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Abstract: As the legislative pressure to reduce energy consumption is increasing, data analysis of
power consumption is critical in the production planning of manufacturing facilities. In previous
studies, a machine, conducting a single continuous operation, has been mainly observed for power
estimation. However, a modularized production line, which conducts complex discrete operations,
is more like the actual factory system than an identical simple machine. During the information
collection of such production lines, it is important to interpret and distinguish mixed signals from
multiple machines to ensure that there is no reduction in the information quality due to noise and
signal fusion and discrete events. A data pipeline from data collection from different sources to
pre-processing, data conversion, synchronization, and deep learning classification to estimate the
total power use of the future process plan is proposed herein. The pipeline also establishes an
auto-labeled data set of individual operations that contributes to building power estimation models
without manual data pre-processing. The proposed system is applied to a modular factory connected
with machine controllers using standardized protocols individually and linked to a centralized power
monitoring system. Specifically, a robot arm cell was investigated to evaluate the pipeline with the
result of the power profile synchronized with the robot program.

Keywords: modular factory; industry 4.0; smart factory; energy-efficient process; deep learning;
classification; neural network

1. Introduction

A significant amount of research focused on increasing energy efficiency and reducing
energy costs in the manufacturing industry. Several studies focused on energy efficiency,
and analysis models have been developed to optimize total energy use. A typical analysis
model is a machine learning approach that requires training data to predict the power
profile, which is based on the correlation of the power profile with the operating conditions.
A smart factory solution is established, and power meters are equipped with machine
controllers to increase the availability of data collection. However, the collected data set
shows only the power profile without relation to other factors and is not well-structured to
be applied to machine learning models. Hence, classification methods for the energy use of
each machine or of each operation are still conducted manually to date.

The energy data set is collected for data analysis and exhibits a different structure
from other data sets acquired for other purposes. Energy management studies have started
to estimate the overall energy consumption of a factory line. An energy management
system is a specialized information system of an energy-intensive industry, and it can
be defined as the energy management model of the entire production line at a primitive
level [1]. Carlos attempted to separate the energy model into factors, line, and machinery [2].
Haruhiko and Tetsuo proposed an energy processing profile related to toolpath, feed rate,
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and spindle speed for machine tools [3]. Duflou et al. suggested an approach to classify
energy types via distinguishing them in unit processes [4]. Specifically, various artificial
intelligence algorithms, such as profile regression or classification, have been applied to
single machine tool processes [5]. Among the regression models, time-series energy data
were recommended to attempt energy regression over a recurrent neural network [6].
Given that different energy models were developed, various data sets are required for deep
learning models.

Hence, pre-processing of a customized data set involves a series of manual operations,
including classifying the processing mode, labeling operation conditions, and storing
them in a time-series order. However, this pre-processing is time-consuming. Moreover,
although the data set is successfully collected, the challenges in data pre-processing involve
synchronizing delayed signals and compressing a large amount of sensor data. In the case
of an old machine, another challenge corresponds to limited access to controller data except
for a user display monitor. Hence, a structured and common pre-processing of energy data
collection is required.

The motivation for this study is to construct a common data pipeline for power analy-
sis, such that the power of various production machines can be predicted under different
operating conditions. This requires the development of classification algorithms that dis-
tinguish each power profile as well as estimation algorithms that generate possible power
profiles of alternative programs of machine controllers. Herein, we define a structured
pipeline to integrate sensor data with a controller program via deep learning classification
and regression to obtain data-driven operation, auto-labeling, and profile generation, which
are necessary for energy optimization.

This paper presents a method to automate the data set construction for predicting
unit-process power from time-series profile data coming from multiple sensors. Specif-
ically, the proposed method aims to produce three models: a deep learning model that
automatically identifies the type of each unit-process and splits the whole profile into
unit data; a compression model that reduces the size of time-series data from multiple
sensors with deep learning; and a power prediction model that generates an expected
power profile along with the sequence of unit-processes. The proposed method enables the
construction of a reverse engineering pipeline through the mapping of numerical power
data with their corresponding unit-process types in the on-line phase, and the inference of
power profiles along with the manufacturing operations assigned in the execution phase
for energy prediction and optimization in the planning phase.

The paper is organized as follows: Section 2 introduces the existing research on power
analysis and prediction, looking at current trends and critical issues. Section 3 describes
the steps of data pipeline, including pre-processing, data filtering, operation classification,
and profile regression. Section 4 explains an experimental case study using a modular
cyber-physical factory to verify the feasibility of the proposed method. Section 5 discusses
the experimental results, and Section 6 concludes the remarks.

