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Abstract: The accurate prediction of heat load profiles with a daily resolution is required for a broad
range of applications, such as potential studies, design, or predictive operation of heating systems.
If the heat demand of a consumer mainly originates from (production) processes independent of
the ambient temperature, existing load profile prediction methods fail. To close this gap, this study
develops two ex post machine learning models for the prediction of the heat demand with a daily
resolution. The selected input features are commonly available to each consumer connected to public
natural gas and electricity grids or operating an energy monitoring system: Ambient temperature,
weekday, electricity consumption, and heat consumption of the last seven days directly before the
predicted day. The study’s database covers electricity and natural gas consumption load profiles
from 82 German consumers over a period of two years. Electricity and heat consumption correlate
strongly with individual patterns for many consumers. Both shallow and deep learning algorithms
from the Python libraries Scikit-Learn and Keras are evaluated. A Long Short-Term Memory (LSTM)
model achieves the best results (the median of R2 is 0.94). The ex post model architecture makes the
model suitable for anomaly detection in energy monitoring systems.

Keywords: load profiles; electricity; heat; industry; correlation; machine learning; LSTM; prediction;
anomaly detection

1. Introduction

To comply with the Paris climate agreement, decarbonization of the global energy
system is one of the greatest challenges facing humanity in the 21st century. The war in
Ukraine has recently put additional pressure on the worldwide energy system and is forcing
an accelerated energy transition. In a 10-point plan to reduce the European Union’s reliance
on Russian natural gas, the International Energy Agency calls for the accelerated installation
of renewable energy capacities, particularly heat pumps, solar, and wind projects, and
accelerated improvements in energy efficiency [1]. The low-carbon economy transition is
also seen as an important part of COVID-19 pandemic-related economic recovery plans [2].

Due to the volatility of renewable energy sources, the planning of renewable energy
capacities is often significantly more complex in relation to conventional fossil fuel-driven
energy systems. In the area of heat supply for industrial companies, for example, Lauter-
bach [3] and Wolf [4] showed the complexity of the planning process for solar thermal
process heat plants and large-scale heat pumps. To balance the heat demand of a particular
consumer and the fluctuating availability of renewable energy sources, such as solar irradi-
ation or surplus heat, when planning renewable energy generators, predicting rather than
measuring heat load profiles can save time and money. In addition to this example, many
other applications related to renewable heating systems and energy-efficient operation of
heating systems can benefit from accurate prediction of heat load profiles, e.g., in anomaly
detection or model predictive control (MPC).

Load profiles are a sequence of data points of energy consumption or production.
The data can either be measured or predicted. Models for load profile prediction can be
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distinguished between white- and black-box models. White-box approaches use physical
models. Consequently, white-box models require a detailed knowledge of the modeled
process and its physical laws and parameters. As a result, white-box models are complex
but describe a system in more detail [5]. In contrast, black-box models are data-driven
and do not require an understanding of the system’s physics. If measured data on the
operation of a system is available, mathematical models (e.g., statistical regression or
machine learning) are used to establish a relationship between input and output variables.
Consequently, black-box models are simple but require a significant amount of training
data [5].

First, this section summarizes examples of uses for load profile models established
in practice, focusing on heat demand load profiles of individual consumers in industry
and in the tertiary sector. Electricity load profiles or aggregated load profiles of groups of
consumers are out of scope. The following paragraphs give an overview of recent literature
on heat load profile prediction of individual consumers for the considered uses of heat
load profile prediction models. Additionally, recent literature on the correlation between
heat and electricity demand of individual consumers is outlined, as this correlation forms a
basis for the models developed in this study. Finally, the objective of this study is outlined
based on identified research gaps.

1.1. Operation of Energy Networks

Natural gas and electricity network operators use load profiles for billing reasons
and to ensure the security of supply. To feed as much energy as requested to the supply
networks, network operators predict the energy consumption for the next days. Large
consumers’ predictions are usually based on measured load profiles. For instance, German
law defines an electricity consumption of 100 MWh/a [6] and a natural gas consumption of
1.5 GWh/a or 500 kWh/h [7] as thresholds for mandatory online load measurements. If
one these thresholds is exceeded, measuring devices have to transmit an average load value
to the grid operator every 15 min (electricity) or every hour (natural gas). Additionally, all
electricity consumers are to be equipped with digital measuring systems by 2032 [8]. To
ensure the security of supply of groups of small consumers below the measuring thresholds,
their energy demand is predicted based on the Standard Load Profile (SLP) methodologies
for electricity [9] and natural gas [10]. The billing of these small consumers is based on
offline measurements, which are usually only read out manually once a year.

1.2. Potential and Feasibility Studies on Renewable Heating Systems

For the performance evaluation of renewable heating systems, the heat load profiles
of energy sources and sinks are an important input. This is especially the case if energy
sources are volatile, e.g., irradiation, excess, or environmental heat. Previous potential
studies, e.g., on solar thermal heating systems or heat pumps in industry, are based on
simple assumptions about load profiles. Lauterbach et al. [11] and Wolf [4] created load
profiles by combining stylized daily, weekly, and annual load patterns. Due to a lack of
suitable industrial heat load profiles, Lauterbach also makes use of consumption patterns
derived from electricity load profiles.

1.3. Design of Renewable Heating Systems

For the design of renewable heating systems, the system’s capacity must be adjusted
regarding the availability of renewable heat sources and the heat sink’s demand. For
existing systems, historical load profiles may be available. If this is not the case, a heat
demand load profile must be predicted. For the preliminary design of solar thermal systems
in industry, Lauterbach [3] uses the same simplified assumptions about daily, weekly, and
annual load profiles that are part of the two potential studies cited above. For residential
buildings, a standard to create reference load profiles for power, heat, and domestic hot
water is available [12]. No standards or other methods for load profile prediction that are
established in practice could be identified for large industrial and commercial consumers.
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The lack of such a methodology is confirmed by the German Association of Engineers
(VDI) [13].

1.4. Model Predictive Control

For economic or technical optimization of the operation of industrial heating systems,
information about future energy demand is crucial. For instance, heat generators could
supply heat required in the future to storage when renewable energy sources are available,
or energy prices are low. The storage can then supply heat when few renewable sources are
available, or energy prices are high. Detailed information on future heat demand is required
to avoid heat surpluses and, consequently, to increase economic and energetic efficiency.
The generation and storage of energy for the purpose of covering future peak loads (peak
shaving) can also increase capacity utilization and therefore also increase economic and
energetic efficiency.

1.5. Anomaly Detection

If an energy monitoring system at a consumer site is established, measured load
profiles can be compared to predicted values. If deviations between measured and pre-
dicted load profiles exceed a previously determined threshold, an anomaly is detected.
Anomaly detection can help to prevent inefficient operation by automatically detecting
unexpected consumption, e.g., due to faulty operation or faulty components. Energy moni-
toring systems that include anomaly detection in the electricity consumption are already
commercially available [14]. As far as the authors know, there is no energy monitoring
system available, which includes an anomaly detection in natural gas or heat consumption.

1.6. Load Profile Prediction for Individual Consumers in Recent Literature

Drgoňa et al. [15] provided a comprehensive overview on MPC for buildings. They
cited numerous studies of MPCs based on white-, grey-, and black-box models. However,
most of the studies listed, which have been implemented in real life, use black-box models.
Mugnini et al. [16] compared a black- and white-box model based on MPCs for heating
cost optimization. Both models result in a 16% reduction in heating costs. Nevertheless,
the artificial neural network (ANN) based black-box model is a poorer reflection of system
dynamics, resulting in more frequent comfort restrictions due to deviations from the desired
room temperature. In contrast, Smarra et al. [17] found that the performance of a shallow
learning (random forest) based MPC for building energy optimization and climate control
is similar to that of a white-box controller.

