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Abstract: Detection of unauthorized drones is mandatory for defense organizations and also for
human life protection. Currently, detection methods based on thermal, video, radio frequency (RF)
and acoustic signals exist. In previous research, we presented an acoustic signals-based multiple
drones detection technique utilizing independent component analysis (ICA) in the presence of
interfering sources. In this paper, a method is proposed in which the mixed signals are first separated
taking the ICA technique into account. After extracting the features, the support vector machines
(SVM) and the k-nearest neighbors (KNN) are used to identify multiple drones in the field. This
technique can detect multiple drones in static and quasi-static mixing scenarios, while failing in
time-varying scenarios. In this paper, a time-varying drone detection technique (TVDDT) is proposed
that first stores a data set of the mixed signals in a time-varying scenario, where time variations occur
within the processing data blocks. After estimating the mixing matrices, we developed a technique
to track variations in the channel. This technique is based on variations in the mixing coefficients.
The proposed channel tracking technique performs classification and detection based on minimum
variation criteria in the channel. The proposed TVDDT technique is evaluated through simulations
and its superior performance is observed.

Keywords: multiple drones detection; time-varying scenario; independent component analysis;
support vector machines; k-nearest neighbors

1. Introduction

Today’s modern drones consist of advanced telecommunication, electronics and con-
trol technologies, having uncountable uses in many fields such as remote sensing [1], navi-
gation [2–4], archaeology [5,6], journalism [7], the environment [8,9] and agriculture [10].
Furthermore, in [11], the authors presented point-to-point architecture for a single drone
detection. In [12], drone detection based on cognitive internet of things was performed.
Image processing was utilized for drone detection in [13]. Different machine learning
algorithms were utilized in [14–16] for the detection of unauthorized drones. In [17], a
radio frequency (RF)-based detection was presented. Drone detection based on radio access
networks was carried out in [18]. Sound-based drone detection was performed in [19–22].
Indoor detection of unauthorized drones was performed in [23–25].

The unauthorized movement of drones can motivate illegal activities that may cause
security threats to an organization or country [26–28]. Thus, the detection of unauthorized
drones is necessary. Furthermore, drone detection methods based on sound, radio fre-
quency (RF) signal, image processing, radar technology and video signals are presented
in [11,12,14,29–39]. The RF-signals-based technique fails in unfavorable atmospheres and
also fails to identify mini drones. Similarly, the image- and video-based methods require
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high-performance cameras and computationally efficient circuitry; they are hence very
expensive solutions. Moreover, the image- and video-based techniques also have short-
comings of fixed orientation. Acoustic-signal-based identification is cost effective and
practically applicable, but the presence of interfering sources make it more complex. The
audio-based drone detection methods presented in [14,20–22] consider the drone and the in-
terference ring sources independently without considering practical scenarios. In practical
scenarios, the recorded signals are mixtures of the source signals, including the drone sound
as well as the interfering sources. All these papers also considered single drone detection
at a time in the sensing field. Moreover, in [30], the authors proposed a multiple-drones
detection technique based on independent component analysis (ICA). In [30], multiple
drones and interfering sources are considered while the channel is kept quasi-static. The
technique presented in [30] is practically applicable and works well in the case of static or
quasi-static channels. In quasi-static channels, the mixing matrix remains constant during
the processing data block. In practical scenarios, the drones and the interfering sources are
not static, which causes failure of the quasi-static condition. This becomes a challenging
issue for the ICA algorithms to blindly unmix the mixed data in time-varying mixing
scenarios. In fact, the role of the ICA algorithm is to estimate the mixing coefficients of the
mixing system. In this case, if the mixing coefficients change within the processing data
block, the ICA algorithm fails to estimate these coefficients properly.

