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Abstract: River water quality is a serious concern among scientist and government agencies due
to increasing anthropogenic activities and uncontrolled industrial discharge to rivers. The present
study was conducted near the river mouth of the Kerian River to assess heavy metal pollution
during COVID-19 pandemic-lockdown conditions and post-COVID-19 pandemic-unlock conditions.
Twelve samples of shallow, middle, and bottom depths were collected at four locations along a
9.6 km reach. A concentration of eight heavy metals including Cadmium, Chromium, Copper, Iron,
Manganese, Nickel, Lead, and Zinc were extracted through atomic absorption spectrometry. Total
suspended solid was measured during laboratory experimentation. The results showed that, during
the pandemic, concentrations of Nickel, Zinc, and Iron were high at shallow, middle, and bottom
depths, respectively. Decreasing orders of heavy metal concentration are variable at different depths
due to either their high sinking tendency with other existing components of water matrix or the
anthropogenic source. However, almost all values of heavy metals are under the permissible limit of
National Water Quality Standards of Malaysia and Food and Drug Administration. A possible reason
for the lack of heavy metal pollution may be the restriction of anthropogenic activities during the
COVID-19 pandemic. Additionally, no significant differences were observed in total suspended solid.

Keywords: heavy metals; Kerian River; pollution; anthropogenic activities; water quality

1. Introduction and Background

River water pollution is one the most critical issues in the world. Surface water
quality, especially river water quality, is declining due to anthropogenic activities and
uncontrolled discharge of anthropogenic sources [1,2]. Anthropogenic sources can be
in the form of industrial waste, discharge from agricultural land, mining, and sewage.
Fertilizers and pesticide used in agricultural land washed during precipitation and drain
into river causes increment in nitrate and phosphate concentration [3,4]. Total suspended
solid concentration also increases due to soil erosion from agricultural land. Uncontrolled
discharge of industrial waste in river water containing pollutants such as zinc, cyanide,
copper, lead, mercury, and cadmium causes fish death and an increment in toxic levels [5].
Pollution due to heavy metal is also a serious issue because it is non-degradable by natural
processes and its existence in soil and sediment leads to rapid release as it sinks into
watercourses [6]. A concentration of essential heavy metals under an acceptable limit is
good for health; however, if it exceeds the acceptable limit, these heavy metals become
harmful and extremely toxic for humans, animals, and aquatic ecosystem health [7,8].
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In the last decade, several studies have analyzed heavy metal pollution in different
parts of Malaysia. Ishadi et al. [9] examined water quality and habitat suitability of a
hemipteran community upstream of the Kerian River. They used three heavy metals
but did not compare with any water quality standards. Ibrahim et al. [10] compared
the presence of heavy metals in river water and pumping-well water for a Riverbank
filtration (RBF) system upstream of the Kerian River. They found that, out of 10 heavy
metals, iron and arsenic exceed the standard values set by the Ministry of Health, Malaysia.
The probable reason of this was due to the excess use of pesticides on the agricultural
land by which the upstream of the Kerian River is mostly surrounded. Billah et al. [11]
investigated metal contamination in the tropical Miri estuary of Sarawak, Malaysia, and
found that iron was the highest contaminated metal. Their study was substantial to
portray deterioration in water quality due to anthropogenic pollution, though it would
have been interesting to differentiate the reading, had the data been collected during the
COVID-19 lockdown period. Chowdhury et al. [12] assessed water quality effected due to
anthropogenic pollution sources from the Sungai Selangor basin. They found that most
sampling stations fall under Class 3 of the National Water Quality Standards of Malaysia
(NWQSM), indicating that extensive treatment is required. Nonetheless, the differentiation
could have been substantiated if the additional data were recorded during the COVID-19
lockdown. Ibrahim et al. [6] analyzed metal contamination at nine stations along the
Sg. Sembilang due to anthropogenic and natural sources. They found that some heavy
metals exceeded the NWQSM limit. Zanuri et al. [13] assessed the marine water quality
of Penang Island to investigate the mass mortality of cultured fishes. They found that
the concentration of cadmium, copper, iron, and nickel exceeded the permissible levels
according to Malaysia Marine Water Quality Class 2. Due to this, the area may no longer
be suitable for aquaculture or recreational purposes. It was also noted that their study was
carried out during pre-COVID-19 times, whereby the data was collected from 2016 to 2017.
Lee Goi [14] studied pre- and post-COVID-19 water qualities of Malaysian rivers using
published papers and newspaper articles. They found that, in pre-COVID-19 conditions,
53% of the river’s water quality in Malaysia was categorized as slightly polluted or polluted.
While, in post COVID-19 condition, some polluted river became clearer than previous
conditions. Their work provides an insight into the analysis of river water quality during
pre- and post-COVID-19 periods. Razak et al. [15] studied heavy metal pollution in the
Linggi River, Negeri Sembilan, Malaysia. They found that concentrations of heavy metals
were under the permissible limits of NWQSM, but that the index showed low-level heavy
metal contamination. Moreover, aluminum and zinc came under a medium potential risk,
while arsenic and manganese came under low potential risk that impacted negatively on
aquatic organisms and human health.

