
����������
�������

Citation: Rehman, Z.u.; Altaf, S.;

Ahmad, S.; Alqahtani, M.; Huda, S.;

Iqbal, S. Advanced Authentication

Scheme with Bio-Key Using Artificial

Neural Network. Sustainability 2022,

14, 3950. https://doi.org/10.3390/

su14073950

Academic Editor: Ripon Kumar

Chakrabortty

Received: 17 February 2022

Accepted: 22 March 2022

Published: 26 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Advanced Authentication Scheme with Bio-Key Using Artificial
Neural Network
Zia ur Rehman 1,* , Saud Altaf 1 , Shafiq Ahmad 2 , Mejdal Alqahtani 2 , Shamsul Huda 3 and Sofia Iqbal 4

1 University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University,
Rawalpindi 46000, Pakistan; saud@uaar.edu.pk

2 Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia; ashafiq@ksu.edu.sa (S.A.); almejdal@ksu.edu.sa (M.A.)

3 School of Information Technology, Deakin University, Burwood, VIC 3128, Australia;
shamsul.huda@deakin.edu.au

4 Pakistan Space & Upper Atmosphere Research Commission, Islamabad 44000, Pakistan;
sofiaiqbal.suparco@gmail.com

* Correspondence: ziaraja@gmail.com

Abstract: The improvements in the field of health monitoring have revolutionized our daily lifestyle
by developing various applications that did not exist before. However, these applications have serious
security concerns; they also can be taken good care of by utilizing the Electrocardiogram (ECG) as
potential biometrics. The ECG provides robustness against forgery attacks unlike conventional
methods of authentication. Therefore, it has attained the utmost attention and is utilized in several
authentication solutions. In this paper, we have presented an efficient architecture for an advanced
authentication scheme that utilized a binarized form (bio-key) of ECG signal along with an Artificial
Neural Network (ANN) to enhance the authentication process. In order to prove the concept, we
have developed the testbed and acquired ECG signals using the AD8232 ECG recording module
under a controlled environment. The variable-length bio-keys are extracted using an algorithm
after the feature extraction process. The extracted features along with bio-keys are utilized for
template formation and also for training/testing of the ANN model to enhance the accuracy of
the authentication process. The performance of authentication results depicted high authentication
accuracy of 98% and minimized the equal error rate (EER) to 2%. Moreover, our scheme outperformed
comparative peers’ work in terms of accuracy and EER.

Keywords: ANN; ECG; advance authentication; WBAN

1. Introduction

Wearable medical devices paved the way to provide ubiquitous health care services
that have enhanced the quality of life as compared to past years. These devices provide
seamless monitoring in a way that one can perform their daily life’s routine and work
comfortably without being bothered, and enable a variety of applications from routine to
clinical scenarios. However, the security of data became vitally important in the case of a
healthcare scenario.

Biometrics provides unique features that can be utilized for authentication purposes.
It includes Iris, Fingerprint, gait, etc, The electrocardiogram (ECG) (as shown in Figure 1) is
one of the biometric traits that measure the dynamic electrical activity of the human heart [1].
It is considered an efficient method that can be utilized for identity recognition. However,
the innovation of Machine Learning (ML) techniques has opened a new perspective in
authentication approaches [2]. The verification models have been constructed using ML
techniques for the identification of ECG data [3,4].
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Figure 1. The ECG signal with different features. 

The ECG-based authentication schemes mostly utilize fiducial, non-fiducial, and a 
fusion of both features for identity recognition purposes. Whereas fiducial feature points 
are related to the morphology of the signal, such as p, QRS, T waves, non-fiducial features 
represent statistical features analysis, such as kurtosis, autocorrelation, average, mean, etc. 
[5–7]. Recently, techniques have been proposed in the literature that utilized a fusion of 
both types of features and proved promising results [8,9]. 

The ML-based authentication scheme using an ECG signal proposed by Akleem et 
al. [10] applied a regression model into subsets of the dataset. After breaking the ECG 
dataset into smaller parts, the authors applied a decision tree (DT) model and achieved 
accuracy up to 92%. In another study [11], authors utilized convolutional kernels to 
achieve better classification by combining two functions, namely margin loss and center 
loss, in the training process. The results depicted improved accuracy and a lower equal 
error rate (EER). 