Lindberg et al. [18] provided a comprehensive review of the literature on building
load modeling. They distinguish between heat and electricity as well as the application
categories at residential, non-residential, or grid level. They conclude that most studies in
literature relate to electricity and households. None of the studies mentioned analyzes or
predicts the heat load of industrial consumers.

Several studies focus on modeling the hot water demand of residential consumers.
Gelažanskas and Gamage [19] developed a methodology to predict the volumetric hot
water demand of about 100 dwellings. They evaluated different artificial neural network
(ANN) architectures, different input features, and time lags. The most accurate models
achieve a Pearson correlation coefficient (R) of about 0.8, which corresponds to an R2 of
0.64. Heidari and Khovalyg [20] use a feed forward ANN as a baseline model and compare
it to a Long Short-Term Memory (LSTM) model, an attention-based LSTM model, and
an attention-based LSTM model using decomposed data for domestic hot water demand
prediction. Compared to the feed forward ANN, the three LSTM-based models yield a 25%,
28%, or 41% reduced Mean Absolute Error (MAE).

Predicting cooling loads of buildings is another key aspect in the literature. Li et al. [21]
used Support Vector Machines (SVM) to predict the hourly cooling load of an office building.
In addition to SVM, Fan et al. [22] investigated five other shallow learning algorithms and
one deep ANN for building cooling load prediction. They concluded that supervised
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Extreme Gradient Boosting (XGBoost) combined with unsupervised deep learning feature
extraction leads to the most accurate predictions of the cooling load for the next 24 h.
Wang et al. [23] compared seven shallow learning, two deep learning, and three heuristic
methods for modeling the thermal load of a building to optimize the chiller plant and
thermal storage operation. They found that XGBoost is the most accurate shallow learning
method and recommended it for long-term load prediction for the next 24 h. LSTM is the
most accurate deep learning method in their study, and it is recommended for short-term
prediction of the next hour’s load.

The LSTM algorithm was developed by Hochreiter and Schmidhuber [24] in 1997 to
solve the vanishing gradient problem that often arises when recurrent neural networks
are trained for time series prediction. In 2000, Gers et al. [25] further developed the LSTM
algorithm and added forget gates, which additionally increased the LSTM performance in
time series modeling tasks.

As described above, electricity load profiles are already available to many industrial
consumers. By 2032, all German electricity consumers connected to a public grid will be
equipped with a digital measuring system. Due to the high availability, it makes sense to
use electricity load profiles in heat load profile prediction. There are studies that detect a
clear correlation between electricity consumption, natural gas consumption, and ambient
temperature on the grid level for different regions, e.g., the USA [26] or the UK [27].
Studies that use electricity consumption profiles to predict heat load profiles, or even
systematic studies of the relationship between electricity consumption and natural gas or
heat consumption at the consumer or process level, could not be found.

Studies that analyze a broad database of industrial heat load profiles are also not
available. As far as the authors are aware, they have presented the only studies that analyze
at least a high three-digit number of load profiles of large industrial consumers [28–30].
The authors recently presented a comprehensive cluster and regression analysis of 797
industrial and commercial natural gas load profiles [28]. Linear regressions have been
developed that reflect the relationship between ambient temperature and heat demand
with a high degree of accuracy. However, for consumers with a high proportion of process
heat, which is independent of the ambient temperature, these regressions often only achieve
an insufficient degree of accuracy. The methods and results of the authors’ previous study
are a basis for the present study and therefore outlined in Section 3.2.

1.7. Implications from Literature and the Objective

The main objective of this study is to develop data-driven black-box models for pre-
dicting heat load profiles with a resolution of one day, which provide significant higher
accuracy than in the literature. This will be done using only commonly available informa-
tion, such as electricity consumption or ambient temperature, but not irregularly available
information, such as operated processes, products, or production capacity utilization. For
this purpose, this study aims to fill two main research gaps:

1. Analysis of the correlation between heat and electricity consumption for consumers
from industry and the tertiary sector: No studies on the correlation between heat
or natural gas and electricity consumption on the level of individual consumers
from industry and the tertiary sector could be identified in the literature. However,
Lauterbach et al. [11] provided a comprehensive overview of the heat-consuming
processes commonly used in industry in the temperature range of up to 200 ◦C, which
was later supplemented by Wolf et al. [4] and Arpagaus et al. [31]. For many of
these processes, it can be assumed that there is a correlation between electricity and
heat demand, e.g., for processes such as drying or washing, where heating and the
operation of electric motors are required simultaneously. In contrast, some processes,
such as cooking, are expected to require only heat. Finally, there are also processes
that only require electricity. Therefore, the present study is the first to investigate the
relationship between measured heat and electricity load profiles systematically for
a broad range of different consumers from the industrial and tertiary sectors. As an
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important precondition to the model development, this study examines whether there
is a universal correlation pattern between natural gas and electricity consumption or
whether the observed correlations are specific to individual consumers. A universal
correlation pattern would suggest that a universal heating load profile model could be
developed for all consumers or a group of consumers. In contrast to that, consumer-
specific correlations without a universally observable pattern, would point to the need
for individually trained heat load profile models for each consumer.

2. The development of a generally applicable heat load profile model for consumers
from industry and the tertiary sector: No study of a heat load profile models valid
for consumers from different industries could be found, other than the authors’ own
previous work. In their previous publications, the authors presented a method to
predict normalized heat load profiles with a resolution of one day for individual
consumers from industry and the tertiary sector. The accuracy of this method is
sufficient for applications, such as preliminary design or potential studies for renew-
able heating systems. The present study aims to further increase the accuracy of this
method to be sufficiently accurate for more demanding applications, such as anomaly
detection. For this purpose, data-driven black-box models will be developed that
evaluate commonly available and previously ignored information, such as electricity
load profiles. Electricity load profiles are selected as an input to the heat load profile
model for the following reasons: The minimum threshold for online metering of
energy consumption load is significantly lower for electricity consumption compared
to natural gas consumption in Germany. Additionally, all consumers connected to
a public grid in Germany will be equipped with a digital measurement of electric-
ity consumption by 2032. Therefore, it can be assumed that electricity load profiles
are available much more frequently than gas load profiles. At the same time, it is
reasonable to assume that machine learning methods can be used to automatically
extract important information on the user behavior of a particular consumer from the
electricity load profiles.

The procedure of this paper is as follows: First, the database of 82 pairs of heat and
electricity load profiles is presented (Section 2). Next, the methods for data pre-processing,
correlation analysis, and model development are outlined (Section 3). Section 4 summarizes
the results. In Section 5, the results are discussed. Finally, in Sections 6 and 7, a conclusion
is drawn and an outlook on future work is given.

2. Database

A collection of pairs of natural gas and electricity consumption profiles from 82
consumers from industry and the tertiary sector for the years 2018 and 2019 serves as the
database of this study. The load profiles were anonymized by the natural gas and electricity
utility company that provided them. The only information available on the consumers
in the database is their allocation to an industry sector (according to Eurostat [32]) and
their region (Hesse, Germany). Unfortunately, both types of load profiles, natural gas and
electricity, are available for only a few companies. This explains the significantly lower
number of load profiles compared to the authors’ earlier work [28], in which 797 natural
gas load profiles were examined. For data protection reasons, the load profiles cannot be
published.