This work presents a time-varying drone detection technique (TVDDT) to detect single
and multiple drones in a sensing field in a time-varying scenario. The role of the ICA
algorithm is to unmix the mixed audio signals. If there are multiple drones in the field,
the ICA algorithm can easily unmix them without any modification in the algorithm. The
proposed technique is based on audio signals processing. The drone detection is performed
considering the strong interfering sources. These sources include sounds of birds, rain, air,
airplanes, etc. The drone detection is performed considering all the drones and interfering
sources in motion. The proposed TVDDT technique first stores a long data set simulated
through multiple microphones. The mixed data are converted to smaller data blocks for
unmixing using the ICA algorithm and classification. Once the signals are unmixed, the
classification technique can classify the signals into drone and non-drone signals even
if there are multiple drones in the sensing field. Moreover, conversion into smaller data
blocks make it possible to detect variations in the channel. Rapid variations in the channel
produce low-quality results. The unmixing is performed over smaller data blocks while
observing the channel variations through a technique proposed for tracking the channel
variations. This is an iterative technique that compares the mixing coefficients obtained
from the data set with the other data set, and observes the variations. These variations
depend on the drone speed; large variations are observed at a high speed of the drone
and vice versa. These variations are recorded for various data blocks and the results are
analyzed for small variations in the channel. In case of small variations, a better unmixing
performance is observed. Furthermore, the linear predictive cepstral coefficients (LPCC)
and mel-frequency cepstral coefficients (MFCC) [40] are utilized for feature extraction.
Afterwards, the support vector machine (SVM) [41] is utilized for classification of the
extracted features once better unmixing performance is obtained. The key contributions of
this research are as follows:

• Drone detection has been performed in previous works while considering the quasi-
static channels. In this research, we concentrate on time-varying mixing channels
to detect the unauthorized drones in a practical scenario. In order to achieve this
objective, a channel tracking technique is proposed to track the channel variations in
a time-varying scenario. The proposed technique is based on the estimated mixing
matrices using the FastICA algorithm [42].

• The time varying drone detection (TVDDT) technique is proposed to detect single as
well as multiple drones in the presence of strong interfering sources considering the
time-varying scenario in which the drones are in motion.
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• The detection of the drones is performed in a time-varying scenario considering the
drones when the interfering sources are in motion. This becomes a challenging issue
in drone detection utilizing audio signals.

The rest of the paper is organized as follows. Section 2 presents the system model of
the proposed algorithm. The proposed TVDDT technique and the time-varying scenario
of the flying drones is explained in Section 3. Simulation results and the conclusion are
provided in Sections 4 and 5, respectively. Moreover, lowercase letters are used for scalars,
lowercase boldface letters for vectors and uppercase boldface letters for matrices. Transpose
is denoted by uppercase superscript T. A list of abbreviations is also included in Table 1 for
the clear understanding of the reader.

Table 1. List of abbreviations.

ICA Independent component analysis

Radio frequency RF

Support vector machines SVM

SNR Signal-to-noise ratio

SIR Signal-to-interference ratio

K-nearest neighbors KNN

Time-varying drone detection technique TVDDT

Linear predictive cepstral coefficients LPCC

Mel-frequency cepstral coefficients MFCC

Power spectral density PSD

2. The System Model

This section presents the drones and the interfering signals in the independent compo-
nent analysis (ICA) data model. The application scenario is given in Figure 1. This figure
demonstrates the practical scenario of the drone and the interfering sources. Although we
utilized data downloaded from a standard database rather than the hardware implementa-
tion, this figure makes it easy for the reader to clearly understand the application scenario.
Furthermore, N number of acoustic sources u1, u2, . . . , uN were considered, as shown in
Figure 2 with N = 8. All these signals were downloaded from the standard databases
usually utilized for research and which are freely available at [43]. These sound signals
were downloaded in a WAV format having a sampling frequency of 96 kHz and a 24 bit
resolution. In order to clearly understand the system model of the proposed technique,
we considered Figure 2, which consists of N number of sensors. The source signals were
downloaded from a standard database having block length L as un = [un1, un2, . . . , unL],
with n = 1, 2, . . . , N. The downloaded source signals were mixed using MATLAB code
with random mixing matrices. The mixed signals were linear mixtures of all the sources as
v1, v2, . . . , vN . Furthermore, the sensors in Figure 2 show how mixing occurs in the practical
scenario. After mixing, the mixed data is processed using the independent component
analysis (ICA) algorithm for unmixing, as shown in Figure 2. The unmixed signals are
y1, y2, . . . , yN . The mixture signals can be modeled mathematically as:

