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Abstract: Numerous researchers have described the correlation between the short-term contact of
nano-particulate (NP) matter in diverse coal phases and amplified death or hospitalizations for
breathing disorders in humans. However, few reports have examined the short-term consequences
of source-specific nanoparticles (NPs) on coal mining areas. Advanced microscopic techniques can
detect the ultra-fine particles (UFPs) and nanoparticles that contain potential hazardous elements
(PHEs) generated in coal mining areas. Secondary aerosols that cause multiple and complex groups
of particulate matter (PM10, PM2.5, PM1) can be collected on dry deposition. In this study, scanning
electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) were
employed to detect and define the magnitude of particulate matters on restaurants walls at coal mines
due to weathering interactions. The low cost self-made passive sampler (SMPS) documented several
minerals and amorphous phases. The results showed that most of the detected coal minerals exist in
combined form as numerous complexes comprising significant elements (e.g., Al, C, Fe, K, Mg, S,
and Ti), whereas others exist as amorphous or organic compounds. Based on the analytical approach,
the study findings present a comprehensive understanding of existing potential hazardous elements
in the nanoparticles and ultrafine particles from coal mining areas in Brazil.

Keywords: geochemical; organic minerals; aerosols; coal mining; nanoparticles; ultrafine nanoparti-
cles; Brazil

1. Introduction

In coal mining areas, airborne contaminants are released during the operation of mines.
Similarly, after the abandonment of the mines, such contaminants are further emitted from
spontaneous coal combustions resulting in severe impacts on human health [1,2]. According
to the latest World Health Organization (WHO), more than 8 million people die annually
from anthropogenic air contamination, making it a significant environmental hazard. Air
contamination is documented as a deadly pollutant that causes severe and prolonged
disorders such as cardiovascular disease and chronic lung infections [3,4]. In searching
scientific databases such as Scopus and Web of Science for the search strings; “coal impact”
and “human health”, over 10,000 publications were retrieved. However, there are no
studies on particulate matter (PM) suspended at respiratory heights for humans. However,
there have been some attempts to explore this area of research in Europe and the USA [5,6].
In addition, most studies in scientific bases for atmospheric studies require significantly
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expensive equipment [7,8]. Furthermore, the traditional PM10, PM2.5 and PM1 equipment
are not as accurate as smaller particles are always detected in larger filters [9]. However,
these above stated challenges motivate novel ideas for sample collection using self-made
passive sampler (SMPS) in areas of coal mining, mainly where coal fires are prevalent.
In times past, much anxieties have been concentrated on the prevention of unexpected
accidents rather than on the harmful impact of coal dust on the human health [10,11]. Over
the last few years, social and technological progress has led to increase health awareness
and an escalating significance on dust reduction in coal mines. The documentation of the
characteristics of coal mine dust is necessary to prevent dust explosion and occupational
disease. The systematic study of the coal dust chemical nature and composition is related
to personal health, production safety and environmental air quality [12]. In addition, it is
an important step toward achieving dust control within the vicinity of coal mines.

Several studies have previously signaled that transitional elements such as bioavailable
iron or nickel are culpable for the incidence of severe health problems [13–16]. However,
the precise chemical nature and compositional information about the materials inhaled
in coal mining areas remain scanty [17–19]. This knowledge gap is mainly because most
published works on coal and potentially hazardous elements (PHEs) geochemistry focus on
the toxic emissions and residues produced during combustion in coal power plants [19,20].

Therefore, in this paper, we focus on the PM inhaled by miners and identify the major
PHEs that are present in coal mine dust. Furthermore, the paper presents an exploratory
pilot case study that demonstrates how dust chemistry can change when PM size decreases.
Lastly, this work presents further studies on the self-made passive sampler (SMPS) previ-
ously reported by Silva et al. [21]. In this paper, the SMPS was applied to collect multiple
ultra-fine particles (UFPs) and nanoparticles (NPs) in direction to better comprehend the
incidence of potential hazardous elements (PHEs) from a coal mining area in Brazil.

2. Materials and Methods
2.1. Sampling Strategy

The self-made passive sampler previously reported by Silva et al. [21] (see Figure 1)
was mounted in the restaurants where miners typically take lunch. Sampling was con-
ducted from 18 May 2019 to 23 August 2019 (winter months) by using the self-made passive
sampler. After sampling, all the PMs were wrapped in plastic bags and deposited in a
freezer (−18 ◦C) to avoid sunlight and studied for geochemical properties within one
month. This approach facilitated realistic exposure to the PM collected and analyzed in
this study.