Overall, none of the studies have been reported near the river mouth of the Kerian
River, where several industrial and agricultural activities have been increasing. However,
this study was conducted during the COVID-19 pandemic, when there were restrictions
on anthropogenic activities such as industrial lockdown near the vicinity of the Kerian
river (limitation in industrial waste release) and after the COVID-19 pandemic, when the
restrictions were removed. Therefore, the objective of this study is to assess heavy metal
pollution near the river mouth of the Kerian River along a 9.6 km reach covering several
industrial and agricultural waste drain areas. With regard to the industries, it is highlighted
that the Kerian River is surrounded by industries such as semi-conductor manufacturing
plants, paper, palm oil, rubber, and furniture factories. This study would be helpful in
understanding the current status of pollution in the Kerian River. As none of the studies
have previously reported in this area, the results of this study could be a reference for
future heavy metal pollution studies.
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2. Materials and Methods
2.1. Study Area and Data Collection

The study area was the downstream part of the Kerian River, situated in the state of
Perak, the northern part of the Peninsular Malaysia. The area lies between latitudes 5◦8′24′′

and 5◦10′41.94′′ N and longitudes 101◦24′12.89′′ and 100◦29′56.44′′ E (Figure 1).
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Total length of the Kerian River is 104 km, and it originates from the Bintang Range
and flows south-westward towards the Malacca Straits near the town of Nibong Tebal [16].
In this study, a 9.6 km reach near the river mouth was selected due to the presence of
settlement and industrial area. Average annual rainfall and temperature in the area is
2560.3 mm and 28 ◦C, respectively. As the area situated near the river mouth, the elevation
ranged from 0 to 32 m.

Nibong Tebal is home to several manufacturing industries which are located across
the vicinity of Kerian River. The domain of these industries comprises of metal machining,
rubber industry, paper industry, and furniture industry [17]. In addition to this, the area also
accommodates food-based industry, i.e., sugar, sauce, and biscuit factories. Nonetheless,
overall, Nibong Tebal has 617 registered companies. These companies have an estimated
turnover of RM 8.716 billion and employ a number of employees estimated at 17,025. The
population of Nibong Tebal town, as of 2021, is 40,072 as per the GeoNames geographical
database. From an agricultural point of view, the area around Kerian River is home to
sugar cane, rice, and palm tree plantation. Land use such as forested areas, paddy fields,
palm oil plantations, orchards, and areas of settlement are distributed along the Kerian
River basin [18]. The existing environment of the Kerian River has been heavily developed
into agricultural lands [19]. The area is divided into two categories: non-agricultural
and agricultural lands. The major crops are rubber, rice (Kerian Rice Irrigation Schemes),
and palm oil. Apart from the aforementioned positive parameters, there lies a threat of
industrial wastewater pollution. In this regard, it is an urgent need to curb industrial
waste pollution in Kebun Kuyung, near Nibong Tebal in the Seberang Perai Selatan district.
Nonetheless, aquatic life in Sungai Kerian, especially fish and prawns, that are the main
catch for small fishers here, will be more seriously affected and reduced, subsequently
threatening their income.

In the proposed work, twelve water samples at four sites along the 9.6 km reach were
collected to study the water quality condition of the Kerian River during and after the
pandemic, whereby, in the manuscript, terms such as “during pandemic” are known as
the lockdown period, and “after pandemic” or “post-pandemic” are known as the unlock
period. Water samples were collected during rainy season due to the high possibility of
pollution during high flows. During the pandemic, samples were collected in January
2021, while, in post-pandemic, samples were collected in January 2022. At each site, three
samples were collected at different depths, such as shallow, middle, and bottom. Location
and distance of different sites are given in Table 1.

