agricultural practice still continues, the soil erosion will increase significantly. This
would affect the farmers, who are facing the high expenses of chemical fertilizers in order
to obtain higher agricultural yields. Hence, on-farm conservation agriculture practices
(CAP), water conservation and management, agroforestry practices, vegetation cover
restoration, and the creation of slope terraces should be applied to enhance sustainable land
management, minimize damage to the environment, and function as adaption/mitigation
measures against climate change [25,72]. Additionally, referring to consultation with
local government, the local people understood the impact of soil erosion and CA project,
especially the Appropriate Scale Mechanization Consortium (ASMC) project, which was
implemented in Battambang province with the aim of focusing on scaling up conservation
agricultural (CA) machineries through proper technologies and cropping systems and was
actively pursued during Phase I [94].
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5. Conclusions

Our results showed that the agricultural land, built-up area, water feature, shrubland,
and barren land significantly increased, while the forest cover and grassland rapidly
declined from 1998 to 2018 in the study region. As a result, the total annual soil loss
increased from 3.48 to 5.93 million t/ha.yr between 1998 and 2018. The highest soil loss
occurred in the uplands or mountains due to steep slopes and rapid deforestation. The
agricultural land expansion significantly contributed to the total soil loss. Increasing soil
erosion is a major challenge for the livelihood of people as it results in poor soil fertility
and low crop productivity. Our research finding would be useful to agricultural experts or
policy makers for developing strategies for reducing the rate of soil erosion in the high-risk
zones (steep slope and low vegetation). There is an urgent need to mitigate and protect
against soil erosion for sustainable, inclusive, resilient agriculture and water management.
Measures to improve vegetation cover, use of conservation agriculture practices (CAP),
along with water and soil conservation, management, agroforestry practices, vegetation
cover restoration, the creation of slope terraces, and the use of direct sowing mulch-based
cropping (DMC) systems should be considered. In addition to biophysical technologies,
emphasis should be place on socioeconomic innovations, training producers, building
social capital, and enhancing the capacity for agricultural extension.
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