Similarly, Donida et al. utilized a convolutional neural network (CNN) for biometric 
authentication and binarized the ECG signal to speed up the matching process [12]. 
Moreover, the authentication schemes [13–15] also utilized CNN as a classification 
method after extracting features from ECG signals. Hammad et al. [16] proposed a 
multimodal biometric scheme that fused both ECG and Fingerprints data to apply the 
CNN feature extraction method. The authors used a Q-Gaussian multi-support vector 
machine (QG-MSVM) in the authentication phase to enhance performance. 

The authentication solutions pertaining to the anonymous lightweight category 
[17,18] and hybrid approaches, such as [19], along with other cryptographic schemes and 
RNN based biometrics schemes, [20] also exist in the literature. However, our main focus 
is, to sum up, authentication schemes based on ML techniques [21,22]. This work is 
specifically related to ANN-based authentication schemes [23,24]. 

The main contributions are summarized as follows: 
• We have proposed a new architecture for an advanced authentication scheme that 

utilized a binarized form (bio-key) of ECG signals in combination with ANN to 
improve the authentication process. 

• We have designed a testbed using the AD8232 ECG recording module and acquired 
ECG signals of 47 subjects (including males and females) under a controlled 
environment. 

• The bio-keys are generated using an algorithm and the template is constructed along 
with selected ECG features. These selected features besides bio-keys are further 
utilized for training/testing of the ANN model to enhance the accuracy of the 
authentication process. 

Figure 1. The ECG signal with different features.

The ECG-based authentication schemes mostly utilize fiducial, non-fiducial, and a
fusion of both features for identity recognition purposes. Whereas fiducial feature points
are related to the morphology of the signal, such as p, QRS, T waves, non-fiducial features
represent statistical features analysis, such as kurtosis, autocorrelation, average, mean,
etc. [5–7]. Recently, techniques have been proposed in the literature that utilized a fusion of
both types of features and proved promising results [8,9].

The ML-based authentication scheme using an ECG signal proposed by Akleem et al. [10]
applied a regression model into subsets of the dataset. After breaking the ECG dataset into
smaller parts, the authors applied a decision tree (DT) model and achieved accuracy up to
92%. In another study [11], authors utilized convolutional kernels to achieve better classi-
fication by combining two functions, namely margin loss and center loss, in the training
process. The results depicted improved accuracy and a lower equal error rate (EER).

Similarly, Donida et al. utilized a convolutional neural network (CNN) for biometric
authentication and binarized the ECG signal to speed up the matching process [12]. More-
over, the authentication schemes [13–15] also utilized CNN as a classification method after
extracting features from ECG signals. Hammad et al. [16] proposed a multimodal biometric
scheme that fused both ECG and Fingerprints data to apply the CNN feature extraction
method. The authors used a Q-Gaussian multi-support vector machine (QG-MSVM) in the
authentication phase to enhance performance.

The authentication solutions pertaining to the anonymous lightweight category [17,18]
and hybrid approaches, such as [19], along with other cryptographic schemes and RNN
based biometrics schemes, [20] also exist in the literature. However, our main focus is, to
sum up, authentication schemes based on ML techniques [21,22]. This work is specifically
related to ANN-based authentication schemes [23,24].

The main contributions are summarized as follows:

• We have proposed a new architecture for an advanced authentication scheme that
utilized a binarized form (bio-key) of ECG signals in combination with ANN to
improve the authentication process.

• We have designed a testbed using the AD8232 ECG recording module and acquired ECG
signals of 47 subjects (including males and females) under a controlled environment.

• The bio-keys are generated using an algorithm and the template is constructed along
with selected ECG features. These selected features besides bio-keys are further
utilized for training/testing of the ANN model to enhance the accuracy of the authen-
tication process.

• The performance results of the proposed authentication scheme depicted high preci-
sion (98.1%), authentication accuracy (98%), and minimized equal error rate (EER) (0.02).
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• The performance comparison results proved that the proposed authentication scheme
outstands with peer schemes. This proved that it is highly applicable, efficient,
and robust.

• The rest of the article is organized as follows: section II unveiling the proposed
authentication scheme; section III detailing experimentation, performance evaluation,
and comparison with peers; section IV covering the discussion; and, finally, the
conclusion in section V.