V = AU + X (1)

The V represents the N × L mixed data matrix, A is the N × N mixing matrix, U is
the N × L source data matrix and X represents the atmospheric acoustic noise. The square
mixing matrix was considered because the ICA algorithm requires an equal number of the
source and the mixture signals. Equation (1) represents the quasi-static mixing scenario in
which the mixing matrix remains constant during the processing data block. Various mixing
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models were used in the ICA signal processing, such as constant mixing, quasi-stationary
mixing, ill-conditioned mixing, instantaneous mixing, convolutive mixing, time-varying
mixing, non-linear mixing and under and over-complete mixing [44]. Time-varying mixing
values of the mixing matrix varied during the processing data block. The mixing matrix
varied during the processing data block; the mixing matrix can be modeled as follows:

V = AU + ∆U + X (2)

The ∆U is the error signal, and the goal is to compensate this parameter in the ICA
signal processing. The new mixing matrix A′ can be written as:

A′ = A + ∆ (3)

In the literature, it is assumed that the variations in the channel are slow, i.e., ∆ = 0,
or small data block lengths are assumed in order to neglect variations in the processing
data blocks. The time-varying mixing in the processing data blocks becomes a challenging
problem if the above two assumptions are false. Furthermore, after unmixing using the
ICA, the estimated signals are represented as:

Y = WV (4)

The W is the inverse of A′ and is known as the unmixing matrix.

Figure 1. This figure shows the practical scenario of the proposed work.

Figure 2. System model of the proposed ICA-based drone detection system.

3. The Proposed TVDDT Technique

Detection of unauthorized drones is performed in the literature utilizing various tech-
niques. These techniques include RF communication, acoustic measurement, as well as
image and video signal processing techniques. However, the RF-based detection fails under
severe atmospheric conditions and does not succeed in identifying small and variable-
shape drones [11]. Similarly, the image- and video-based methods are computationally
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inefficient and require expansive circuitry; hence, these are very expensive solutions [11,30].
Sound-based detection is more practical, but various interfering sound sources such as
birds, airplanes, wind, thunderstorms, etc., make it more challenging. We proposed an
independent component analysis (ICA) technique in [30] to detect multiple drones in the
presence of these interfering sources. In [30], it is assumed that the channel is quasi-static
while in a practical scenario the detected drone is moving. Due to drone movement, the
mixing matrix varies within the processing data block and the SVM technique fails to detect
the drone sound. The technique proposed in this work is capable of detecting the unautho-
rized drones in a sensing field in a time-varying scenario. In the next subsection we explain
the time-varying mixing scenario utilized in the development of the proposed technique.

3.1. Time-Varying Scenario of the Flying Drones

Consider Figure 3, where the drone is initially at a point P and the ground acoustic
sensing unit is at a distance d. At this point, the sensing unit stores the sounds of a
single drone or multiple drones and the attenuation depends on the distance d. With
increased values of d, the signal amplitude decreases. At point P and distance d, the
sensing mechanism of the drone sound is illustrated in Figure 4, where all aij are the mixing
coefficients for i = 1, 2, 3 and j = 1, 2, 3 because every sensor simulates the mixture of the
drone sound. Moreover, let the drone move from point P to the new point, Q. Now, the
distance changes from d to d′ and the mixing coefficients change, as illustrated in Figure 5.
In this figure, we consider an equal number of sources and sensors as three, and the new
mixing coefficients in this figure are αij = aij + ∆ij. The time-varying mixing coefficients
are shown in Equation (5).