2. Literature Survey

In this section, we discuss relevant studies on collection methods and an analysis
model of energy use using a data pipeline framework. The concept of data analysis for
energy consumption was established via application of energy-intensive industries [7]. Lee
et al. developed a prototype system for data analysis and proposed a cyber-physical system
based on the fundamental framework of a five-component pyramid [8]. This prototype is
composed of steps circulated from data collection, analysis, storage, and learning. ‘Data col-
lection’ and ‘storage’ include issues on what information is necessary while ‘data analysis’
and ‘learning’ include topics on how to process the information. Among the components,
in this section, we review energy data collection and power analysis.
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2.1. Energy Collection

Data collection methods for energy use were developed from static data sets to dy-
namic data sets and generated data sets. Previous methods that were used to evaluate
environmental impact utilize the life cycle inventory, which stores all impact factors of
all processes captured in standardized static conditions. The emerging Internet of Things
(IoT) accelerated the development of innovative methods to capture energy monitoring.
Specifically, IoT sensors allow observations of time-series profiles using power meters.
Subsequently, unit-block decomposition of the time-series power profile was proposed to
detect correlation with machine process parameters. Recently, neural network methods
have been improved; thus, data-driven methods, such as machine learning and virtual
sensors, have been applied to power analysis.

2.1.1. Life Cycle Inventory

The production system is a crucial process that results in a high rate of energy con-
sumption in the life cycle of typical manufactured products. Life cycle assessment shows
that manufacturing processes typically significantly impact the entire life cycle. However,
the process plan is too complicated to be represented by a simple data set of the life cycle
inventory. Specifically, modular factories producing discrete products exhibit many rapid
power peaks that are not represented in the static power model used in the life cycle inven-
tory. Hence, power models based on different aspects were proposed. In terms of discrete
part manufacturing, CO2PE (cooperative effort on process emissions in manufacturing)
was developed as a methodology for systemic analysis of manufacturing unit process life
cycle inventory [9].

2.1.2. Unit Block to Discretize the Whole Power Profile

There exist approaches to representing energy consumption that use a data model
of unit blocks. The data model is used for storing and analyzing the collected data. A
method of analyzing complicated changes during the manufacturing process involves
separating the energy use profile into unit processes. Duflou et al. proposed an approach
to discretize the power profile into unit blocks [9]. The unit block approach is useful for
determining the correlation between energy use and machine parameters. This was also
used to evaluate the laser cutting process, re-program industrial robot cells, and observe
the process characteristics of wired welding in terms of energy consumption.

2.1.3. Application of Artificial Intelligence and Virtual Sensor

Since 2019, artificial intelligence has been applied to power analysis as the prediction
model of energy consumption particularly. Although the power measurement device
provides real-time data collection, the limitation of process technology and measurement
technology is a barrier to capturing the correlation between critical process parameters
and energy consumption [10]. Hence, machine learning corresponds to an alternative for
estimating energy use, which occurs in a given time or place wherein it is difficult for a
measurement device to capture the energy consumption. Additionally, specific models of
machine learning are defined as ’virtual sensors’, capturing unknown energy use where
any sensor is not attached. Physical models and data-driven models enable virtual sensors
to estimate power profiles such as physical sensors.

2.2. Energy Use Analysis

Previous models of energy use analysis of manufacturing resources and specifically
for simple operations were proposed in different aspects. Subsequently, some methods and
strategies for deriving high-quality and high-level information of power data, which is a
key input for the calculation of energy consumption, are introduced from the perspective of
power use analysis. However, the mixed signals observed by power meters contain power
used by the external system, which is outside the analysis domain. Thus, refinement of
complex power profiles improves the accuracy of energy use analysis.
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2.2.1. Data Quality

Data quality is an issue that should be addressed in data analysis to increase the
reliability of the results. For example, late time records of event analysis can lead to unex-
pected gaps with other sensor data and lower the accuracy of data analysis. Woodall et al.
proposed a list of critical information to improve the data quality [11]. ISO 8000-61 is
termed as DAQUA-MASS and it standardized the data quality management methodology
for sensor data [12,13]. The tagging of data causes potential problems, and ISO 8000-61
was proposed as a method to address the inaccuracy of the information system. These
methods involve fundamental data processes such as noise detection or sensor activation,
and missing data or diversity of data representation [14].