For this study, the self-made passive sampler was placed at 1.50 m considering that the
average height of miners (male and female) was 1.60 m. Therefore, the set-up was aimed at
modelling the probable respiratory exposure of restaurant-goers in coal areas. In addition,
the objective was to detect the incidence of the PHEs and directly reporting the findings
by developing a low cost self-designed passive sampling procedure. The non-destructive
plan adopted in the study was based on the procedure of advanced microscopy (AM)
and X-ray diffraction (XRD) analyses. The designed self-made passive sampler comprises
a PVC tube with an inner pin stub covered with carbon tape (Figure 1). Based on the
wind and the environment of the cassettes, the UFPs and NPs are naturally deposited
on the carbon tapes attached to the self-made passive sampler [21] accumulated PMs
on the pin stub were subsequently examined without any pre-handling in the advanced
microscopy (AM) workroom. Lastly, the influence of coal mining contamination and
apparent dry sedimentations (due to high mining activities) on miners in restaurants was
critically examined.
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Figure 1. Studied zone and SMPS functions illustration. 

Figure 1. Studied zone and SMPS functions illustration.

2.2. Analytical Procedures

Current sampling equipment for detecting PM10, PM2.5, and PM1 are considered inef-
ficient [9,22]. Hence, the present study presents an attempt to detect and examine the total
untreated particles or sample preparations that affect the chemical and mineralogical com-
positions of sampled PM. Consequently, field emission scanning electron microscopy (FE-
SEM), and Focused Ion Beam (FIB) techniques were adopted to evaluate nano-compound
assemblages. Likewise, high-resolution transmission electron microscopy/energy dis-
persive spectroscopy (HR-TEM/EDS); and Mössbauer spectroscopy were employed as
reported by previous studies in the literature [23,24]. The HR-TEM was performed based
on the detailed methodology described by previous studies in the literature [25–27].

The use of HR-TEM provides a basis for critical examination of nanoparticles with-
out affecting the samples. Furthermore, the low-cost geochemical investigations present
various useful materials on the depositional conditions and coal pollution history [28,29],
which could support knowledge on the origins and incidences of numerous PM. To acquire
the main geological phases, the particles obtained were examined by X-ray powder diffrac-
tion (XRD) and Mössbauer spectroscopy. These techniques are capable of operating in a
continuous conservative mode of acceleration by means of a relative counter filled with
Xe-gas to 2 atm [30,31]. Hence, the UFP and NP samples of each separable size or class
were also examined by FE-SEM and HR-TEM/EDS.

The morphology and geochemical conformations of the PM in the accumulated sam-
ples were examined by FE-SEM fitted with EDS under secondary electron (SE) and back-
scattered electron modes [32,33]. The SEM was operated at 15 kV accelerating voltage and
0.1 nA beam current. The EDS is a semi-quantitative apparatus typically employed to
detect the chemical configurations of sampled compounds at 0.1 wt. % detection limit. The
utilized EDS point-mode was carried out less than 15 kV voltage, 2 nA beam current, and
10-mm working distance. After stabilizing the energy spectrums, each elemental atomic
and weight percentage was converted by X-ray counts. Similar SEM procedures have been
described in the literature [24,30,31].

The elemental configurations of the NPs were investigated by HR-TEM combined
with EDS and FFT [34,35]. The NPs were evaluated by 200 keV HR-TEM (Model: JEOL
JEM-2010F, Japan) coupled with EDS (Model: Quantax 200, JEOL, Japan). The samples were
separated and dissolved in several organic solvents through ultrasonic-sound suspension
before being pipetted into Lacy Carbon films supported by Cu grids [36,37]. To prevent
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contamination, the HR-TEM sample holder was prepared using an advanced plasma system
(Model: Gatan Model 950). The HR-TEM point and lattice resolutions were; 0.194 nm and
0.1 nm, respectively [30,31].

Based on the geochemical confirmation, the potential NPs can be selected using the
Inorganic Compound Powder Diffraction File (PDF) catalogue from the International
Center for Diffraction Database. The PDFs of the selected nanominerals were applied to
associate with the Fast Fourier Transform (FFT) patterns data to calibrate NPs. As observed
by several authors in the literature [7,23,38,39], NPs are typically characterized by some
crystal defects. The most notable include; additional disordering, shearing, or impurities
that result in minor differences between the tested nanominerals and standard minerals in
the PDF database [23,40].