2. Proposed Authentication Scheme

The proposed scheme’s architecture (as depicted in Figure 2) contains three major
stages of the scheme namely preprocessing, enrollment, and authentication stages. The
raw ECG signal is firstly preprocessed to remove noise and other related artifacts, such
as baseline wandering, muscles noise, etc. The next step involves feature extraction and
bio-key generation from the cleaned ECG signal. The enrollment stage starts right after the
features extraction and bio-key generation. It comprises template construction and template
storage that is further utilized in ANN classification, through which an authentication
decision is made.
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Figure 2. The architecture of the proposed scheme.

2.1. Preprocessing

In this step we remove baseline wandering from the ECG signal, which is caused due
to breathing and electrically charged electrodes. It requires a high pass filter with a cut-off
frequency greater than the lowest frequency in the ECG signal. It cancels low-frequency
components from the signal and is usually set to under 0.5 Hz. However, the frequency
content of a baseline wander can be increased due to increased body movement during
stress tests or exercise. The high pass filter is designed using Equation (1).

H
(

ejω
)
=

{
0, 0 < |ω| < ωc
1, ωc < |ω| < π

(1)

where ωc = 2π fc and fc is cutoff frequency, ω = frequency.
The power line noise is also introduced into the ECG signal due to seamless electro-

magnetic field interference of supply lines and can be removed by applying an infinite
impulse response (IIR) notch filter, as depicted in Equation (2). After removing the baseline
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wander, power line noise is also removed by designing a filter using a notch frequency set
to 60 HZ and bandwidth to 120. Thus, the net result is the removal of power line noise.

H(z) =
(
1− z1z−1)(1− z2z−1)
(1− p1z−1)(1− p2z−1)

=
1− 2cos(ω0)z−1 + z−2

1− 2ecos(ω0)z−1 + r2z−2 (2)

where z refers to complex conjugated pair, ω0 refers to interfering frequency.

2.2. Feature Extraction

This is a process that transforms ECG signal into low dimensional feature space. It is
normally divided into two categories, namely fiducial features and non-fiducial features.
The fiducial features involved fixed reference points present in ECG signals, such as p-wave,
QRS wave, and T-wave. It also requires calculations regarding amplitude and temporal
distance among fiducial points. These points are very sensitive to noise and require high
precision. The non-fiducial features, on the other hand, examine the frequency domain of
the ECG signal and are less sensitive to noise, e.g., calculation of mean, standard deviation,
variance, kurtosis, etc. We have utilized both fiducial and non-fiducial features for the
authentication process. The extracted features are ‘Rpeaks’, ‘HeartRate’, ‘Peaks Interval
(Pinter)’, ‘Average’, and ‘Kurtosis’.

2.3. Bio-Key Generation

Once features are extracted from the ECG signal, the Inter-Pulse-Interval (IPI) is
utilized to formulate a key of varying length. The process commences firstly by generating
a bio-key after computing IPI values, secondly, applying the gray coding, and lastly, the
output bits of gray coding are concatenated to get the result. The pseudocode of bio-key
extraction is depicted in Algorithm 1. The uniqueness of extracted bio-keys is determined
by calculating hamming distance (HD) and Entropy (H) using Equations (3) and (4).

dHD(i, j) =
n−1

∑
k=0

[
yi,k 6= yj,k

]
(3)

where y is a series of numbers

H(X) = −
n

∑
i=1

pilog2 pi (4)

where p denotes the probability

Algorithm 1 Pseudo-code algorithm used for bio-key extraction.

1. The raw ECG signal is collected from the subject.
2. The signal is pre-processed using noise removal techniques.
3. After noise removal, R-peaks are preserved and all other frequency components

are removed.
4. The IPI is quantified up to the length of the signal and its equivalent binary representations.
5. The gray coding is applied to reduce the difference between IPI bits
6. The concatenation operation is applied to get the final variable-length bio-key.