Table 1. Locations of water samples collected for heavy metal pollution assessment.

Water Samples Latitude Longitude Location Distance (km)

S1 5◦9′33′′ 100◦26′37′′ Taman Ilmu 0
S2 5◦9′42′′ 100◦28′28′′ Kampung Chelsa 3
S3 5◦9′30′′ 100◦29′43′′ Kampung Sungai Tok Tuntung 9
S4 5◦9′47′′ 100◦26′50′′ Kampung Sungai Tok Tuntung 9.6

2.2. Laboratory Experiments and Data Processing

Three liters of each collected water sample were first concentrated in a sandy oven
at 80 ◦C until the volume reached 50 mL. A total of 4 mL of concentrated sulfuric acid
(Merck, Kenilworth, NJ, USA, 98%) was added to each sample and digested by Digesdahl
apparatus for 3 min. Then, 10 mL hydrogen peroxide (Merck, 30%) was added and heated
until oxidation was completed. After cooling, each sample filtered by filter (Whatman filter
Merck, 0.45 m). The filtrate was diluted by deionized water for a final volume of 50 mL. The
prepared samples were analyzed by a Graphite furnace atomic absorption spectrometry
(GFAAS, Modal AAnalyst300) to determine the metals.

Vacuum filtration was considered to be a reliable approach to measure sediment
weight in a sample. In the conventional method, potassium permanganate was usually
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added in order to allow the sediments to deposit at the base before filtration. However, in
the present study, since the samples were to be used for atomic absorption spectroscopy
(AAS) for determination of sediment composition, we avoided the addition of potassium
permanganate to the samples. We passed water samples through the filter paper in the
vacuum filtration apparatus (Figure 2). After water filtration, we kept the filter papers in
the drying oven at a temperature of 104 ◦C for 24 h. Finally, the sediment load in each
sample was measured by calculating the difference in weight of filter paper before and
after the experiment. The analytical weight balance used in the present study had count of
a least 0.01 mg.
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2.3. Heavy Metal and Statistical Analysis

Basic statistics such as mean, standard deviation, minimum and maximum values of
total suspended solid (TSS), and heavy metal concertation at different sites were compared
to obtain their variations. Decreasing orders of heavy metals were also analyzed. Heavy
metal values were compared with National Water Quality Standards of Malaysia, Food and
Drug Administration, drinking water standards, irrigation water standards, aquatic life
standards, and surface water standards [20].

3. Results and Discussion
3.1. Experimental Results of Total Suspended Solid and Heavy Metals

Average laboratory results of TSS and eight heavy metals such as Cadmium (Cd),
Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb), and Zinc
(Zn) at shallow, middle, and bottom depths are presented in Table 2. Detailed results are
given in Table A1, incorporated in Appendix A.
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Table 2. Average laboratory results of TSS (mg/L) and eight heavy metals (ppm) at different depths.

Parameters Time
Depths

Shallow Middle Bottom

TSS
During COVID 17.75 53.00 14.00

Post COVID 24.25 64.00 8.25

Cd
During COVID 0.0014 0.0025 0.0015

Post COVID 0.0049 0.0156 0.0076

Cr
During COVID 0.0002 0.0002 0.0002

Post COVID 0.1441 0.1660 0.1179

Cu
During COVID 0.0012 0.0029 0.0032

Post COVID 0.0890 0.0858 0.0858

Fe
During COVID 0.0011 0.0018 0.0036

Post COVID 5.1748 5.4810 3.7255

Mn
During COVID 0.0014 0.0021 0.0006

Post COVID 0.1746 0.1372 0.1599

Ni
During COVID 0.0047 0.0018 0.0017

Post COVID 0.1674 0.1068 0.3098

Pb
During COVID 0.0009 0.0008 0.0012

Post COVID 0.1466 0.2403 0.1508

Zn
During COVID 0.0021 0.0036 0.0023

Post COVID 0.7301 0.2704 0.2104

SD = Shallow depth, MD = Middle depth, BD = bottom depth.