The diffraction pattern indexes of the NPs, including interplanar spacing (d) and angle
of crystal plane (<D1, D2>), were measured by Digital Micrograph software. Furthermore,
the average data (from the PDF database) was correlated with the detected values to conclu-
sively recognize the crystal(s) with the following restrictions: |dm − ds| < 0.01 nm (where
ds: standard d value, dm: measured d value); |<Dm1, Dm2> − <Ds1, Ds2>| < 3◦ (where
<Ds1, Ds2>: standard angle value; <Dm1, Dm2>: measured angle value). Furthermore, the
indicators of the mineral face (hkl) of ds1, ds2, ds3 must coincide with the balance: h1k1l1
+ h2k2l2 = h3k3l3 (where h1k1l1, h2k2l2, and h3k3l3 are the crystal faces of ds1, ds2, and ds3,
correspondingly). In addition, the <Ds1, Ds2> was computed by the cell considerations (a,
b, c, α, β, γ) and the two recognized (h1k1l1) and (h2k2l2). The terms a, b, c are 3 clusters of
edge lengths, whereas α, β, γ are the intersecting angles.

3. Results
3.1. Particulate Matter Analysis

The metal pin stub for sample collection did not detect any PHE contamination
because it was covered with carbon tape. The results of this initial study provide a concise
demonstration of how the metallic content of coal mine dust can change as the powder
becomes thinner and more deeply inhaled. In addition, several PM containing PHEs were
observed in the investigated zone (Table 1). As denoted above, the real atmosphere and
the potential sources of various UFPs and NPs were examined directly to determine the
observed compounds. The samples were analyzed without further sample treatment using
non-destructive microscopic and SMPS methods. Moreover, the study of pollution history,
depositional situation, and geochemical, may be vital to gain a detailed characterization of
the NPs.

Table 1. Recognized compounds; and PHEs in the studied coal area.

Sample Names PM 11 PM 12 PM 13 PM 14 PM 15 PM 16 PM 17 PM 18

Amorphous B B B B B B B B

Mineral

Anatase B B B B B B

Anhydrite A, B A, B B B

Alunogen B B B

Barite B B B B B

Calcite B A, B A, B A, B A, B A, B

Dolomite B A, B A, B B A, B B B

Epsomite B B B B

Ferrohexahydrite B B, M B, M M M M M

Gypsum B, M B B B B B B
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Table 1. Cont.

Sample Names PM 11 PM 12 PM 13 PM 14 PM 15 PM 16 PM 17 PM 18

Hematite B B B B B B

Jarosite B B B, M B B B

Kaolinite B, M B B, M B, M B, M B, M B, M

Melanterite B, M A, B B A, B B B A A

Mullite A, B B M M M

Pyrite B, M B B B B

Quartz B B, M M M B, M A, B, M A, B, M A, B, M

Rutile A, B, M A, B B A, B A, B A, B A, B

Siderite and Sphalerite
B B B B B B

B B, M M M B, M B, M

Chemical Elements

Al E E E E E E E E

As E E E E

Ba E E E E E E

Br E E E E E

Ca E E E E E E E E

Cd E E E E E E E E

Cl E E E E E

Cu E E E E E E

Co E E E E

Cr E E E E E

Fe E E E E E E E E

Hg E E E E E

Mn E E E E E E E E

Ni E E E E E E E

Pb E E E E E E E

S E E E E

Sb E E E E E

Se E E E E E E

Ti E E E E E E E E

V E E E E E

Zn E

* XRD = A; AM = B; M = Mössbauer spectroscopy; E = EDS.

Most of the PMs identified exist in the form of complex aggregates and separate
UPFs. The NPs agglomerated to form new compounds, thus displaying a smooth and
well-regulated morphology. As observed, the aggregates formed are asymmetrical and
approximately equidimensional. Typically, the quality of most aggregates is dependent on
the size and chemical heterogeneity of their UFPs components. The sizes range between
hundreds and tens of nanometers based on rounded outlines [1,23,41]. In many cases,
UFPs can maintain multifaceted geochemical histories during growth and development
based on varying environmental circumstances. In this study, the UPFs determined by
the analytical approach (Table 1) vary from very complexes aggregation of PHEs and
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organic compounds (with numerous amorphous associations) to carbonaceous matter.
According to Hochella et al. [42], related atmospheric NPs could grow into larger UFPs that
act as cloud condensation nuclei and assist in light concentration, which dislocate global
warming evolutions.