Table 1 provides an overview of the load profile database statistics, and Figure 1
illustrates the distribution of the annual energy consumption in the 26 industry sectors
for which load profiles are available. The energy consumption of most consumers is
significantly higher than the thresholds for online measuring. However, the natural gas
load of 12 consumers was measured online, although the annual consumption was less than
1.5 GWh/a. The highest energy consumption is observed in manufacturing industries. In
all the manufacturing industries, except for the manufacture of other non-metallic mineral
products, the electricity consumption is higher than natural gas consumption. In the tertiary
sector, natural gas consumption is generally higher than electricity consumption.
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Table 1. Statistics of the load profile database of 82 industrial consumers located in Hesse, Germany,
for 2018 and 2019.

Natural Gas Electricity

Resolution 1 mean value per hour 1 mean value per 15 min
Median consumption 4.0 GWh/a 8.4 GWh/a
Mean consumption 11.8 GWh/a 39.6 GWh/a
Max. consumption 152.8 GWh/a 1279.2 GWh/a
Min. consumption 0.55 GWh/a 0.18 GWh/a

Lower threshold for online measurement 1.5 GWh/a [7] 0.1 GWh/a [6]
Consumers below measuring threshold 12 0
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The spread of energy consumption of the individual companies within the various
industrial sectors is high. At the same time, the number of consumers in the individual
industrial sectors is in the single digits. Furthermore, no additional information is available
about the consumers, such as turnover or building size. Consequently, it is unreasonable to
derive and compare any benchmarks on absolute energy consumption.

The 82 consumers in the load profile database are located in the German postal code
regions 34 to 37. This covers the middle and northern part of Hesse and surrounding
regions. Due to a lack of more detailed information on the consumers’ location, the same
ambient temperature profile for all locations is used. This ambient temperature profile
was measured at a weather station of the Hessian State Agency for Nature Conservation,
Environment and Geology (HLNUG) in downtown Kassel, which is located approximately
in the middle of the region from which the consumers originate.

3. Methods

This study compares five models for heat load profile prediction. Three models are
taken from a previous study by the authors and are outlined in Section 3.2. The only input
features of these models are the type of day (wd or wknd) and the mean daily ambient
temperature at the consumer’s location. These models are validated with the load profile
database established for the present study (n = 82) and serve as a benchmark for evaluating
the models developed in this study. Two models, one shallow learning and one deep
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learning model, are newly developed within this study. These models consider additional
sources of information not previously evaluated. Electricity load is an input feature of both
models. The deep learning model additionally evaluates time-lagged heat consumption.

For all models, a resolution of one day is applied. At this resolution, the correlation
between heat demand and ambient temperature is clear. At higher resolutions, this cor-
relation becomes unclear due to the thermal inertia of buildings. Therefore, established
methods for predicting heat load profiles employ this resolution, e.g., the SLP method for
the residential and commercial sector [10]. At the same time, a resolution of one day is
sufficient for most uses of load profile prediction methods mentioned above. For instance,
as part of the preliminary design of renewable heating systems, the daily heat demand and
fluctuating renewable energy sources must be balanced. To buffer imbalances at higher
resolutions than one day, most renewable heating systems, such as solar thermal systems or
heat pumps, can be equipped with storage. For example, solar thermal systems in industry
are often equipped with a storage tank that can buffer the complete heat production on
sunny summer days [33]. Thus, a resolution of one day is sufficient for a first rough di-
mensioning of the plant capacity and a subsequent feasibility assessment. Only in detailed
planning is the knowledge of a higher-resolution load profile necessary, e.g., to design the
storage system. The same applies to anomaly detection. Variations of heat demand at a
high resolution, e.g., hourly scale, do not necessarily indicate relevant anomalies but can
have insignificant reasons, e.g., minor time shifts in the production process. In contrast,
significant deviations of predicted and measured heat demand on the daily scale indicate
serious system failures with higher accuracy. However, the resolution required in each case
for the various applications of heat load profile prediction methods is not part of this study
and must be determined in future studies on the respective applications.

In the further course of this section, pre-processing of the load profile database, model
development, and model evaluation are outlined. Various Python-based software libraries
are used for this study. Appendix A gives an overview of the libraries and the version used
in each case.

3.1. Pre-Processing

In the first pre-processing step, the resolution of the natural gas, electricity, and
ambient temperature profiles is reduced to one day. In the next step, the load profiles are
normalized. Natural gas load profiles are normalized on the mean daily consumption on
days with a mean daily ambient temperature of 8 ◦C according to the SLP methodology [10].
The choice of normalization temperature does not influence the qualitative results and
is only a scaling factor. However, the chosen temperature corresponds approximately to
the annual average temperature in Germany, so that it occurs frequently and the risk of
normalization to an outlier is low. This methodology is explained in detail in the authors’
previous publication [28]. The electricity load profiles are normalized on the maximum
daily electricity consumption.

Natural gas consumption and heat demand are almost linearly correlated for standard
boilers. Other technologies using natural gas are still very rare. For these reasons, this
study assumes that normalized daily natural gas consumption is equal to normalized daily
heat consumption. Due to the normalization, the natural gas boiler efficiency does not need
to be considered. A detailed discussion of this assumption can be found in the authors’
previous work [28].

To be used as input features for any of the tested machine learning algorithms, all
numerical data (load and ambient temperature profiles) is standardized. Categorial data
(day of the week) is one-hot encoded. For both standardization and one-hot encoding, the
respective Scikit-Learn [34] functions are used.

3.2. Model Development

The five heat load profile models compared in this study can be distinguished by the
amount of information they consider for the prediction. Figure 2 provides an overview
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of the input features of each of the models. Models 1 to 5 consider successively more
information. The three ex ante models are intended to predict the future heat demand, e.g.,
for preliminary design studies. Models 4 and 5 both consider the electricity consumption
of the day when the heat demand is to be predicted. Consequently, only a prediction of
the heat consumption for days in the past is possible (ex post). This limits the potential
applications of these models. One potential application is automated anomaly detection in
energy monitoring systems by comparing measured and predicted heat demand.
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Figure 2. Input features of each heat load profile model.

A representative ambient temperature profile is a required input of all models. For
ex post prediction and training of all models, a measured ambient temperature profile of
the same time span as the respective measured energy consumption profiles is used. If
the ex ante models are used in practice, e.g., for feasibility studies, weather data from a
test reference year (TRY) can be used. Alternatively, weather forecasts can be used for
short-term heat demand prediction.

3.2.1. Ex Ante 1

In the authors’ previous study [28], 797 annual load profiles with a resolution of one
day are clustered according to their specific dependency on ambient temperature. For
working days (wd), four clusters were defined (Figure 3a). For weekends and holidays
(wknd), five clusters were defined (Figure 3b).
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(8 ◦C) is the daily heat demand normalized to the mean heat demand on working days with a mean
ambient temperature of 8 ◦C.

Figure 4 visualizes the frequency of each cluster within the different industry sec-
tors [28]. An important finding that can be seen from this figure is that the heat demand of
most consumers depends on the ambient temperature, even in industry. There are only a
few industry sectors in which wd-cluster 0, the cluster without dependence on ambient
temperature, dominates. Consumers operating a combined heat and power plant (CHP)
are not considered in the cluster analysis due to the possibility of a nonlinear relationship
between natural gas consumption and heat demand.
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In order to create a load profile for a particular consumer based on the results of the
previous study, wd and wknd clusters must first be assigned to that consumer. For this
purpose, the clusters that are most frequent in the industry of this consumer are selected
(see Figure 4 for a chart of wd frequencies for primary and secondary sectors or [28] for
tables on wd and wknd frequencies for consumers from all sectors). In the next step, the
respective cluster regressions and a representative ambient temperature profile can be
used to create a load profile (1) (see Figure 3 for a diagram of cluster regressions and [28]
for tables on regression parameters). The regression function is composed of two linear
functions. For ambient temperatures above the heating limit temperature (Thl), a linear
function represents the baseline heat demand in summer, e.g., due to water heating or other
processes that are independent of the ambient temperature. For ambient temperatures
below Thl, a second regression line represents the heat demand, which increases linearly
with decreasing ambient temperatures, e.g., due to space heating or heating processes
that are dependent on the ambient temperature (drying, ventilation systems). Since wd
and wknd-clusters are different, the heat demand must be calculated for wd and wknd
separately [28].