3.2. Average Concentration Order of TSS and Heavy Metals during and after the Pandemic

Industrial and agricultural waste discharge into river is one of the major concerns
in developing countries. A high concentration of heavy metals causes water pollution
that deteriorates water quality and affects human health. The average results of TSS and
heavy metal concentration at shallow, middle, and bottom depths in the Kerian River are
shown in Table 2. Based on the mean concentration of heavy metals during the COVID-19
pandemic-lockdown period, decreasing order at shallow depth in the Kerian River is Ni
> Zn > Cd > Mn > Cu > Fe > Pb > Cr. At middle depth, the decreasing order is Zn > Cu
> Cd > Mn > Ni > Fe > Pb > Cr, while, at bottom depth, the decreasing order is Fe > Cu
> Zn > Ni > Cd > Pb > Mn > Cr. From these orders, it is clear that Cr and Pb are almost
in same position at different depths. The concentration of Ni is high in shallow water but
medium at other depths, which indicates that Ni settling tendency is lower in river water.
However, concentration of Fe is lower at shallow and middle depths, but high in bottom
that indicates Fe settling tendency is high in Kerian River. Similarly, the concentration of
Cd and Mn is lower at bottom depth, which indicates lower settling tendency in the Kerian
River. The settling of heavy metals may be due to the different binding capacities of the
different metals with other existing components of the water matrix, such as micro particles
or micro vegetation, which may be in suspended, colloidal, or dissolved form.

After the pandemic-unlock period, the decreasing order of heavy metals changed. At
a shallow depth, the order was Fe > Zn > Mn > Ni > Pb > Cr > Cu > Cd, at middle depth
was Fe > Zn > Pb > Cr > Mn > Ni > Cu > Cd, and at bottom depth, the order was Fe > Ni >
Zn > Mn > Pb > Cr > Cu > Cd. This clearly shows that the Fe concentration is highest at
different depths, indicating a high Fe source in industrial waste. Cu and Cd are lowest at
all depths, indicating the lowest concentration in industrial waste.
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Average results showed that TSS concentration is high at middle depth followed by
shallow depth and bottom depth. Slight variation was observed during and after the
pandemic, which are discussed in the following sections.

3.3. Variation in TSS Concentration during and after COVID-19 along the Kerian River

During the pandemic-lockdown period, TSS concentration at shallow depth varies
from 12 to 24 mg/L, with a standard deviation (SD) of 4.9 mg/L. This concentration at
middle depth varies from 41 to 63 mg/L, with an SD of 8.6 mg/L, and, at bottom depth,
it varies from 3 to 39 mg/L, with an SD of 14.5 mg/L. This indicates more variation in
bottom depth. After the pandemic, the concentration increases to 26.3% at shallow depth
and 14.3% at middle depth, though declines at bottom depth (42.9%) (Figure 3).
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3.4. Variation in Heavy Metal Concentration during and after COVID-19 along the Kerian River

During the pandemic-lockdown period, Cd concentration at shallow depth varies from
0.0007 to 0.0022 ppm with a standard deviation (SD) of 0.00053 ppm. This concentration at
middle depth varies from 0.0002 to 0.0075 ppm with an SD of 0.0029 ppm, and, at bottom
depth, it varies from 0.0004 to 0.0024 with an SD of 0.0008 ppm. This indicates that more
variation at middle depth is reported at site number 2. After the pandemic-unlock period,
the concentration increased to 79.3% at shallow depth, 85.08% at middle depth, and 61.7%
at bottom depth (Figure 4).

According to National Water Quality Standards of Malaysia (NWQSM), almost all
TSS values are in natural condition during and after the pandemic except at middle depth
(Class IIA/IIB). Results of middle depth indicate that conventional treatment is required
for water supply and is sensitive to aquatic species.

According to National Water Quality Standards of Malaysia (NWQSM), almost all Cd
values are under Class IIA/IIB during the pandemic, indicating that conventional treatment
is required for water supply and is sensitive to aquatic species. According to Food and Drug
Administration (FDA), Cd concentration for drinking water should not exceed 0.005 ppm.
Compared to Cd concentration in the study area, most of the sites crossed the permissible
limit. Fluctuation in Cd values at different sites indicates anthropogenic and industrial
sources in the area. These sources are steel industry, fertilizers, and nuclear emission plants,
metal plating and electroplating, plastic industry, and nickel–cadmium batteries [1]. After
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the pandemic-unlock period, half of the samples fall under Class V, indicating that they are
not suitable for drinking and irrigation purposes.