2.2.2. High-Level Information

Beyond the issue of data quality, the context of manufacturing operations is a critical
factor to evaluate changes in energy use. High-level information on energy use is the
context that involves process recipes, the machine status, process parameters, the status
of work-in-process, and ambient conditions. Specifically, the controller program of each
manufacturing facility significantly affects energy consumption, although the change can
be predicted by evaluating machine programs written in vendor-specific languages.

To overcome the vendor-specific process, standardization of energy use supports
the normalization of power data. A standardized data model is required to compare and
optimize the process plan in terms of energy use. The process plan directly affects the energy
use of the production system. A process plan is different for each factory and product. The
energy use also varies with changes in the process plan, although the manufacturing facility
is identical to that of the previous process plan. The International Standard Organization
organized a committee to establish guidelines to compare energy consumption between
different manufacturing systems. Specifically, ISO 50001 provides the overall procedure of
a closed loop to improve energy efficiency through a series of organizational activities [15].
The data quality of data analysis is discussed by ISO 8000-61, which provides guidelines
to improve data collection for energy use analysis [12]. ISO 14955 summarizes the key
performance indicators that are important to verify the overall energy efficiency of the
production line [16]. In terms of the micro process used for individual machine tools, ISO
14649 part 201 defines the standard power model of the unit process that occurs in the
milling and turning process [17].

In a manner similar to ISO 14649-201, the relationship between the machine process
and power sensor provides evidence to estimate the power profile [17]. Um et al. developed
a method to integrate process data and machine specifications [18]. The deep learning
approach is proposed as a means to recognize the hidden correlations of multi-sensor data
and process parameters. Blume et al. demonstrated the application of deep learning and
machine learning to estimate the energy use of cooling towers [19]. Recent studies indicated
the identification of each operation and unnecessary signal.

2.3. Summary and Opportunities

The following conclusions were obtained from the literature review:

1. Complex behaviors observed in multi-functional facilities, such as machining centers,
require multiple data sets of individual functions.

2. Automatic identification of the unit process in the entire power profile is required.
3. Signal screening algorithm against the energy use of external systems is still a challenge.

The aforementioned observations indicate an opportunity to motivate the energy
estimation of automatic labeling and energy simulation for discrete production lines. In
addition to a clear need for alternative technological solutions in this area, the pipeline
of power prediction will ensure that the new development will provide benefits in the
production plan based on energy management.
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3. System Architecture of Power Analysis for Modular Factory
3.1. System Architecture

This study proposes a new system architecture of the power analysis for a whole
modular factory. The benefits of the proposed architecture led to a structured approach of
data collection and analysis. The strength of the system improves data quality to generate
high-level information. In addition to data quality, the structured approach allows data
analysts to identify where each machine learning algorithm is applied.

The energy-based production planning procedure consists of power monitoring, data
integration, profile identification, power modeling, formulation of scheduling model, and
optimization [20]. The challenges addressed in Section 2 are happening in power moni-
toring, data integration, profile identification, and scheduling model. Figure 1 elucidates
the proposed architecture. The proposed architecture provides, at first, the acquisition
method to connect with the controller interface directly and to collect screen images of
the controller as the indirect way. It secondly pre-processes data to merge all data into
time-series data by synchronizing data coming from multiple sources. The last process is
to recognize and re-produce the power profile by using the deep learning model that is
trained with the relationship between power profiles and operation types. Accordingly,
the proposed architecture consists of a three-stage model, which entails measurement
collection, conversion and synchronization, and recognition analysis.
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1. The first stage corresponds to the measurement collection layer, which allows us
to measure physical quantity via sensors and collect operation data that was not
previously collected. The physical quantity collected from all sources is measured
by sensors and integrated for analysis. Many controllers do not typically provide
operational information. Therefore, the layer collects operational data in a round-
about manner, such as using optical character recognition (OCR), after obtaining video
files or mathematical algorithms to track the operation in reverse.

2. The second stage is the conversion and synchronization layer. The total power cor-
responds to the result of the accumulation of many power consumers. Hence, it is
necessary to build a digital twin that reflects all the signals and data coming from
actual machines in real time. This layer (where the data analysis platform manipulates
all the data) manages the digital twin. The digital twin provides completeness to roll
back to a certain power profile of a specific time. An additional function involves
searching for the moment when a similar power profile occurs.