A′ =


a11 + ∆11 a12 + ∆12 . . . a1L + ∆1L
a21 + ∆21 a22 + ∆22 . . . a2L + ∆2L

...
...

. . .
...

aN1 + ∆N1 aN2 + ∆N2 . . . aNL + ∆NL

 (5)

Figure 3. Position of the unauthorized drone while flying in the sensing field.
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Figure 4. Mixing in quasi-static scenario where u is the source data vector, v is the mixture signal and
a represents the mixing coefficient.

Figure 5. The time-varying mixing phenomenon where α represents the time-varying mixing coeffi-
cient of the flying drones, u is the source data vector and v is the mixture signal.

3.2. The TVDDT Technique

In time-varying scenario, the mixing coefficients are changing within the processing
data blocks and the ICA algorithm is unable to track these variations. Once the unmixing
is performed properly, the feature extraction and classification techniques work as shown
in [30]. In this work, we proposed a time-varying drone detection technique (TVDDT)
to detect single and multiple drones in a sensing field using acoustic signals. First, we
downloaded a long data set of the acoustic signals of the drones and the interfering sources,
as shown in Figure 3. The proposed technique tracks the channel variations due to either
drone movement or interfering sources. A data flow diagram of the proposed TVDDT
technique is given in Figure 6. The source data matrix U contains the drones and the
interfering source signals. The mixture signals are V1, V2, . . . , VK, where k = 1, 2, . . . , K.
After computing Ak, ∆k is computed as:

∆k = Ak+1 −Ak =


∆11 ∆12 . . . ∆1N
∆21 ∆22 . . . ∆2L

...
...

. . .
...

∆N1 ∆N2 . . . ∆NN

 (6)
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Figure 6. Data flow diagram of the proposed TVDDT technique.

Note that the ∆k represents variations in the mixing matrix explained above. Once ∆k
is calculated, the H∆k is calculated as:

H∆k =
N

∑
i=1

N

∑
j=1
|∆ij| (7)

The H∆k is the measure for predicting variations in the channel. A high value of H∆k
represents large variations in the channel and conversely. Finally, the following condition
is checked:

H∆k+1 ≤ H∆k (8)

If the above condition is true, select another data set Vk+1; if this fails, decrease the
data block length and perform the separation again. Now, select the extracted results Yk
corresponding to the minimum value of H∆k for feature extraction and classification. The
proposed technique is summarized step by step in Algorithm 1.

The power spectral density (PSD) values are calculated by passing the ICA unmixed
data through octave band filtering [45]. The audio spectrum (20 Hz to 20 kHz) is divided
into 11 bands according to Equation (9).

f c
7 = 1000Hz

f c
n−1 = 0.5 f c

n

f c
n+1 = 2 f c

n

(9)

The f c
7 represents the 7th octave band central frequency, and f c

n−1 and f c
n+1 are the

lower and upper central frequencies, respectively. Similarly, the upper and the lower
frequencies for each central frequency are f l

n =
√

2 fn and f l
n = fn/

√
2. Initially, different

octave bands are obtained from a signal and then the RMS and PSD of each band is
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computed. By using the computed feature vectors, the sounds are classified as drone and
non-drone sounds through algorithms.

Algorithm 1: The TVDDT algorithm.

begin
1. Initialization

a. Set the value of K
b. Select the maximum number of source signals N
c. Select initially a random mixing matrix A of size N × N

2. Store long dataset M through M = AU
3. Calculate µ = Length(M)
4. µ′ = µ/K
5. Length(V) = µ′

6. For k = 1, 2, . . . , K
7. Select Vk from M
8. Perform unmixing using the FastICA algorithm
9. Store the unmixed data sets Yk
10. Compute Ak from Wk
11. Calculate ∆k = Ak+1 −Ak

12. Calculate H∆k = ∑N
i=1 ∑N

j=1 |∆ij|
13. Store values of H∆k
14. Check H∆k+1 ≤ H∆k,

If True,
k = k + 1, and jump to step 7.
If False, then perform the following steps
a. k = k + 1
b. Decrease the value of L by K = K + 1
c. Go to step 4.