2.4. Template Construction & Store

During the enrollment process, the template is created by mixing the bio-key generated
from the ECG with extracted features, such as peaks interval (PInter), average, and kurtosis.
The bio-key can have values in the range of [0, 1] and are extracted by the manipulation
of fiducial features; therefore, the next step is to store it in a file that can be used in the
matching process.
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2.5. Authentication

The authentication phase begins once features are extracted and a bio-key is generated
after it. The ANN serves as the core of the authentication stage by using a feed forward
neural network with backpropagation. The features (PInter, average, kurtosis, and bio-key)
were used to formalize the training dataset for two purposes, i.e., training and validation.
The neural network starts with inputs, bias, and the sum of the multiplication of weights.
The mathematical form of the model is shown in Equation (5).

Yk = f

(
n

∑
j=1

wjkZj + wk0

)
f or k = 1, 2, . . . . . . .l (5)

where Zj = f
(

∑d
i=1 wijxi + wj0

)
f or j = 1, 2, . . . . . . .n; xi are network inputs, wij represents

weights, wj0 represents an initial bias of the hidden node, while f is the transfer function.
Zj represents hidden layers’ output while Yk represents network output, wjk is weights and
wk0 is the bias of the output layer.

We have distributed data with the ratio of 70% for training, whereas the remaining
30% is distributed equally for testing and validation purpose. The PInter values are utilized
during the training phase by the ANN model until the binary stream is produced with
the help of varying weights in the backpropagation algorithm. The input data from an
individual user is provided to the ANN with existing weights of training phase results in
binary stream output that is further compared with pre-stored bio-keys from the template
store in the next step.

2.6. Criteria for Authentication

The criteria set for authentication is 80% or more, i.e., detailed as:

1. During the comparison, if a match is found in the template store with accuracy of
more than or equal to 80% then it is authenticated

2. Otherwise, a person is considered an intruder

2.7. Performance Evaluation

The performance of authentication criteria is measured through the following metrics:

• Performance accuracy defines the percentage of correct prediction over a total number
of testing samples.

• Equal Error Rate (EER): It is utilized for determining the threshold value among FAR
and FRR.

Precision =
TP

TP + FP
∗ 100 (6)

Sensitivity =
TP

TP + FN
∗ 100 (7)

Specitivity =
TN

FP + TN
∗ 100 (8)

F − Score =
2 ∗ Sensitivity ∗ Precision
(Sensitivity + Precision)

(9)

Accuracy =
Number of Correct Predictions
Total number of test samples

∗ 100 (10)

False Acceptance Rate (FAR) =
FP

TN + FP
(11)

False Rejection Rate (FRR) =
FN

TP + FN
(12)

where TP refers to true positive, TN = true negative, FP = false positive, FN = false negative.



Sustainability 2022, 14, 3950 6 of 14

3. Experimentation and Results

The algorithm is developed using Matlab 2016b running on the Windows 10 operating
system. We have designed a testbed to collect ECG signals from 47 subjects including both
males and females. We utilized the AD8232 sensor for ECG recording along with Arduino
UNO (acting as coordinator) attached to a Computer. The testbed diagram is shown in
Figure 3. We have used 100 recordings, which are sampled at a frequency of 360 samples/s.
In total, 70% of records are utilized for training and 30% for testing purposes. The ECG
signal recordings are made with the consent of volunteers (subjects), as shown in Figure 4.
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3.1. Experimental Setup

The experiment started by preprocessing ECG signals, as depicted in Figure 5. The
features were extracted and the bio-key for each individual was generated using the
pseudocode algorithm. The output of the pseudocode is depicted (in blue) in Figure 6
as a single case. To ensure the degree of uncertainty and uniqueness, the Hamming
distance (HD) and key entropy H(X) were calculated for all ECG recordings in general,
but the comparison among the few records was made as a single-case (as depicted in
Figures 7 and 8, respectively). Furthermore, four subjects are selected at random and their
bio-keys are extracted after time interval ‘t’ and then HD and H(X) are calculated, which
showed higher HD value and closer H(X) value. It is worth mentioning here that a higher
HD value means more different keys and H(X) closer to 1 means higher uncertainty, which
is also desired.
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Figure 5. The preprocessing stage of the ECG signal is depicted as: (a) detrending of signal;
(b) baseline wander and power line noise removed; (c) Rpeaks identified after noise removal.
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Figure 6. The bio-key extracted (in blue) using pseudocode.