3. Finally, recognition and analysis are established to optimize energy consumption.
Essentially, this layer is for summarizing the power profiles of several machines.
From the data of the conversion and synchronization layer, the layer estimates energy
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consumption and draws the power profile of what-if scenarios of alternative process
plans. Improved resilience against external and internal disturbances is realized via
rearranging the production line and modifying the process plan.

3.2. Overall Pipeline of Power Analysis

To resolve the limitation of multi-fusion data collection of the power profile, the
resolution of the following issues is necessary:

1. Collected data are unsynchronized.
2. Unstructured data, such as video streams, require an additional recognition process.
3. A modular factory consists of controllers producing discrete profile behaviors.
4. Comprehensive training using multiple data sources is required simultaneously.

The pipeline of data flow shown in Figure 2 is designed to resolve issues that occur in
the data collection of energy use. The overall procedure follows the layers of the proposed
architecture described in Section 3.1. Machine data are converted to event data by pre-
processing and stored in a database. The raw data directly from the machine are not suitable
for data analysis. For example, a video stream is not directly used for data analysis and it
needs to be converted into time-series event data. Even though data are collected in the
database, all the data should be synchronized to derive the correlation with information
from multiple sources. After data synchronization is completed, the accumulated data set
is utilized to predict the power profile of alternative process plans. A data set of identical
operations is used for training the drawing profile. Planning and analysis are utilized to
optimize the total energy use by using the prediction model.
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3.3. Data Connection

In this section, the procedure is described for each module controller in the database.
The first step of the data pipeline corresponds to the start in the individual production
module. Specifically, more data are involved in understanding the context relative to the
data in simple energy use.

Most data sources of each module correspond to the programmable logic controller
(PLC) and its power meter that measures power consumption of each machine. The power
meter transmits the measured power into the Open Platform Communications Unified
Architecture (OPC-UA) server, which publishes messages with periodical event data. The
event describing the operation of a production module arrives in the data flow managed by
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Node-Red via the MQTT (Message Queuing Telemetry Transport) message broker where
the centralized data flow mechanism collects all data into a single power database. In
the case of video and sound, their streaming data are handled by a dedicated web server
to distribute the load of data processing of unstructured data. In the study, the human–
machine interface (HMI) screen of the module controller is used as the data source for
operation events. The PLC program also corresponds to the baseline to train the neural
network of operation classification and profile regression. The video stream is converted
into a test event using OCR processing. The centralized database of the PLC program is
used to collect all the data. The individual power consumption of production modules is
composed of the total energy use of the production line. A simple summation of energy use
is not sufficient to optimize the process plan because the sequence of the production line
affects all the motions of each module. Hence, a line topology, which describes the physical
connections of all modules, is required. The data structure of the centralized database is
detailed in Section 3.4.

3.4. Data Conversion
3.4.1. Pre-Processing of Unstructured Data: Text Recognition of Teach Pendant

Unstructured data are not suitable for direct application to data analysis models. Addi-
tional pre-processing is required to build a comprehensive data set of energy consumption.
In the case of a modular factory, a video stream is useful for capturing the actual motion that
occurs on the conveyor belt and for recording the controller status of the auxiliary machine.

The reason for using video stream data to capture controller status is to keep a single
and unique approach for all kinds of screen layouts of different machines. The attempts to
automate the classification of text messages of HMI can incur failures in the transition to
another machine. For example, the simple rule, like classifying operations with thresholds,
is updated whenever a new machine comes. Meanwhile, the proposed method contains
the automated adjustment of levels. The main functionalities of the proposed methods
are: adapting to different numbers of operation types, easy shifting to a different set of
programming languages of different machine controllers, and connecting with old types of
machine controller providing only a vendor specific interface.