During the pandemic-lockdown period, Cr concentration at shallow depth ranged
from 0.0001 ppm to 0.0003 ppm with an SD of 0.0001 ppm. At middle depth, Cr concentra-
tion ranged from zero ppm to 0.0003 ppm with an SD of 0.0001 ppm, while, at the bottom
depth, it varied from 0.0001 ppm to 0.0002 ppm, with an SD of 0.00004 ppm. More variation
was observed at site numbers 2 and 4. After the pandemic-unlock period, the concentration
increased to 99.8% at shallow depth, 99.9% at middle depth, and 99.8% at bottom depth
(Figure 5).
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According to NWQSM, all Cr values are in natural condition and indicate that no
practical treatment is required for the water supply. According to FDA, the Cr concen-
tration of the study area is under permissible limit (1 ppm). The lowest concentration of
Cr in the study shows its source from natural deposits such as rocks and soil [1]. How-
ever, fluctuation in Cr values at different sites are from industrial waste discharge which
contain very low Cr concentration. After the pandemic-unlock period, almost all sam-
ples come under Class V, thereby indicating that they are not suitable for drinking and
irrigation purposes.

During the pandemic-lockdown period, Cu concentration at shallow depth varies
from 0.001 ppm to 0.0013 ppm with an SD of 0.0001 ppm. At middle depth, it varies from
0.0012 ppm to 0.0047 ppm with an SD of 0.0013 ppm. Whereas, at the bottom depth, it
varies from 0.0022 ppm to 0.004 ppm, with an SD of 0.0006 ppm. More variation was found
at middle depth followed by bottom and shallower depth. High variation among different
depths was found at site number 1. After the pandemic-unlock period, the concentration
increases to 98.6% at shallow depth, 85.6% at middle depth, and 95.6% at bottom depth
(Figure 6).
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Figure 6. Concentration of Copper at shallow, middle, and bottom depths during pandemic-lockdown
and after the pandemic-unlock period in the study area.

According to NWQSM, all Cu values are in natural condition, which indicates that no
practical treatment is required for the water supply. According to FDA, Cu concentrations
of the study area are under a permissible limit (1 ppm). Cu can be released from different
sources such as chemical industry, mining, pesticide industry, and metal piping [1]. The
second highest concentration at middle and bottom depth in the study showed its industrial
source. After the pandemic-unlock period, all samples except a few come under Class V,
indicating that they are not suitable for drinking and irrigation purposes.

During the pandemic-lockdown period, Fe concentration at shallow depth ranged
from 0.0003 ppm to 0.002 ppm with an SD of 0.00061 ppm. At middle depth, it varied from
0.0011 ppm to 0.0029 ppm with an SD of 0.00068, while, at the bottom depth, it varied
from 0.0002 ppm to 0.009 ppm with an SD of 0.0033 ppm. High variation was observed at
bottom depth. After the pandemic-unlock period, the concentration increased to 99.8% at
shallow depth, 99.9% at middle depth, and 99.1% at bottom depth (Figure 7).
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Figure 7. Concentration of Iron at shallow, middle, and bottom depths during pandemic-lockdown
and after the pandemic-unlock period in the study area.

According to NWQSM, all Fe values are in natural condition, indicating that no
practical treatment is required for the water supply. According to FDA, Fe concentrations
of the study area are under the permissible limit (0.3 ppm). Generally, the source of Fe
is from soil and rocks. A high difference in Fe values is reported only at site number 1,
indicating an industrial or anthropogenic source. After the pandemic-unlock period, all
samples except a few come under Class V, thereby indicating that they are not suitable for
drinking and irrigation purposes

Mn concentration at shallow depth varies from 0.0006 ppm to 0.002 ppm with an SD
of 0.0005 ppm. At middle depth, it varies from 0.0015 ppm to 0.0028 ppm with an SD of
0.0005 ppm, whereas, at the bottom depth, it varies from 0.0003 ppm to 0.0012 ppm, with
an SD of 0.00035 ppm. Similar variation was observed at both shallow and middle depths.
After the pandemic-unlock period, the concentration increases to 99.2% at shallow depth,
99.1% at middle depth, and 99.5% at bottom depth (Figure 8).

According to NWQSM, all Mn values are in natural condition, which indicates that no
practical treatment is required for the water supply. According to FDA, Mn concentrations
of the study area are under the permissible limit (0.05 ppm). As Mn values are under the
permissible limit, its source must be natural, such as soil and rocks. It is interesting to
observe a sudden drop of Mn values at site number 4 at both shallow and middle depths,
and it slightly increases at the bottom depth. This may be due to adsorption or the ion
exchange of Mn by riverbed material such as soil and sand. After the pandemic-unlock
period, all samples fell under Class V, thereby indicating that they are not suitable for
drinking and irrigation purposes.