Qd/Qd(8
◦C) =

{
max(0, mh · Tamb + bh) if Tamb < Thl
max(0, mw · Tamb + bw) if Tamb ≥ Thl

(1)

bh y-axis intercept of space heating line (-)
bw y-axis intercept of domestic hot water (process heat) line (-)
mh slope of space heating line (-)
mw slope of domestic hot water (process heat) line (-)
Qd/Qd(8 ◦C) normalized daily heat consumption (-)
Tamb daily mean ambient temperature (◦C) (insert unitless)
Thl heating limit temperature (◦C) (insert unitless)

3.2.2. Ex Ante 2

Since the ex ante 1 cluster assignment is based on frequencies only, cluster assignment
errors are likely. In the previous work, the authors found that additional information on
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processes and products can be used to support a correct cluster assignment [28]. One
example for this is the cluster assignment in the manufacturing of furniture:

In this industry sector, the frequencies for the wd-clusters 0 and 2 are the same
(Figure 4). The product and process analyses of the seven companies in this industry
reveal that the three consumers assigned to wd-cluster 0 manufacture furniture made of
metal. They operate processes with a significant heat demand that is independent from
ambient temperature, e.g., powder coating or surface treatment baths. In contrast, the three
consumers assigned to wd-cluster 2 manufacture wooden furniture. They are not operating
processes with a significant heat demand and space heating is their only relevant heat sink.
Unfortunately, information on electricity consumption was not available for this earlier
study by the authors.

The above example highlights the benefit of detailed information on a consumer’s
products and processes for cluster assignment. However, this information is not available to
this study. Therefore, an ideal cluster assignment is applied for the ex ante 2 model. This is
done by determining the combination of wd and wknd-clusters that leads to the minimum
sum of squared residuals between predicted and measured daily heat consumption of
each consumer.

3.2.3. Ex Ante 3

The ex ante 3 model requires historical natural gas load profiles over a period of at least
one year. These are used to fit the regression function (1) individually for each consumer.
Similar to the previous models, one regression function is used for each wd and wknd.

3.3. Correlation of Heat and Electricity

This study investigates whether electricity load profiles can be used to optimize the
heat load profile prediction. The idea behind this is that daily energy consumption could
correlate with various other parameters that can be grouped under the umbrella term
“user behavior”, e.g., utilization of production facilities, production times, vacation, or
maintenance. For instance, an above-average utilization of production facilities could result
in above-average daily electricity and heat consumption compared to other days with a
similar ambient temperature and same type of day. The consequence would be a prediction
of too-low consumption for such days by the ex ante models. A reason for the residuals of
the ex ante models could therefore be that these models only consider the type of day (wd
or wknd) and ambient temperatures but no user behavior. However, information on user
behavior is not directly available for this study but may be derived from daily electricity
consumption. Therefore, this study first investigates whether a correlation between daily
electricity consumption and daily heat consumption can be verified. It is also reasonable to
assume that electricity consumption is correlated to the residuals of the ex ante 3 model,
which is also being investigated. Additionally, this study examines whether any of the
above correlations are only stronger on weekdays or for groups of consumers assigned
to one of the wd- or wknd-clusters. This correlation analysis is the basis for further load
profile modeling.

3.3.1. Ex Post 1

The ex post 1 model consists of two sub-models, so that the two models can be
evaluated separately. The first sub-model corresponds to the ex ante model 3 and is
intended to represent the influence of the ambient temperature on the heat demand. Since
the heat demand is usually also affected by other influences, there are residuals between
the ex ante 3 prediction and the actual heat demand. The second sub-model aims to
predict these residuals, which are hypothetically mainly due to user behavior. To draw
conclusions on user behavior, electricity consumption, type of day (wd or wknd), and
ambient temperature are used as inputs of the second sub-model.

Figures 5 and 6 visualize the model architectures for training and prediction. As
explained above, the residuals between the ex ante 3 prediction and the real heat demand are
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the intended result of the machine learning sub-model (residual predictions). Consequently,
these residuals are used for supervised training of the machine learning algorithm (Figure 5).
When applying the final trained model, the residual predictions of the machine learning
sub-model are used to improve the ex ante 3 model predictions (Figure 6).
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3.3.2. Ex Post 2

Load profiles are a sequence of observations that follow each other in time. It can be
assumed that there is a relatively high similarity between observations that are close in
time, but this relationship was not exploited by previous models. Arbitrarily changing the
order of observations for training or prediction would not affect the results of the previous
models. The ex post 2 model is intended to consider the sequence of the observations. For
this purpose, lagged observations of the previous days’ heat demand are introduced as
additional input features. To find the optimal time window of lagged observations, window
lengths of 1 d, 2 d, 7 d and 14 d are compared. While the previous models only considered
the type of day (wd or wknd), the ex post 2 model receives additional information about
the day of the week. Due to time lagged heat consumption with a maximum of 14 values
and a one-hot encoded type of day with 7 values, the number of input features of the ex
post 2 model are significantly higher than in previous models. To ensure the model can
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benefit from this larger number of input features, a deep learning algorithm is selected for
the ex post 2 model. The LSTM algorithm has proven to be one of the most advantageous
deep learning algorithms for load profile modeling in literature and is therefore used in the
ex post 2 model. Apart from the significantly increased number of input features and the
more complex LSTM algorithm, the ex post 2 model architecture is simple compared to the
ex post 1 model (Figure 7).
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Auto-Keras [35] is used to create individual LSTM models for each consumer. The
Auto-Keras base model consists of three blocks: The Input-block represents the input layer.
An RNN-block embodies the hidden layers. A Regression-Head-block represents the output
layer. The layer type of the RRN blocks is set to LSTM. All hyperparameters left unspecified
are automatically tuned by Auto-Keras for each consumer individually, e.g., number of
hidden layers and uni- or bidirectional architecture.

3.4. Evaluation of Correlations and Models

The dataset covers 82 natural gas and electricity load profiles for 2 complete years
(2018 and 2019). First-year (2018) load profiles are used for training and second-year (2019)
load profiles are used for model evaluation. This evaluation method corresponds to what
is called “last block evaluation” in literature. Bergmeier and Benitéz [36] presented a
comprehensive review of cross validation methods for time series predictor evaluation.
They conclude that last block evaluation tends to yield less robust error measures than
cross-validation and blocked cross-validation. Nevertheless, last-block evaluation is used
for the ex ante 3 to ex post 2 models for the following reasons:

• Reduced computation time:
The overall sum of trained models in this study is high. For ex ante 3 to ex post 2,
various regression algorithms are trained and compared with each other. Since this is
done for each consumer individually, this results in a five-digit number of training runs.
A more complex validation method, for example, a blocked cross-validation, would
result in a higher number of training runs corresponding to the number of blocks.

• Stationarity:
Bergmeier and Benitéz [36] emphasized the importance of an adequate control for
load profile stationarity before cross-validation. According to Cryer and Chan [37],
a load profile is stationary if the joint distribution Yt, Yt2 , . . . , Ytn is the same as the
joint distribution of Yt−k, Yt2−k, . . . , Ytn−k for all choices of time points t1, t2, . . . , tn
and all choices of time lag k. For annual natural gas load profiles with high seasonality,
as examined in this study, the same distribution of two blocks is only given if both
blocks cover at least a whole year. Only blocks of at least one year ensure that all
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occurring operation modes (e.g., normal operation, maintenance, holidays) are covered
by each block.