The features (PInter, average, kurtosis, and bio-key) were simulated using Matlab
scripts to produce a Neural Network (NN) model. The bio-key/stream was set as target
data while the other three served as input data. The hidden layers and their initial weights
were set, along with transfer functions to compute error criteria. Table 1 depicted the
extracted features samples that were used for classification and training purposes.
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Figure 7. The Hamming distance calculated among bio-keys generated with the same lead but varied
by time ‘t’.
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Table 1. The extracted features samples.

Samples Pinter Average Kurtosis Bio-Key

S1 [1 × 18 double] 5.97 × 10−4 47.5186 110110101110110110110010010110010010110010010110110100
110011110011010101110111000010110110110010011010011111

S2 [1 × 16 double] 4.05 × 10−4 47.9453
101001011110101101110011101110001000111100001011101010111

11001111101100011001100101010111010101010100010100011001011
011010101010100010000101

S3 [1 × 18 double] 5.30 × 10−4 87.3044 1001110010000110111100010100000001110110100110110110010011010
011000010100101010010011100111001011001

S4 [1 × 19 double] 3.18 × 10−4 83.3642 10011100100010001001111000001001000011101001101010011100100001
00100011000001100110011100100111100001110010011011

We have a varied number of hidden layers ([4× 8× 3], [4× 12× 3], and [4× 15× 3]) to
attain a dissimilar form of architecture and its impact on data validation results, as shown
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in Table 2. It is observed through Table 2 that the architecture [4 × 12 × 3] performed
better in terms of Mean Squared Error (MSE). Furthermore, better efficacy is achieved in the
same architecture due to less classification error rate as compared with other architectures.
However, as a case study, the [4 × 12 × 3] architectural model is depicted in Figure 9 and
its corresponding confusion matrices are depicted in Figure 10.

Table 2. The validation results by varying NN architecture.

Arch Sample MSE No. of Epoch Accuracy Classification Error

[4 × 8 × 3]

S1 7.79 × 10−2 71 92.3 7.7
S2 7.45 × 10−2 76 92.4 7.6
S3 7.99 × 10−2 102 91.9 8.1
S4 7.01 × 10−2 65 90.2 9.8

[4 × 12 × 3]

S1 8.29 × 10−2 143 97.4 2.6
S2 9.05 × 10−2 186 97.5 2.5
S3 7.49 × 10−2 110 97.6 2.4
S4 9.291 × 10−2 168 97.7 2.3

[4 × 15 × 3]

S1 7.99 × 10−2 405 92.9 7.1
S2 7.15 × 10−2 398 90.2 9.8
S3 6.91 × 10−2 312 89.1 10.9
S4 7.19 × 10−2 399 91.5 8.1
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The confusion grid (as shown in Figure 10) contained training data analysis among
target and output classes. The data was divided into four classes both horizontally and
vertically to highlight the testing accuracy of the validation process. The cells in green
depicted accurately classified groups of trail classes. Moreover, the data represented in
red cells were incorrectly classified, or, in other words, were invalidated during the testing
process. The overall percentage was depicted in blue depending on the number of test
cases classified correctly or incorrectly, as highlighted in green and red cells.
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It is apparent from Figure 10 that the testing trails for each class were 1200 as depicted
in green cells. Similarly, by analyzing sample 1, the datasets wrongly identified were low
comparative to cells in green. For instance, there were 22 types of wrongly classified trials
sample in output class 2 and target class 1. Similarly, in the same target class, the output
classes 3 and 4 had 8 and 19 types, respectively, that were wrongly classified, comprising
the data validation accuracy of 95.1% shown in grey with an error rate of 4.9% overall.
Similarly, the data validation accuracy and error rate of other target classes were calculated,
and accumulated output data validation accuracy of 97.4% with an error rate of 2.6% was
achieved. The maximum accuracy was achieved at sample 4 97.7% with a minimized error
rate of 2.3%, which is considered as an achievement.
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3.2. ECG Authentication

Out of 47 subjects, 40 were considered authorized and 7 as imposter. The performance
accuracy is achieved to 98% and FAR of 0.02 where FRR = 0. In our proposed work only 2%
of imposters are wrongly identified as authorized. As the matching process of the proposed
scheme returns a decision (either Y or N), therefore a detection error trade-off (DET) graph
cannot be generated and we have to consider FAR only (FRR = 0). Moreover, the EER is
considered equal to FAR, i.e., 0.02 or 2%. The details of performance evaluation results are
depicted in Figure 11.
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3.3. Comparison with Peers

The comparison of our scheme with related peer works is summarized in Table 3 It is
obvious from the given table that our scheme has outperformed in terms of accuracy and
EER. It is also evident that our scheme outperformed due to improvements made in the
matching process by introducing the binary streams in it. The comparison is also made
clear in Figure 12.