During the pandemic-lockdown period, Ni concentration at shallow depth ranged
from 0.0015 ppm to 0.0086 ppm with an SD of 0.0025 ppm. At middle depth, it ranged from
zero ppm to 0.003 ppm with an SD of 0.0011 ppm. Whereas, at the bottom depth, it ranged
from 0.0011 ppm to 0.0026 ppm, with an SD of 0.0006 ppm. High variation was observed at
shallow depth followed by bottom and middle depths. After the pandemic-unlock period,
the concentration increased to 96.4% at shallow depth, 94.9% at middle depth, and 99.2% at
bottom depth (Figure 9).
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Figure 9. Concentration of Nickel at shallow, middle, and bottom depths during pandemic-lockdown
and after the pandemic-unlock period in the study area.

According to NWQSM, all Ni values are in natural condition, indicating that no
practical treatment is required for the water supply. According to FDA, Ni concentrations
of the study area are under the permissible limit (0.1 ppm). As shown in Figure 8, at
shallow depth, the sudden rise in Ni value at site number 4 may be due to industrial
discharge or anthropogenic activity. After the pandemic-unlock period, all samples except
a few fall under Class V, thereby indicating that they are not suitable for drinking and
irrigation purposes.
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During the pandemic-lockdown period, at shallow depth, Pb concentration ranged
from 0.0004 ppm to 0.0013 ppm with an SD of 0.0003 ppm. Pb concentration at middle
depth ranged from 0.0001 ppm to 0.0012 ppm with an SD of 0.00042 ppm. Whereas, at
bottom depth, it ranged from 0.0004 ppm to 0.0022 ppm, with an SD of 0.0007 ppm. High
variation was observed at bottom depth followed by middle and shallow depths. After the
pandemic-unlock period, the concentration increased to 88.6% at shallow depth, 99.6% at
middle depth, and 98.8% at bottom depth (Figure 10).
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Figure 10. Concentration of Lead at shallow, middle, and bottom depths during pandemic-lockdown
and after the pandemic-unlock period in the study area.

According to NWQSM, all Pb values are in natural condition, indicating that no
practical treatment is required for the water supply. According to FDA, Pb concentra-
tions of the study area are under the permissible limit (0.01 ppm). At site number 1, Pb
concentration was high at the bottom depth; however, at site number 4, it was same the
concentration at shallow depth. After the pandemic-unlock period, half of the samples
except a few fall under Class V, thereby indicating that they are not suitable for drinking and
irrigation purposes.

Zn concentration at shallow depth varies from 0.001 ppm to 0.0032 ppm with an SD
of 0.0008 ppm. At middle depth, it varies from 0.0006 ppm to 0.006 ppm with an SD of
0.002 ppm. Whereas, at the bottom depth, it varies from 0.0014 ppm to 0.0034 ppm with an
SD of 0.0008 ppm. High variation was observed at middle depth followed by shallow and
bottom depths. After the pandemic-unlock period, the concentration increased to 96.6% at
shallow depth, 60.7% at middle depth, and 92.7% at bottom depth (Figure 11).

According to NWQSM, all Zn values are in natural condition, indicating that no
practical treatment is required for the water supply. According to FDA, Zn concentra-
tions of the study area are under the permissible limit (5.0 ppm). Again, at site number
4, Zn values suddenly drop at both shallow and middle depths, while they increase
at the bottom depth. This may be due to the adsorption and ion exchange of Zn by
suspended sediments. After the pandemic-unlock period, half of the samples except a
few come under Class V, thereby indicating that they are not suitable for drinking and
irrigation purposes.
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Figure 11. Concentration of Zinc at shallow, middle, and bottom depths during pandemic-lockdown
and after the pandemic-unlock period in the study area.

3.5. Comparison Heavy Metals with Different Standards at Kerian River

Heavy metal values were compared with drinking water standards (DWS), irrigation
water standards (IWS), aquatic life standards (ALS), and surface water standards (SWS) to
understand the use of Kerian River water for different purposes. Overall, the results of the
comparison showed that the Kerian River water is under permissible limits of drinking,
irrigation, aquatic life, and surface water standards. Concentrations of heavy metals after
the pandemic-unlock period crossed the standard limits, which is not required here to be
compared. A summary of results is given in Table 3.

Table 3. Comparison of heavy metal concentration after the pandemic-unlock period at different
depths with drinking water standards (DWS), irrigation water standards (IWS), aquatic life standards
(ALS), and surface water standards (SWS).