• Robust sample size:
For small sample sizes, accuracy metrics, such as R, can significantly deviate from the
true value. Schoenbrodt and Perugini [38] showed that a sample size of 362 is required
to ensure an accuracy of R in the range of ±0.10 with a 90% confidence interval. This
minimum sample size corresponds to the sample size used for the last-block evaluation
(365 days). Cross-validation or blocked cross-validation with more than two blocks
would result in smaller sample sizes and therefore less robust sample sizes.

The root mean square error (RSME) is used for model selection and training. Since
RSME is an absolute value, it is not suitable for model comparison with other studies.
Therefore, to evaluate the strength of the correlation between daily electricity consumption
and daily heat demand or daily electricity consumption and ex ante 3 heat prediction
residuals, the Pearson correlation coefficient (R) is used, which can range from −1 to 1.
According to Cohen [39], a strong correlation is characterized by an absolute value of R
greater than 0.5. The sign of R indicates whether the respective values are positively or
negatively correlated. If the correlation between two values is to be evaluated for a group
of consumers, a median of approximately 0 could result, although only strong negative
positive correlations are present. Therefore, whenever the strength of a correlation for a
whole group of consumers is to be analyzed in this study, the coefficient of determination
(R2) is used. R2 is usually defined to be between 0 and 1. Statistic parameters, such as
the median or the quartiles of R2, therefore evaluate the overall strength of a correlation
for a group of consumers without considering their sign. The function to calculate R2

implemented in Scikit-Learn [34] and used in this study employs an alternative definition
of R2 (2) that can also lead to negative values if the sum of squared residuals is larger than
the total sum of squares. However, negative values of R2 are equally to be interpreted as
zero values.

If the heat demand is constant throughout a period, R2 can still take values close to
zero, even if the prediction is sufficiently accurate for the intended applications. There-
fore, the standard deviation of the residuals (σ) is used as another metric for model
accuracy evaluation.

R2 = 1 − SSR
SST

= 1 −
n

∑
i=1

(yi − ŷi)
2

(yi − y)2 (2)

R2 coefficient of determination (-)
SSR sum of squared residuals (-)
SST total sum of squares (-)
y value (-)
y mean of values (-)
ŷ prediction of values (-)

4. Results

This section summarizes the results of the model development and evaluation. First,
the ex ante models taken from a previous study are validated with the database of this
study. In the next step, the results of the correlation analysis between electricity and heat
consumption are outlined. This correlation is essential for the results of the ex post models
described in the next section. Finally, the performance of all five models is compared.

4.1. Ex Ante Models

The cluster assignment based on the frequencies within each industry is only correct
for 51% of wd-clusters and 54% of wknd-clusters according to the comparison of cluster
identification in ex ante 1 and ex ante 2 if the ex ante 2 cluster identification is regarded
as the correct cluster identification. This results in poor accuracy metrics for the ex ante 1
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model (Table 2). Improved cluster assignment for the ex ante 2 model and the individual
linear regressions (ex ante 3) both result in significantly increased accuracy, which is at the
same level for both models.

Table 2. R2 and σ of the ex ante models for consumers from databases of a previous study (797 heat
load profiles) [28] and of this study (82 heat and electricity load profiles).

Ex Ante 1 Ex Ante 2 Ex Ante 3 Ex ante 2
(Previous Study)

Ex ante 3
(Previous Study)

Mean of R2 0.28 0.63 0.64 0.71 0.79
Median of R2 0.53 0.72 0.75 0.83 0.88

σ 0.43 0.32 0.32 0.24 0.21

Figure 8 visualizes the distribution of R2 for the ex ante 3 model separately for the four
wd-clusters. The results of the other two ex ante models are similar, except that the overall
accuracy of ex ante 1 is significantly poorer. For those consumers with a strong dependency
on ambient temperature (wd-cluster 2 and 3), the ex ante model achieves a median of R2

greater than 0.8. For wd-cluster 1, the cluster with only a small dependence on ambient
temperature, the distribution of R2 is much broader. For wd-cluster 0, the median of R2 is
at least 0.2 lower than the other clusters. The interquartile distance is two to three times
higher than the other clusters.
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4.2. Correlation of Heat and Electricity

The correlation between electricity and heat consumption varies strongly between
the analyzed consumers (Figure 9). For 41% of the consumers, a high positive correla-
tion is detected (R > 0.5). Only 4% of the consumers show a high negative correlation
(R < −0.5). For more than half of the consumers (55%), a low to medium correlation is
discovered (−0.5 ≤ R ≤ 0.5). The mean R2 is 0.33. Three examples of high, medium, and
low correlation are presented below.
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Figure 10 illustrates the electricity and heat consumption of an example consumer
with a high correlation of both values. Heat and electricity consumption are significantly
reduced on the wknd. The heat consumption shows only a slight seasonality, which can
even be observed in the electricity load profile. When considering only weekdays or wknd
days but also for the evaluation of the entire dataset, a clear correlation between electricity
and heat consumption with R values larger than 0.9 is detected.
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Figure 10. Example consumer 1: (a) normalized heat load profile, (b) normalized electricity load
profile, and (c) normalized heat consumption versus normalized electricity consumption (the same
graphics of all consumers can be found in the supplementary materials [40]).

The value of R examined for the entire dataset of the second example consumer (wd
and wknd) is very low (Figure 11). Both heat and electricity consumption show no clear
seasonality. For the wknd only, a medium correlation is detected (Rwknd = 0.49). The
consumption of a few wknd days is in the range of wd. When only wd are considered, a
high negative correlation can be detected (R = −0.91).

Figure 12 visualizes the load profiles of a consumer with a strong seasonality of their
heat consumption. For about three months in the summer, there is absolutely no heat
demand. In contrast, the electricity load profile shows no seasonality. As a result, the
correlation between heat and electricity consumption is low. This applies for both the
individual evaluation for wd or wknd, and for the evaluation of the entire dataset.
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Figure 11. Example consumer 2: (a) normalized heat load profile (b), normalized electricity load
profile, and (c) normalized heat consumption versus normalized electricity consumption (the same
graphics of all consumers can be found in the supplementary materials [40]).

Due to different consumption patterns on wd and wknd, the correlation of heat and
electricity consumption tends to be significantly higher for some of the consumers if wd
and wknd are considered separately. Additionally, the correlation tends to be higher for
consumers with a low seasonality in heat load profiles. For these reasons, histograms of R
are shown in Figure 13 for wd only and separately for the optimal wd-clusters.

The mean R2 only for wd is even slightly poorer than in general for all types of
days (R2 = 0.33; R2

wd = 0.28). In contrast, the correlation between electricity and heat
consumption is significantly higher, if only non-seasonal consumers (wd-cluster 0) are
considered (R2

wd,cl 0 = 0.42). More than two thirds (69%) of the consumers in wd-cluster
0 show a strong correlation. For all other clusters, most consumers show a weak to
medium correlation.

The seasonality of heat consumption is caused by the fluctuations of the ambient
temperature during the year. This seasonality can be eliminated from the heat load profiles
with the ex ante 3 model. The residuals between the ex ante 3 prediction and the actual heat
consumption represent a heat load profile without the influence of ambient temperature.
The distribution of R for the correlation of the ex ante 3 residuals and electricity consump-
tion is illustrated in Figure 14. Differences between Figures 13 and 14 are small. The mean
R2 only for wd for all clusters is 0.26. If only consumers from wd-cluster 0 are considered,
R2 is 0.45.
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Figure 14. Histogram of the distribution of R between heat consumption residuals and electricity
consumption for the wd-clusters 0 (a), 1 (b), 2 (c), and 3 (d) (only wd; 82 examined consumers; the
x-axis is reversed to ease comparison with Figure 13).