15. Choose Yk corresponding to the minimum value of H∆k
16. Perform feature extraction and classification
17. Terminate

end

In another technique, we used the MFCC calculated from the PSD of the audio signal.
PSD is calculated through the filter banks as given in Equation (10).

Ph(n) =


0, n < f (h− 1)

n− f (h−1)
f (h)− f (h−1) , f (h− 1) ≤ n ≤ f (h)

f (h+1)−n
f (h+1)− f (h) , f (h) ≤ n ≤ f (h + 1)

0, n > f (h + 1)

(10)

The h and f represent the number of filters and mel-spaced frequencies, respectively.

4. Simulation Results

The effectiveness of the proposed technique for the detection of multiple drones is
evaluated in this section using audio signals and a time-varying scenario. It must be
noted that Figure 1 demonstrates the practical scenario of the drone and the interfering
sources. Although we utilized data downloaded from a standard database rather than the
hardware implementation, this figure makes it easy for the reader to clearly understand
the application scenario. Similarly, Figure 3 explains the behavior of the flying drone from
a specific point to another point. This figure shows that the value of the mixing coefficient
changes with the change in position of the drone. In addition, this statement is also true for
the interfering sources if they move from one point to another point.
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In [30], we addressed this issue for a quasi-static mixing condition in the presence of
strong interfering sources. In a practical scenario, the detected drones and the interfering
sources are moving and the resultant mixing coefficients are time-varying. These variations
may be slow or fast depending on the speed of the drones and interfering sources. In
fact, the signals are the mixtures of all the surrounding audio sources, such as drones,
birds, wind, thunderstorm, airplanes, rain, etc. The time-domain versions of these in-
terference signals along the drone signal are demonstrated in Figure 7. All these signals
were downloaded from the standard databases usually utilized for research and which are
freely available at [43]. These sound signals were downloaded in a WAV format having a
sampling frequency of 96 kHz and a 24 bit resolution. The source signals u1, u2, . . . , u6 were
multiplied with a random mixing matrix A to obtain the desired mixed data. The multipli-
cation of the source signals with the mixing matrix demonstrates the mixing mechanism of
the multiple mixes. The mixing process is mathematically illustrated in Equation (11).

v11 v12 . . . v1L
v21 v22 . . . v2L

...
...

. . .
...

v61 v62 . . . v6L

 =


a11 a12 . . . a16
a21 a22 . . . a26
...

...
. . .

...
a61 a62 . . . a66




u11 u12 . . . u1L
u21 u22 . . . u2L

...
...

. . .
...

u61 u62 . . . u6L

 (11)
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Figure 7. Audio source signals of aeroplane, birds, wind, rain, thunder, and drone downloaded from
the database.

The mixed signals obtained are shown in Figure 8 for a random mixing matrix of size
6× 6. Hence, the technique presented in [30] fails in practical scenarios.

A performance evaluation was carried out using a Monte Carlo simulation. All
simulations were performed using MATLAB 9.0. Furthermore, the lengths of the mixed data
blocks were utilized in simulation ranges from 1000 to 10,000 samples. The performance
evaluation criterion used was signal-to-interference ratio (SIR) [30]. SIR in dB of a single
data block is written as follows:

SIR(dB) = 10log

(
1
L

L

∑
n=1

u(n)2

u(n)− y(n)2

)
(12)
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Figure 8. Mixed signals of the drone and the interfering sources. These mixed signals were generated
in MATLAB. The original source signals were downloaded from a standard database.