Table 3. The comparison results with peers.

Ref Accuracy (%) EER

[8] 96.6 0.03

[10] 92.7 0.03

[16] 96.56 0.035

[11] 95.99 0.047

[Our] 98.0 0.02
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Figure 12. The comparison of accuracy (%) and EER (%) with peers.

4. Discussion

The proposed authentication scheme is implemented through the data collected through
the AD8232 ECG sensor. The ECG signals are preprocessed using the Equations (1) and (2)
and features are extracted afterward, which are used for biometrics. The bio-keys are
extracted with the help of the algorithm discussed in Table 1. The bio-keys extracted from
the features are variable, distinct, random, and difficult to predict. The bio-keys acquired
through this process are verified for randomness and uncertainty property by using Equa-
tions (3) and (4). The fact is made prominent through the output of HD comparison results
(in Figure 7) computed among selected subjects, which depicted greater differences with
each other.

It is worth mentioning that even bio-keys extracted from IPI values (in Figure 6)
computed from different subjects varied by time interval have produced more dynamic and
different results, which is desirable. Similarly, the comparison of Entropy H(X) (Figure 8)
depicted results are closer to one, which means a higher degree of uncertainty that is
further desirable.

Furthermore, the bio-key along with extracted features (PInter, average, and kurtosis)
are also utilized for template formation and stored in a database. The sample features in
Table 1 showed the excerpts of results, which are further utilized for training and testing
purposes. The different architectural models for ANN have been computed and found that
[8× 12× 4] have yielded better results compared to other models, as shown in Table 2. The
ANN model showed the training state in Figure 9. The confusion matrices for each sample
have been computed and depicted in Figure 10. As discussed in the previous section, the
data validation accuracy and error rate for each class have been calculated besides the net
data validation accuracy and error rate. The aggregate accuracy achieved for sample 1 to
sample 4 is very consistent from 97.4% to 97.7%, along with a consistent error rate from
2.6% to 2.3%, respectively. The proficiency of data validation results has been increased and
imprecision has been reduced to an optimal level. Hence, the results validated the analysis
and trained samples data.

Moreover, the outcome of the ANN model was the bio-stream that was further utilized
in the matching process. The performance of authentication criteria was judged with
the help of parameters detailed in Figure 11. These parameters are calculated using the
Equations (6)–(12). The authentication accuracy is measured to 98% with FAR = 0.02,
which is further evidence that the proposed scheme has achieved higher accuracy. It is
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also worth mentioning here that FAR = 0.02 (FRR = 0), therefore, EER is considered equal
to FAR in our case. The achieved results were also compared against the performance
of peers, as highlighted in Table 3 and made prominent with the help of Figure 12. The
proposed scheme achieved better performance accuracy and EER as compared to peer
works. Therefore, we claim that our scheme is more efficient as compared to peer works.

5. Conclusions and Future Direction

We have proposed an authentication scheme that utilized ECG signals along with
the ANN technique and bio-key. The proposed authentication scheme is implemented by
using the AD8232 ECG sensor for data collection. We designed an algorithm to extract a
variable-length bio-key using IPI values of ECG signal. This newly added feature is further
utilized in template construction and training/validation of the ANN model. The different
ANN architectures were tested and found [4 × 12 × 3] architecture demonstrated better
results than others. The output of the ANN model is utilized in the template matching
process. The performance results of our scheme achieved accuracy to 98%, precision to
98.1%, and minimized the equal error rate (EER) to 2%. The performance comparison
results proved that the proposed authentication scheme is applicable and efficient in terms
of accuracy and EER.

We have planned to work on a multimodal authentication scheme by fusing two or
more physiological signals and application of ML techniques as a possible future extension.
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