4.3. Ex Post 1

Figure 15 visualizes the distribution of R2 for the residual prediction for 10 algorithms
from Scikit-Learn with standard hyperparameters, which yield the highest median of R2

for the 82 consumers examined in this study. For the algorithm with the highest median of
R2 (NuSVR), the plot also shows the distribution of R2 after randomized hyperparameter
tuning (NuSVR-tuned). Overall, differences between the algorithms are small. However,
the variance of R2 for each algorithm between the 82 consumers is large. For each of the
algorithms, R2 ranges roughly from −1.0 to 0.8. Negative R2 values occur when the sum
of squared model residuals is larger than the total sum of squares (see Section 3.4). With
standard hyperparameters, NuSVR yields the highest median of R2. Therefore, the NuSVR
algorithm is selected to be optimized but the randomized hyperparameter tuning of the
NuSVR algorithm (NuSVR-tuned) does not lead to a significant improvement. While the
maximum R2 and the lower quartile are slightly increased, the upper quartile and the
median of the tuned NuSVR algorithm are poorer than of the standard NuSVR algorithm.

Figure 16 visualizes the distribution of R2 of the NuSVR residual prediction separated
by the different clusters. Only for the wd-clusters 0 and 1, R2 values of more than 50% are
achieved. This corresponds to the results of the correlation analysis (Figure 14). Consumers
from these clusters, especially from wd-cluster 0, show by far the strongest correlations
between heat consumption and ex ante 3 residuals.

For wd-cluster 2 and 3, the ex post 1 prediction results are almost identical to the
ex ante 3 results (Figures 8 and 17). For wd-cluster 1 and especially wd-cluster 0, the
overall prediction accuracy is significantly improved. The distribution of R2 is narrower
and shifted towards higher values. For all wd-clusters, the median of R2 is greater than 0.8.

R2 of the ex post 1 sub-model’s residual prediction is below 0.5 for more than 75% of
the consumers, but the complete ex post 1 model only leads to a poorer heat prediction
for 13% of the consumers, compared to the ex ante 3 model (Figure 18). However, for
most consumers, only small improvements of less than 5 percentage points of σ and R2

are observed. On average, σ is improved by 4 percentage points and R2 by 12 percentage
points. The maximum decrease in σ and R2 is 3 percentage points and 5 percentage
points, respectively.
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4.4. Ex Post 2

The differences between the results for the analyzed window lengths for lagged heat
consumption are small (Figure 19). Overall, a window length of 7 days leads to the highest
quartiles and highest median of R2, but to a slightly poorer minimum prediction accuracy
compared to a window length of 2 days or 14 days.
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For all consumers assigned to wd-clusters 1 to 3 except for 1, R2 of the ex post 2
prediction is larger than 0.8 (Figure 20). For most of these consumers, R2 is even larger than
0.9. The distribution of R2 is broader for wd-cluster 1. With one exception, however, for all
consumers from wd-cluster 0, the R2 is greater than 0.6.
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Compared to the ex ante 3 model, the ex post 2 model leads to an improvement for
all but one consumer (Figure 21). The range of improvement is broad. Again, for many
consumers the improvement is small, with changes of σ and R2 of about 5 percentage
points. For most consumers, the improvement is in the range of up to 20 percentage points
of σ or 40 percentage points of R2.
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Figure 21. Histogram showing the distribution of the improvement of σ (a) and R2 (b) by the ex post
2 model compared to the ex ante 3 model.

The optimization of the number of layers and layer type in Auto-Keras leads to varying
LSTM architectures (Figure 22). The depth ranges from one to three layers and is almost
equally distributed. Two thirds of the models are bidirectional.
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Figure 22. Overview on the architectures of the LSTM algorithm (ex post 2). The bars visualize the
shares of the different LSTM types. The crosses visualize the number of trained parameters for each
of the different architectures.

4.5. Model Comparison

The residual distribution of all models is unbiased (Figure 23). From ex ante 1 to ex
post 2, σ is successively reduced. Substantial improvement occurs especially from ex ante
1 (σ = 43%) to ex ante 2 (σ = 32%) and from ex post 1 (σ = 27%) to ex post 2 (σ = 17%).
The residual distribution of ex ante 2 and 3 is almost the same. The ex ante 3 model has a
slightly more pronounced peak at around 0, but also some stronger outliers, which results
in almost the same σ for ex ante 2 and 3 (σ = 32%).
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Figure 23. Histogram of the distribution of the residuals of all developed prediction models for all of
the 82 consumers (bin size: 0.01).

Figure 24 illustrates individual σ (a) and R2 (b) values of each consumer. The distri-
bution of both metrics is successively improved from ex ante 1 to ex post 2. While the
improvement from ex ante 1 to ex post 1 is smooth, the ex post 2 model stands out clearly,
especially in reducing poor predictions. R2 of all models except ex post 2 ranges from
negative values (not shown in Figure 24) to about 0.9. In contrast, R2 is below 0.6 only for
one consumer for the ex post 2 model.
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Figure 24. Boxplot of the distribution of σ (a) and R2 (b) of load prediction for all developed models.

Figure 25 visualizes the actual and predicted load profiles for example consumer 1,
which is characterized by a strong correlation between heat and electricity consumption.
The consumer is the same as illustrated in Figure 10. Overall, high accuracy is achieved
with all models. However, the ex ante 3 prediction for wd does not correctly reflect the
actual trend, but this does not have a strong negative impact on R2 due to the overall
relatively small fluctuations in heat consumption.
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Figure 25. Comparison of real and predicted load profiles for example consumer 1. (a) Load profiles
as time series for ex ante 3. (b) Predicted versus real load for ex ante 3. (c) Load profiles as time series
for ex post 1. (d) Predicted versus real load for ex post 1. (e) Load profiles as time series for ex post 2.
(f) Predicted versus real load for ex post 2 (the same graphics of all consumers can be found in the
supplementary materials [40]).

Figure 26 illustrates the actual and predicted load profiles of example consumer 2,
which has a strong negative correlation on wd and a medium correlation on wknd
(Figure 11). Ex ante 3 and ex post 1 both fail to predict the collapse of the heat consumption
from May to July and the peaks of heat demand from July to November. However, the
prediction of the ex post 1 model better approximates the real load profile overall. In
contrast to the ex ante 3 and ex post 1 models, the ex post 2 model predicts both types of
events much better.
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The actual and predicted load profiles of example consumer 3 are illustrated in Figure 
27. This consumer does not show a correlation between heat and electricity consumption 
(Figure 12). The ex ante 3 and ex post 1 model both result in a significant underprediction 
of heat consumption during most time of the year and a minor over-prediction in the 
summer. In contrast, the ex post 2 model results in a highly accurate prediction for the 
whole year. 

Figure 26. Comparison of real and predicted load profiles for example consumer 2. (a) Load profiles
as time series for ex ante 3. (b) Predicted versus real load for ex ante 3. (c) Load profiles as time series
for ex post 1. (d) Predicted versus real load for ex post 1. (e) Load profiles as time series for ex post 2.
(f) Predicted versus real load for ex post 2 (the same graphics of all consumers can be found in the
supplementary materials [40]).