A time-varying scenario was utilized in the simulations in which the mixing matrix
varies during a single data set. We utilized the source signals of Figure 7. The resultant
mixing matrix is shown in Equation (13) with six source signals. Initially, the increasing
values of H∆k were considered as varying from 0 to 2.9, where H∆k could be observed
from Equation (7). The increasing value of H∆k means that the source signals were moving
away from the sensing unit. The simulations were performed and the H∆k values are
demonstrated in Figure 9. We also considered that some of the sources were moving
away and some moving towards the sensing unit. The results are given in matrix form
in Equation (14), where the H∆k values initially decreased from 1.4809 to 0.0117 and then
increased up to 1.1224. These results are also given in Figure 10, where the H∆k variations
can be observed clearly. Furthermore, the randomly moving sources are considered next
and the results are illustrated in Figure 11. It can be clearly observed from the figure that the
H∆k values varied between h2 = 0.064 and h1 = 0.102. These results are also demonstrated
in Equation (15), where values of h1 and h2 are highlighted in red color. It must be noted
that J represents the number of experiments performed.

The SIR performance was evaluated next for the quasi-static and time-varying con-
ditions while utilizing the source signals of Figure 7. The data block lengths considered
from 1000 to 10,000 samples with a signal-to-noise ratio (SNR) of 20 dB. Figure 12 shows
the SIR performance of all six source signals, where the SIR value increased with increases
in the data block length. The time-varying scenario was considered next and the results are
illustrated in Figure 13 at H∆k = 0.1018. In this case, the SIR performance further degraded
with increasing data block length. It must be noted that performance improvement oc-
curred in the case of small block length while utilizing the time-varying scenario. The SIR
versus H∆k performance was also evaluated. The results are demonstrated in Figure 14 for
samples of data block lengths of L = 1000, and H∆k varied from 0 to 0.5. From the figure, it
can be observed that the SIR values changed approximately from 23 dB to 7 dB. At large
values of H∆k, the worst performance of the ICA algorithm was observed.
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A′ =



a11 + ∆11 a12 + ∆12 a13 + ∆13 a14 + ∆14 a15 + ∆15 a16 + ∆16
a21 + ∆21 a22 + ∆22 a23 + ∆23 a24 + ∆24 a25 + ∆25 a26 + ∆26
a31 + ∆31 a32 + ∆32 a33 + ∆33 a34 + ∆34 a35 + ∆35 a36 + ∆36
a41 + ∆41 a42 + ∆42 a43 + ∆43 a44 + ∆44 a45 + ∆45 a46 + ∆46
a51 + ∆51 a52 + ∆52 a53 + ∆53 a54 + ∆54 a55 + ∆55 a56 + ∆56
a61 + ∆61 a62 + ∆62 a63 + ∆63 a64 + ∆64 a65 + ∆65 a66 + ∆66

 (13)

H∆k =



1.4809 1.4541 1.4273 1.4005 1.3737 1.3470 1.3202 1.2934 1.2667 1.2399
1.2131 1.1864 1.1596 1.1329 1.1061 1.0794 1.0526 1.0259 0.9992 0.9724
0.9457 0.9190 0.8923 0.8656 0.8389 0.8122 0.7855 0.7588 0.7321 0.7055
0.6788 0.6521 0.6255 0.5988 0.5722 0.5456 0.5189 0.4923 0.4657 0.4391
0.4125 0.3859 0.3593 0.3328 0.3062 0.2796 0.2531 0.2266 0.2000 0.1735
0.1470 0.1205 0.0941 0.0676 0.0411 0.0147 0.0117 0.0382 0.0646 0.0910
0.1173 0.1437 0.1700 0.1963 0.2226 0.2489 0.2752 0.3014 0.3277 0.3539
0.3801 0.4062 0.4324 0.4585 0.4845 0.5106 0.5366 0.5626 0.5886 0.6145
0.6404 0.6662 0.6921 0.7178 0.7436 0.7693 0.7949 0.8205 0.8460 0.8715
0.8969 0.9223 0.9476 0.9728 0.9980 1.0230 1.0480 1.0729 1.0977 1.1224


(14)