Furthermore, Table 1 presents the most abundant phases computed from the EDS
mappings and quantitative analyses adopted in this study. The most prominent detected
phases are linked with re-suspended powder or crustal/mine PM. Hence, the observed
PMs (Figures 2–4) clearly illustrate the results of the detailed analytical approach used to
compute the various phases stored on the applied SMPS. The EDS component mapping
revealed that the combination of compounds frequently involves separate UPFs and NPs,
which are alterable and rarely of similar geochemical structure. This analysis supports the
point study for the enormous quantity of PMs.
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Figure 2. Compounds containing PHEs: (A) Jarosite; (B) Spherical amorphous particle around
several jarosites and goethite minerals; (C) Sphalerite containing Fe in the crystalline structure in the
PM 11–PM 18.

Furthermore, Table 1 shows the dates for the study of SMPS PM obtained from the
restaurants in Brazilian coal mines. Based on the most abundant chemical components, it
can be observed that all samples showed comparable sources. This is evident in the broad
geochemical relationships with aluminum, calcium, carbon, iron, magnesium, manganese,
and silicon. In the coarser accumulated PM, calcium has the highest composition. However,
the Ca cation in the NPs portions is reduced in proportion and surpassed in mass by Al and
Fe, which regularly increases in total accumulated particles from PM10 to PM1. Majority
of the abundant chemical components display an analogous behavior to aluminum, iron,
magnesium, and particularly potassium and sodium all attaining highest levels in the PM1.
The EDS, coupled to TEM and SEM investigation of the PM indicates that the principal
cause of sulphur in the total accumulated particles is in the form of organic matter NPs
and sulphides UFPs. However, the XRD analysis revealed that the accumulated particles
corroborate the existence of quartz, clays, pyrite, and Ca-minerals (Table 1).
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3.2. Electron Beam Analysis

As illustrated in Table 1, several samples contained pyrite, jarosite, and amorphous
phases. The FE-SEM, FIB-SEM and HR-TEM results showed an association streak between
the particles illustrated in Figure 2, particularly between spherical PM and pyrite-containing
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sulphates. Similar results were previously reported by coal cleaning rejects (CCRs) stud-
ies [43,44]. This indicates that such CCRs are easily inhaled by coal miners and the local
population residing near the mines.

Another important correlation is between the sphalerite containing Fe in this crystalline
mineral structure and the siderite crystals. This observation shows that the geological
processes in the study area enhance the formation of minerals during coalification. Hence,
the dust extracted from the coal can be inhaled, as illustrated in the Figures 2–5 of the
particles examined in this study. The Fe-NPs identified by HR-TEM and FIB-SEM/EDS
can be chemically transformed into other iron-sulphates/hydroxides such as displays
of goethite [34,37], which occur either in the vicinity or by interaction with Fe-sulphate.
Hematite (Figure 3D) appears in parallel PM, which has been partly transformed into
Fe-amorphous NPs (Figure 3C). These multifaceted NP groups of Fe-particles contain Pb
as identified by HR-TEM and Mössbauer Spectroscopy. Furthermore, the Fe-containing-
Pb particles occur as amorphous to mineral PMs formed from Al-Si-O-K-Mg and/or
carbonaceous matter.
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The proposed low-cost analytical sampling and subsequent analyses also identified
many other PM containing PHEs, as illustrated in Figures 3–5. The HR-TEM, coupled with
EDS, SAED and FFT investigation of Ti-compounds, confirm the existence of anatase and
rutile (Figure 4). These Ti-phases are significantly toxic according to several toxicological
studies, either in concentrated or dispersed in coal and coal by-products [24,45,46].

The proportions of Ca and carbon in the various PM sections were evaluated using
the SMPS. For the studied coal mine, the findings indicate that the airborne calcareous or
carbonaceous constituents of the coal mine dust are not the most concentrated or inhalable
UFPs. In its place, the cumulative proportions of the Al-Fe-K-Mg-Mn-Na-P indicate the
occurrence of UFPs clays and oxides in the PM1 compared to the Ca-Fe-carbonates. This in-
terpretation indicates a hypothesis has been confirmed by the FIB-SEM/EDS, FE-SEM/EDS
and HR-TEM/SAED/FFT/EDS analyses. Hence, the confirmation presents a functional
characterization of the PM developed from the UFPs and NPs in coal mines.

Some previous authors have clarified the associations between PM sources and pop-
ulation health, including respiratory and mortality [47]. However, no scientific research
has estimated these associations during the winter period in Brazil, specifically in coal
mining areas.
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In this work, several minerals such as iron sulfides and some organic phases were
identified as having significant associations with respiratory diseases. Particles such as sal-
lammoniac (Figure 5A) and siderite containing amorphous superficial particles (Figure 5B)
are clearly derived from spontaneous coal combustion or a variety of high temperature
thermal history [25]. Hence, the coal dust or soil processing actions are consequently
re-suspended or emitted directly into the food/restaurant areas of the coal mining areas
in Brazil.