The actual and predicted load profiles of example consumer 3 are illustrated in
Figure 27. This consumer does not show a correlation between heat and electricity con-
sumption (Figure 12). The ex ante 3 and ex post 1 model both result in a significant
underprediction of heat consumption during most time of the year and a minor over-
prediction in the summer. In contrast, the ex post 2 model results in a highly accurate
prediction for the whole year.
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Figure 27. Comparison of real and predicted load profiles for example consumer 3. (a) Load profiles
as time series for ex ante 3. (b) Predicted versus real load for ex ante 3. (c) Load profiles as time series
for ex post 1. (d) Predicted versus real load for ex post 1. (e) Load profiles as time series for ex post 2.
(f) Predicted versus real load for ex post 2 (the same graphics of all consumers can be found in the
supplementary materials [40]).

5. Discussion

This section presents a discussion of the results outlined above. First, the results of
each model and the correlation analysis are evaluated separately. In the next step, the
differences between the five models are reviewed.

5.1. Ex Ante Models

The accuracy of the ex ante 1 model is poor compared to the other models, especially
for wd-cluster 0. Since the cluster assignment is correct for only about 50% of wd- and wknd
clusters, many predicted load profiles significantly differ from the real load profiles. In their
previous work [28], the authors revealed that the cluster assignment based on the most
probable cluster in the consumer’s industry sector can be optimized with expert knowledge
and information about the consumer’s processes and products. Since the consumers in this
study are anonymized, this method cannot be applied. To simulate the optimization of
the cluster assignment by the ex ante 2 model, the optimal clusters are derived from first
year’s data. The accuracy of the ex ante 2 model is significantly higher than that of the
ex ante 1 model.
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The ex ante 3 model uses individual linear regressions for each consumer. Similar
to the authors’ previous work, individual regressions (ex ante 3) are only slightly more
accurate than the optimal cluster regressions (ex ante 2).

In their previous work, the authors filter the load profile database and exclude load
profiles for different outlined reasons. For example, load profiles are excluded that are
obviously incomplete, where obvious anomalies occur, e.g., due to long maintenance
shutdowns, or where CHP plants are operated. In contrast, this study’s load profile
database is not filtered. This study’s load profile database contains some very unusual
load profiles with conspicuous anomalies, which is evident from the visualizations in the
supplementary materials [40]. These unusual load profiles explain why the overall accuracy
of both ex ante 2 and 3 models is below that of the authors’ previous study [28]. However,
R2 is still higher than 0.7 for the majority of the consumers. Especially for those consumers
strongly dependent on the ambient temperature (wd-clusters 2 and 3), the overall accuracy
is sufficient for less demanding applications, such as preliminary design studies. In contrast,
strong unexplained variances in heat load often occur for consumers from wd-clusters 0
and 1, making the ex ante models less applicable for these consumers.

5.2. Correlation of Heat and Electricity

The patterns of the respective correlations between heat and electricity consumption
are extremely heterogeneous for the consumers studied. This is evident not only in the
statistical analysis of R and the 3 consumer examples above, but also in the supplementary
materials [40] that contains plots of the heat and electricity load profiles of all 82 consumers
in the style of Figures 10–12. Some consumers show strong negative or positive correlations,
but for most consumers, weak to medium correlations were detected. The situation is dif-
ferent if only consumers without seasonal heat consumption are considered (wd-cluster 0).
These consumers have an almost constant heat consumption on wd over the year. No
information about the consumer’s heat sinks is available, but the constant heat demand can
hypothetically be explained by a high proportion of process heat demand that is indepen-
dent of the ambient temperature. Space heating seems to be secondary for these consumers.
It can be assumed that both process heat and electricity consumption are strongly influenced
by user behavior, which explains why both values are strongly correlated for consumers
assigned to wd-cluster 0. In contrast, the consumption of wd-clusters 2 to 3 is dominated
by space heating, which is mostly dependent on ambient temperature and only marginally
on user behavior. This explains why only weak to medium correlations between heat
and electricity consumption can be detected for most consumers from wd-clusters 2 to
3. Wd-cluster 1 is a hybrid cluster. This cluster shows a distinct dependence on ambient
temperature. At the same time, roughly a third of the consumers show a strong correlation
between heat and electricity consumption.

No parameter is identified that indicates the pattern of the respective correlation. The
largest part of the consumers in wd-cluster 0 shows a strong correlation. However, the
pattern of the relationship between heat and electricity consumption still varies strongly.
Consequently, all models that consider electricity consumption for load profile prediction
are trained individually for each consumer with historical data of that consumer. Therefore,
if electricity consumption is to be used for the prediction of heat load profiles, the use of
generally transferable models that do not need to be trained individually for each consumer,
such as the models ex ante 1 and 2, is not reasonable.

5.3. Ex Post 1

No shallow learning algorithm could be identified in literature that clearly stands out
for load profile modeling. This corresponds to the results of this study. The top 10 of the
examined shallow learning algorithms lead to similar residual prediction results.

The ex post 1 sub-model for residual prediction only yields satisfying results if a strong
correlation between electricity consumption and ex ante 3 residuals exists. This is only the
case for a relevant share of the consumers assigned to wd-cluster 0. For most consumers
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from wd-cluster 1 and all other consumers from wd-clusters 2 and 3, residuals cannot be
predicted based on the used input features and the examined shallow learning algorithms.
Despite the overall poor accuracy of the residual prediction, the complete ex post 1 model
is superior to the ex ante 3 model. A deterioration in prediction accuracy only occurs to
a small extent for a few consumers. For most consumers, the prediction is only slightly
increased. However, for those consumers where there is a strong correlation between heat
and electricity consumption, a significant improvement can be achieved. This is evident by
the significant improvement of the heat load prediction for consumers from wd-cluster 0.

5.4. Ex Post 2

A seven-day window of lagged heat consumption leads to the best results and is
therefore selected for the present study. This could be explained by the assumption that the
heat consumption on the same days of the week is more correlated than on different days
of the week. A seven-day window length is just long enough to include the same weekday
from the last week. The longer the time window becomes, the less the values are closely
related in time, which could explain poorer results for a 14-day window.

The model architecture varies for the examined consumers. This suggests that not all
input features are equally relevant to different consumers or that the relationships between
inputs and outputs are not equally complex. For example, many consumers do not show
a correlation between heat and electricity consumption, which reduces the number of
relevant input features and could be an explanation for more shallow architectures for
these consumers.

The prediction accuracy of the ex post 2 model is the highest even for consumers from
wd-clusters 1 to 3, whose load profiles depend on the ambient temperature. For these
consumers, the overall high prediction accuracy suggests that the input features cover
all relevant parameters. In contrast, the prediction accuracy is below 0.8 for more than a
quarter of the consumers in wd-cluster 0. These consumers are not dependent on ambient
temperature. Additionally, a third of these consumers show only a weak correlation
between heat and electricity consumption. The remaining input features (weekday and
lagged heat consumption) do not include enough information to predict the heat demand
with the same accuracy as achieved for almost all consumers in one of the other clusters.
However, no additional information about the consumers is available to this study and the
prediction accuracy can therefore not be increased for these consumers.

5.5. Model Comparison

Regular heat load profiles, which are mainly influenced by the ambient temperature,
can be predicted by all models with a high accuracy. When ambient temperature is in-
sufficient to explain most of the variation of a heat load profile of a specific consumer,
electricity consumption and lagged heat consumption have proven to be useful sources of
information to draw conclusions about other influences, such as user behavior.

Especially for consumers from wd-cluster 0, the ex post 1 model achieves clear im-
provements compared to the ex ante models. For most consumers from wd-cluster 0, the
heat demand is correlated to the electricity consumption. This correlation is used by the
ex post 1 model to optimize the prediction accuracy. For many consumers, however, the
electricity consumption used as input feature is not correlated with the output value heat
consumption. This leads to poor results of the ex post 1 residual prediction sub-model,
especially for wd-cluster 2 and 3. For some consumers, this poor residual prediction, in
turn, leads to a minor degradation of the complete ex post-1 prediction.