H∆k =



0.0805 0.0836 0.0887 0.0755 0.0808 0.0893 0.0817 0.0921 0.0860 0.0948
0.0931 0.0950 0.0904 0.0866 0.0901 0.0921 0.0923 0.0728 0.0832 0.0891
0.0907 0.1008 0.0790 0.0867 0.1009 0.0927 0.0765 0.0837 0.0874 0.0855
0.0962 0.0815 0.0908 0.0891 0.0811 0.0864 0.0753 0.0805 0.0949 0.0975
0.0923 0.0879 0.0938 0.0823 0.0898 0.0843 0.0903 0.0766 0.0965 0.0767
0.0865 0.0861 0.0950 0.1000 0.0719 0.0826 0.0819 0.1018 0.0832 0.0992
0.0771 0.0781 0.0763 0.0909 0.0761 0.0884 0.0838 0.0888 0.0772 0.0800
0.0906 0.0838 0.0835 0.064 0.0856 0.0754 0.0786 0.0877 0.0789 0.1006
0.0740 0.0875 0.0844 0.0896 0.0861 0.0806 0.0797 0.0873 0.0909 0.0707
0.0765 0.0995 0.0840 0.0834 0.0886 0.0978 0.0939 0.0838 0.0798 0.0818


(15)

1 2 3 4 5 6 7 8 9 10

J Number of Experiment

0

0.5

1

1.5

2

2.5

3

H
 k

Figure 9. H∆k values when all the sources are moving away from the sensor. The colors merely show
the different values of H-delta-K which are already shown by the initial (start) value of each colour.
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Figure 10. H∆k values when some of the sources are moving away from and some are moving
towards the sensors. The colors merely show the different values of H-delta-K which are already
shown by the initial (start) value of each colour.
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Figure 11. H∆k values when the sources are randomly moving in the sensing field. The colors
merely show the different values of H-delta-K which are already shown by the initial (start) value of
each colour.

The main goal of the proposed TVDDT technique is to track the channel variations in
terms of H∆k and identify the separated signals where a minimum value of H∆k is obtained.
The results given in Figure 14 clearly demonstrate the performance improvement at smaller
values of H∆k.

Finally, we considered the classification of isolated signals into drone and non-drone
acoustic signals. The results are tabulated in Tables 2 and 3. Table 2 contains the results of
the quasi-static mixing scenario [30] and Table 3 contains the results of the time-varying
scenario. Table 3 illustrates that the SVM-ICA and KNN-ICA failed to produce correct
results, while the proposed SVM-TVDDT and KNN-TVDDT produced satisfactory results
even in a time-varying scenario. All these results were obtained at L = 1000 samples and
SNR = 20 dB.
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Figure 12. SIR performance of the FastICA algorithm for different data block lengths and quasi-
static mixing.
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Figure 13. SIR performance of the FastICA algorithm for different data block lengths when utilizing
the time-varying mixing scenario.
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Figure 14. SIR at L = 1000 samples to observe the unmixing performance at various values of H∆k.
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Table 2. Classification results of signals under the quasi-static channel condition.

Data Block Length Method SVM-ICA KNN-ICA

L = 10,000
PSD 92.57 97.9

RMS PSD 96.1 99.1
MFCC 88.2 97.4

L = 7000
PSD 91 97.2

RMS PSD 94.9 98.3
MFCC 87.6 97

L = 4000
PSD 90.3 96.7

RMS PSD 94.1 98
MFCC 87.0 96.7

L = 1000
PSD 89.7 96.0

RMS PSD 93.3 97.1
MFCC 86.8 95.3

Table 3. Classification results of various audio signals in the time-varying scenario.