Heavy Metals
Concentrations (mg/L) at Depths

DWS IWS ALS SWS
Shallow Middle Bottom

Cd 0.0014 0.0023 0.0015 0.005 0.01 0.01 0.01
Cr 0.0002 0.0002 0.00018 0.1 0.1 0.05 0.16
Cu 0.0012 0.0029 0.0032 1.3 0.2 0.05 -
Fe 0.0011 0.0018 0.0035 0.3 - - -
Mn 0.0014 0.0021 0.0006 0.05 2 1 1
Ni 0.0047 0.0018 0.0018 - 0.2 - 0.144
Pb 0.0009 0.0008 0.0012 0 5 0.05 0.005
Zn 0.0021 0.0036 0.0022 5 2 <0.1 -

4. Conclusions

This study was conducted to analyze the baseline values of the total suspended
solid and heavy metals during and post-COVID-19 pandemic. The study reports that
concentrations of heavy metals are under permissible limits of National Water Quality
Standards of Malaysia, Food and Drug Administration, and standards of drinking water,
irrigation water, and aquatic life. However, there are variations in different depths at the
same sampling site. The possible reason for those heavy metal values that suddenly drop
from one site to another could be the high settling tendency in Kerian River due to binding
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capacities with other existing components of water matrix such as micro particles or micro
vegetation. They may be in suspended, colloidal, or dissolved form. Whereas, for those
heavy metal values that suddenly raised from one site to another, the possible reason could
be an anthropogenic source. High concentrations of Ni, Zn, and Fe were reported at shallow,
middle, and bottom depths, respectively. Overall, the possible reason for the lack of heavy
metal pollution may be due to COVID-19 restrictions on anthropogenic activities. Whereas,
before the post-pandemic period, heavy metal values increased from 60% to 100% from
during pandemic conditions. This confirms that the increment is due to anthropogenic
activities after releasing COVID-19 restrictions. Furthermore, no significant effect was
observed on total suspended solid values in post-pandemic conditions.
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Appendix A

Table A1. Laboratory results of eight heavy metals (ppm) with their standard deviations at
different depths.

Parameters
Sample No. Water Sample 1 Water Sample 2 Water Sample 3 Water Sample 4

Depth ShallowMiddle Bottom ShallowMiddle Bottom ShallowMiddle Bottom ShallowMiddle Bottom

Cd

During
pandemic

0.0014
±

0.0002

0.0012
±

0.0066

0.0011
±

0.0060

0.0022
±

0.0064

0.0075
±

0.0066

0.0004
±

0.0068

0.0007
±

0.0076

0.0002
±

0.0070

0.0024
±

0.0056

0.0014
±

0.0064

0.0010
±

0.0064

0.0022
±

0.0058

Post
pandemic

0.0091
±

0.0000

0.0198
±

0.0001

0.0030
±

0.0001

0.0015
±

0.0001

0.0213
±

0.0000

0.0015
±

0.0001

0.0030
±

0.0000

0.0015
±

0.0005

0.0030
±

0.0001

0.0061
±

0.0000

0.0198
±

0.0001

0.0228
±

0.0001

Cr

During
pandemic

0.0002
±

0.0002

0.0001
±

0.0002

0.0002
±

0.0002

0.0003
±

0.0004

0.0002
±

0.0000

0.0001
±

0.0000

0.0002
±

0.0002

0.0003
±

0.0002

0.0002
±

0.0004

0.0001
±

0.0002

0.0000
±

0.0002

0.0002
±

0.0004

Post
pandemic

0.1441
±

0.0001

0.1354
±

0.0001

0.1528
±

0.0000

0.1266
±

0.0001

0.1878
±

0.0000

0.0917
±

0.0001

0.1441
±

0.0000

0.1790
±

0.0001

0.1179
±

0.0000

0.1616
±

0.0001

0.1616
±

0.0001

0.1092
±

0.0000

Cu

During
pandemic

0.0012
±

0.0003

0.0047
±

0.0004

0.0031
±

0.0004

0.0013
±

0.0008

0.0032
±

0.0001

0.0034
±

0.0006

0.0012
±

0.0008

0.0023
±

0.0006

0.0022
±

0.0004

0.0010
±

0.0000

0.0012
±

0.0002

0.0040
±

0.0004

Post
pandemic

0.0705
±

0.0001

0.0096
±

0.0001

0.0417
±

0.0001

0.0898
±

0.0001

0.1058
±

0.0002

0.1219
±

0.0001

0.0898
±

0.0000

0.0497
±

0.0000

0.0577
±

0.0002

0.1058
±

0.0001

0.1780
±

0.0000

0.1219
±

0.0001
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Table A1. Cont.