4. Discussion

The sources of the tested dust (transportation, mining, and conveyor), whether it is
only coal, or surrounding rocks, soil etc were abundant in the areas under study. As we can
see in the different figures, minerals and multiple complex amorphous phases of different
compositions were detected. Although the greatest impact is in the mining and coal power
plant area, transport also implies serious environmental impacts throughout its journey.
The exposure of coal to atmospheric conditions promotes sulphide oxidation that releases
enormous sulphate loads as well as Ca2+, K+, Mg2+, Cl− and Al3+ [30].

The ultrafine and nano compounds (both minerals and amorphous phases) identified
in this study capture potential hazardous elements (PHEs) in the nanometer size range
(Figures 2–5). HR-TEM is a powerful analytical technique that provides a better under-
standing of the detailed chemistry of the potentially strongly bioreactive component of at-
mospheric particulate matter [38,48]. The combined X-Ray Diffraction (XRD) and advanced
electron microscopy (AM) techniques, demonstrates the importance of nanomineralogy in
understanding different circumstances of coal contamination [49].

The diameter (≈0.5–100 nm) of the nano-spheres posed severe concerns linked with
environmental impact and human health through breathing. The harmful developments in
the lung and heart that follow particulate air pollution inhalation are related to the chemical
composition of the particles [50].

The spheres below 1 nm are extremely troublesome for human health, because it can
penetrate the lungs and bloodstream [51–53]. Titanium dioxide is reported to be an aggra-
vating factor for environment and human health [54]. Anatase and rutile nanoparticles are
purportedly activate adverse pulmonary responses in susceptible animals [52]. The anatase
TiO2 nanoparticles produce more free radicals than rutile form and, consequently, higher
toxicity than the rutile TiO2 nanoparticle. The anatase titanium nanoparticles (Ti-NPs)
are one of the foremost sources of inflammation and cytotoxicity [55]. The distribution of
PHEs among the Ti-NPs aggregates was controlled by carbonaceous matter and amorphous
silica [56].

Correspondingly, iron oxide (hematite) and iron carbonate (sallamoniac and siderite)
nanoparticles detected in this study (Figure 5), contain hazardous elements (such as As, Se
and Pb) that could have momentous health effects. Relatedly in-vivo studies have showed
that pulmonary contact with iron oxide nanoparticles can cause genotoxicity and inflam-
mation along with effects such as pulmonary and extra-pulmonary fibrosis [57]. These
have also been indicated in the production of damaging reactive oxygen species (ROS) [58].
Furthermore, hematite nanoparticles improved the growth of soil bacteria [59]. Characteris-
tic jarosite, gypsum, geothite minerals and sphelarite were identified containing potential
hazardous elements (Figure 2). The cubic-shaped jarosite appears to be a pseudomorph
after pyrite. Removal of water from jarosite can result to the formation of less-hydrous
Fe sulfates and hematite [60]. Silva et al. [61] reported the immobilisation of Fe and Pb
due to precipitation as jarosite or hematite in the case of Fe or as a sulphate in case of
Pb. The COVID-19 mortality is found to be partially driven by the long term exposure to
particulate matter (PM2.5) and delayed for 18 days after high exposure to particulate matter
(PM2.5) [62].
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5. Conclusions

The study presented a low-cost method that effectively documents the presence of
several minerals and amorphous phases in the air and posed health risks to mine workers.
Furthermore, the purpose of the study was to identify the NPs and UFPS groups, which are
critical air contaminants related to several categories of respiratory disorders. The advanced
surface techniques used in the study are required to examine the chemical composition at
the nanoscale in order to create awareness for the inherent health hazards due to potential
exposure. The chemical composition of nanoparticle/nano minerals strive for improve
knowledge on its adverse effects on human health and the environment [55]. The mine
workers are exposed to wind-blown particulate matter that contains nanoparticles as well
as potentially hazardous elements (PHEs).

The study further demonstrated the prospects of identifying a broad spectrum of
PHEs, which could become heavily concentrated in the finest and inhalable fraction of coal
mine dust in the air. Such elements (e.g., Table 1) are recognized by the ability to induce
adverse effects on human health and are therefore of concern at high concentrations.

The findings also showed that Brazilian coal is geochemically complex and highly
variable [46,63–65]. Therefore, future studies will be considered to examine the possible
health toxicities and optimize the fine and inhalable fraction of coal mine dust. Lastly,
the comparative analysis presented in this scientific research show that coal mine dust is
chemically different from the thicker air materials present in the mine air.
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