Data Block Length Method SVM- KNN- SVM- KNN-
L ICA ICA TVDDT TVDDT

L = 10,000
PSD 40.57 41.9 90 92.2

RMS PSD 42.1 43.1 90.12 93.8
MFCC 38.2 42.4 83.21 92.13

L = 7000
PSD 43 42.2 87 93.6

RMS PSD 40.9 41.3 91 93.9
MFCC 38.6 39.53 84.2 93.1

L = 4000
PSD 43.3 42.7 87.3 93.45

RMS PSD 42.1 43.01 95.01 95.76
MFCC 40.0 41.7 85.1 94.01

L = 1000
PSD 44.7 45.0 90.61 95.01

RMS PSD 43.3 44.1 93.96 96.75
MFCC 40.8 42.3 86 95.35

5. Conclusions

Drone detection is one of the essential requirements for security organizations and
human life. In the literature, acoustic-signals-based drone detection is performed utilizing
quasi-static channels. Feature extraction and classification is performed over the estimated
source signals in a quasi-static scenario. In a practical scenario, the drones and the interfer-
ing sources are moving, which causes variations in the mixing matrix within the processing
data blocks. In this case, it becomes a tedious task for the independent component analysis
(ICA) to blindly unmix the mixture signals in order to further process it into drone and
non-drone signals. In this paper, we developed a time-varying drone detection technique
(TVDDT). The proposed TVDDT technique performs well in a time-varying scenario as
compared to previously proposed work. The SVM-TVDDT outperforms the SVM-ICA by
48.02%, and the KNN-TVDDT outperforms the KNN-ICA by 50.7% for RMS PSD values at
L = 10,000 samples, as shown in the simulation part. Moreover, the proposed technique can
be used in airports and other security-related organizations.

In future, the authors are committed to designing the hardware for the proposed work.
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38. Miklavčič, P.; Matjaž, V.; Boštjan, B. Patch-monopole monopulse feed for deep reflectors. Electron. Lett. 2018, 54, 1364–1366.
[CrossRef]

39. Garg, A.K.; Janyani, V.; Batagelj, B.; Abidin, N.H.Z.; Bakar, M.H.A. Hybrid FSO/fiber optic link based reliable & energy efficient
WDM optical network architecture. Opt. Fiber Technol. 2021, 61, 102422.

40. Kumar, A.; Rout, S.S.; Goel, V. Speech Mel frequency cepstral coefficient feature classification using multi level support vector
machine. In Proceedings of the 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics
(UPCON), Mathura, India, 26–28 October 2017; pp. 134–138.

41. Grama, L.; Tuns, L.; Rusu, C. On the optimization of SVM kernel parameters for improving audio classification accuracy. In
Proceedings of the 14th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June
2017; pp. 224–227.

42. Basiri, S.; Esa, O.; Visa, K. Alternative derivation of FastICA with novel power iteration algorithm. IEEE Signal Process. Lett. 2017,
24, 1378–1382. [CrossRef]

43. Available online: https://www.soundsnap.com/tags (accessed on 11 March 2021 ).
44. Uddin, Z.; Ahmad, A.; Iqbal, M.; Naeem, M. Applications of independent component analysis in wireless communication systems.

Wirel. Pers. Commun. 2015, 83, 2711–2737. [CrossRef]
45. Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2009.

http://dx.doi.org/10.3390/s21154953
http://www.ncbi.nlm.nih.gov/pubmed/34372189
http://dx.doi.org/10.1016/j.dcan.2019.05.001
http://dx.doi.org/10.1177/1351010X20917856
http://dx.doi.org/10.1002/wat2.1328
http://dx.doi.org/10.3390/s21165597
http://dx.doi.org/10.1109/MCOM.2017.1700442
http://dx.doi.org/10.1016/j.comcom.2020.02.065
http://dx.doi.org/10.1007/s10489-017-1053-6
http://dx.doi.org/10.5755/j02.eie.24744
http://dx.doi.org/10.1049/iet-ipr.2014.0935
http://dx.doi.org/10.1049/el.2018.5753
http://dx.doi.org/10.1109/LSP.2017.2732342
https://www.soundsnap.com/tags
http://dx.doi.org/10.1007/s11277-015-2565-1

	Introduction
	The System Model
	The Proposed TVDDT Technique
	Time-Varying Scenario of the Flying Drones
	The TVDDT Technique

	Simulation Results
	Conclusions
	References