Parameters
Sample No. Water Sample 1 Water Sample 2 Water Sample 3 Water Sample 4

Depth ShallowMiddle Bottom ShallowMiddle Bottom ShallowMiddle Bottom ShallowMiddle Bottom

Fe

During
pandemic

0.0011
±

0.0010

0.0017
±

0.0014

0.0029
±

0.0040

0.0009
±

0.0009

0.0014
±

0.0004

0.0018
±

0.0016

0.0003
±

0.0006

0.0029
±

0.004

0.0002
±

0.0018

0.0020
±

0.0016

0.0011
±

0.0028

0.0032
±

0.0022

Post
pandemic

7.1373
±

0.0005

7.0440
±

0.0002

7.0090
±

0.0000

6.1808
±

0.0009

6.8107
±

0.0008

7.4872
±

0.0001

7.0206
±

0.0001

7.2306
±

0.0001

0.3136
±

0.0003

0.3603
±

0.0004

0.8385
±

0.0005

0.0920
±

0.0001

Mn

During
pandemic

0.0014
±

0.0010

0.0015
±

0.0014

0.0004
±

0.0008

0.0016
±

0.0008

0.0023
±

0.0013

0.0012
±

0.0005

0.0020
±

0.0016

0.0028
±

0.0004

0.0003
±

0.0012

0.0006
±

0.0023

0.0016
±

0.0023

0.0005
±

0.0007

Post
pandemic

0.2200
±

0.0002

0.0567
±

0.0004

0.1837
±

0.0001

0.2018
±

0.0002

0.0930
±

0.0004

0.1020
±

0.0001

0.1655
±

0.0000

0.1882
±

0.0010

0.1202
±

0.0001

0.1111
±

0.0001

0.2109
±

0.0002

0.2336
±

0.0003

Ni

During
pandemic

0.0047
±

0.0051

0.0025
±

0.0051

0.0011
±

0.0038

0.0040
±

0.0034

0.0030
±

0.0044

0.0026
±

0.0062

0.0015
±

0.0059

0.0000
±

0.0078

0.0019
±

0.0062

0.0086
±

0.0088

0.0018
±

0.0076

0.0013
±

0.0050

Post
pandemic

0.0790
±

0.0002

0.0505
±

0.0001

0.2492
±

0.0003

0.1636
±

0.0001

0.0209
±

0.0008

0.1493
±

0.0001

0.0637
±

0.0003

0.1493
±

0.0004

0.4061
±

0.0001

0.3633
±

0.0001

0.2064
±

0.0007

0.4347
±

0.0005

Pb

During
pandemic

0.0009
±

0.0020

0.0012
±

0.0020

0.0022
±

0.0042

0.0004
±

0.0014

0.0010
±

0.0031

0.0004
±

0.0022

0.0009
±

0.0025

0.0001
±

0.0025

0.0008
±

0.0031

0.0013
±

0.0026

0.0007
±

0.0023

0.0013
±

0.0020

Post
pandemic

0.0508
±

0.0001

0.1169
±

0.0004

0.3898
±

0.0005

0.5220
±

0.0000

0.3458
±

0.0005

0.0373
±

0.0002

0.0068
±

0.0001

0.2492
±

0.0000

0.1169
±

0.0001

0.0068
±

0.0006

0.2492
±

0.0004

0.0593
±

0.0007

Zn

During
pandemic

0.0021
±

0.0004

0.0028
±

0.0005

0.0026
±

0.0008

0.0022
±

0.0002

0.0060
±

0.0010

0.0016
±

0.0008

0.0032
±

0.0018

0.0050
±

0.0001

0.0014
±

0.0005

0.0010
±

0.0004

0.0006
±

0.0000

0.0034
±

0.0015

Post
pandemic

2.5686
±

0.0021

0.7675
±

0.0006

0.4533
±

0.0001

0.2416
±

0.0001

0.0039
±

0.0001

0.0298
±

0.0001

0.0369
±

0.0000

0.2380
±

0.0000

0.0063
±

0.0002

0.0733
±

0.0001

0.0722
±

0.0004

0.3522
±

0.0001
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