A major advantage of the ex post 2 model over the ex post 1 model is that all input
features are automatically weighted. Irrelevant input features, which could lead to a
deterioration of the results, are automatically ignored. Additionally, the ex post 2 model
also uses lagged heat consumption to draw conclusions about other influences on heat
demand, such as user behavior. In combination, this enables the ex post 2 model to
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achieve significant improvements over all other models, even for consumers that show no
correlation between heat and electricity consumption.

The advantages of the ex post models are made clear by the three presented example
consumers. For consumer 1 (Figures 10 and 25), the wknd heat consumption is almost
constant over the year and only minorly influenced by the ambient temperature. Conse-
quently, all models achieve a high prediction accuracy for wknd. In contrast, the wd heat
consumption is not only influenced by the ambient temperature. Only because the overall
variation in wd heat consumption is relatively small does the ex ante 3 model still achieve
a satisfactory accuracy. Since the electricity and heat consumption of example consumer 1
are strongly correlated (Figure 10), which is typical for consumers from wd-cluster 0, both
ex post models achieve highly accurate results.

The heat load profile of example consumer 2 (Figures 11 and 26) shows strong anoma-
lies that cannot be predicted by the ex ante models. Based upon the medium to high
correlation of electricity and heat consumption (Figure 11), both ex post models achieve
better results than the ex ante models. Nevertheless, the ex post 1 model still fails to predict
the anomalies. In contrast, the ex post 2 model achieves a high accuracy for the whole year.
However, it is noteworthy that the ex post 2 model also initially makes incorrect predictions
at the beginning of the anomalies. Only a few days later, when the anomaly also becomes
clear in the lag observations, is it correctly predicted.

The ex ante 3 and ex post 1 models both fail to predict the heat consumption of
example consumer 3 (Figures 12 and 27) correctly. This can be explained by a major change
of the heat consumption pattern from the training year’s data to test the year’s data of
this consumer. Based on lagged consumption, this shift is detected by the ex post 2 model,
which leads to the significantly better prediction results of this model compared to the rest
of the models.

6. Conclusions

The most accurate possible prediction of heat load profiles with a resolution of one
day is essential for many applications in the context of the energy transition. Recently,
the need to accelerate energy efficiency and renewable energy projects due to global
crises, such as the war in Ukraine, has further increased the demand for accurate load
profile prediction methods. Previous heat load profile models are accurate for consumers
dominated by ambient temperature dependent heat demand, e.g., space heating. However,
previous models fail to predict the heat demand of consumers with a high share of ambient
temperature independent (process) heat demand. In contrast, this study develops models
that are highly accurate for all types of consumers from industry and the tertiary sector
based on a database of measured load profiles from 82 German consumers from industry
and the tertiary sector.

Ambient temperature independent (process) heat demand is affected by influences
including utilization of production facilities, production times, vacation, or maintenance,
which can be grouped under the term “user behavior”. To predict the user behavior-
influenced part of heat demand correctly, this study uses the electricity consumption as
an input feature. For most consumers with a high proportion of ambient temperature-
independent (process) heat demand, there is a clear correlation between heat and electricity
consumption. In contrast, for consumers whose heat demand depends on the ambient
temperature, there is usually no correlation between heat and electricity consumption.

This study develops two model architectures, one shallow and one deep learning.
With a median of R2 of 0.84, the NuSVR algorithm showed slight advantages in overall
accuracy compared to 51 other shallow learning algorithms from the Python-based Scikit-
Learn library [34]. Based on the literature review, the LSTM algorithm is selected for the
deep learning model. In addition to electricity consumption, the LSTM algorithm also
evaluates the heat consumption of the last 7 days prior to the predicted day and achieves
by far the highest accuracy with a median of R2 of 0.94.
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The pattern of the correlation between heat and electricity consumption is user specific.
Therefore, the developed models are trained for each consumer individually with measured
load profiles from the past. The LSTM model architecture (number of layers, unidirectional
or bidirectional) is also adapted individually for each consumer. In contrast, to apply
previous models, only the information about a specific consumer’s industry and a repre-
sentative ambient temperature profile is required. Thus, the higher accuracy of the models
developed in this study is accompanied by higher data availability requirements and a
more complex application. Possible applications are, e.g., automated anomaly detection in
energy monitoring systems.

7. Directions of Future Work

The model architectures chosen are justified but represent only an initial proposal to
evaluate the potential of machine learning-based prediction of heat load profiles based
on commonly available information, such as electricity consumption. Depending on the
intended application, the combination of optimal input features and machine learning
algorithms should be examined more closely. It would also be conceivable, for example,
to develop a model that makes an ex ante prediction based on a weather forecast and the
electricity and heat consumption of the last few days, e.g., for model predictive control.

Since all required input features are usually available to consumers connected to public
natural gas and electricity grids, or operating an energy monitoring system, and due to
the achieved high accuracy, the ex post 2 model is assumed to be suitable for automated
anomaly detection in energy monitoring systems. However, this study did not investigate
the actual integration into energy monitoring systems, which was not possible based on
the anonymized load profile database. For this purpose, a non-anonymized database with
extensive information on the consumers would be necessary, to distinguish between normal
operation and anomalies. Based on such a database, the anomaly detection algorithm could
be developed, for which several approaches are conceivable:

• If the difference of actual and predicted load profile exceeds a defined threshold, an
anomaly is indicated. This threshold must be determined.

• Only one classification algorithm uses the same inputs as the ex post 2 model and
additionally evaluates the actual heat consumption.

• A two-step algorithm first uses the ex post 2 model to predict heat consumption. In the
next step, another algorithm could detect an anomaly based on actual and predicted
heat consumption.

Supplementary Materials: The following supporting information can be downloaded at: http:
//dx.doi.org/10.48662/daks-9 [40], plots of normalized heat and electricity load profiles in the style
of Figure 10 to Figure 12 for all 82 consumers and plots of predicted and actual heat load profiles in
the style of Figure 25 to Figure 27 for all 82 consumers.
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Nomenclature

ANN artificial neural network
b y-axis intercept (-)
CHP combined heat and power
HLNUG Hessian State Agency for Nature Conservation, Environment, and Geology
HVAC heating, ventilation, and air conditioning
k time lag (d)
lin linear
m slope (-)
MAE mean absolute error
MPC model predictive control
n number (-)
Q natural gas consumption, heat demand (kWh)
R Pearson correlation coefficient (-)
R2 coefficient of determination (-)
RSME root mean square error (-)
SLP standard load profile
SSR sum of squared residuals (-)
SST total sum of squares (-)
SVM support vector machines
T temperature (◦C)
TRY test reference year
wd working day
wknd weekends and holidays (idle days)
XGBoost extreme gradient boosting
y value
y mean of values
ŷ prediction of value
Greek symbols
σ standard deviation (-)
Subscripts
amb ambient
d day, daily
h (space) heating
hl space heating limit
w hot water or process heat
wd working day
wknd weekends and holidays (idle days)

Appendix A

Table A1. Python software libraries and versions used in this study.

Library Version Reference

Auto-Keras 1.0.12 [35]
Keras 2.4.3 [42]

Matplotlib 3.2.2 [43]
Numpy 1.19.1 [44]
Pandas 1.1.3 [45]
Python 3.8.5 [46]

Scikit-Learn 0.23.2 [34]
Scipy 1.5.0 [47]

Seaborn 0.11.0 [48]
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