In the study, the screen of the teach pendant is captured such that the changes in
the robot program are shown in real time. To trace the robot control, it is necessary to
extract the text message from the screen. The small screen allows display of the chunks of
macro-programming sets and jumps the lines across the macro-program every second. The
required functions to complete the series of pre-processing involves (1) recording the screen
of the teach pendant, (2) converting the video file into single images, (3) clipping the text
part of the screen, and (4) detecting text data. The fixed position of the camera mounted
on the opposite side of the teach pendant maintains the location of the text message on
the screen. With respect to the image processing, as shown in Figure 3, OpenCV—an
image processing library developed by Intel as an open-source project—is employed for
pre-processing [21]. The OpenCV module splits frames into single images and prepares the
same for inputting text classification with a list of images. This is followed by processing
with a step-by-step pipeline termed as the Tesseract engine developed by HP [22]. The
steps are as follows:

1. A connected component analysis gathers outlines together into binary large object
(Blobs) nested purely.

2. Blobs are merged into text lines. The lines and regions are investigated for fixed pitch
or proportional text.

3. The two-pass recognition processes proceed. The first pass involves recognizing each
word, while the second pass involves recognizing words that are not sufficiently
recognized over the image.
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3.4.2. Classification and Synchronization with Power Profile

Typically, sensor data go through their respective processing before reaching data
storage. This causes different delays of all individual data and misalignment of all data sets.
Hence, the synchronization process is necessary along a single timeline. The classification
and synchronization steps are as follows:

1. Split time-series data by a fixed window: The first question for resolving the gap of
asynchronous signals involves determining the gap between two more data pipelines.
A power meter provides time-series data related to power values at a certain measur-
ing interval (1 s in the experiment described in Section 4). Such time-series data need
to be split for operation detection using a time window that ranges from a lower to an
upper threshold (−5 s to +5 s in the experiment).

2. Identify the start and the end of each operation: Before collecting sensor data, it is
essential to prepare for the data set of each operation type, find the start and end of
each operation, and then store each type into its data set. Identifying each operation
is conducted by a 1D convolution neural network algorithm, which is trained with 3D
data of all sensor data with the time window. Regarding screen images visualized in
the HMI display, an OCR algorithm puts the labels of each moment corresponding to
its operation type, giving the connection with the single data line where all sensor data
are merged. Regarding data storage, we employ a new approach to store only latent
space extracted from an autoencoder in order to reduce the size of a data set. The
autoencoder is trained by an upcoming profile, thereby compressing the dimension
of the data set. This compression model is reused when the data set is called by data
analysis tools.

3. Interpolate other data along the reference data: Although all data are aligned in a
single timeline, some signal data are shorter or longer. This leads to the issue of
integrating both data into a single data set. One of the data sources is selected as
the reference data for synchronization. Other data are extended or squeezed along
the reference data in order to fit the start and the end of each operation with all
data sources.

3.5. Cognition and Configuration

Park et al. [23] introduced an overall procedure to optimize the power consumption in
process planning for modular factories. They included scheduling options by changing the
production order and changing module operations. Figure 4 shows their procedure from
data collection to data extraction of database, constraint programming, and comparison
of alternative solutions. Within this procedure, the proposed method plays a role in
providing labeled power profiles to a database system and estimating power profiles of
each alternative solution as the prerequisite for the optimization.
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The entire power data set contains signals unrelated to the process plan because
they are the result of other signals and superimposed results. Thus, machine learning
immediately indicates a low accuracy. This is caused by the interruption of signals unrelated
to the process plan. For example, a learning model that directly uses the entire power data
can fail to draw an accurate power profile because the power data can contain the data
generated during stand-by in a module.

Thus, it is vital to generate a power recognition model that includes the process of
separating the data set associated directly with the process plan. Based on the characteristics
of the discrete process, classification is performed according to operation status and process
type, and signals of the same conditions are classified as data sets and utilized for learning.
The cognition and configuration steps are as follows:

1. A classification is necessary to distinguish whether the target module is stand-by or
in-process. This classification eliminates meaningless data, such as stand-by state
data, unrelated to the process plan.

2. Another classification is needed to classify the current activity. Time-series profile
data are created to learn power profiles by mapping a process planning program with
characters to an integer. For example, each line of the robot program is classified into
the type of robot operation and merged with the process plan profile data by changing
them to a specific number.

3. The other classification is required to classify power peaks caused by other devices.
These peaks can be recognized by checking the gap between an actual profile and a
predicted profile. An unexpected peak is found and is marked as the noise automatically.

4. A pattern that is repeatedly performed in a process plan is defined as a unit of data set.
Power data are partitioned and stored to fit a recurring pattern process. The power
profile is stored separately during the repetition period specified in the process plan,
and the learned regression model is applied to the process plan.

Particularly, the proposed method is designed to classify power profiles using deep
learning. In our preliminary analysis, a simple machine learning model showed less
accuracy in profile classification of raw power profiles, while the accuracy of a deep
learning model becomes higher. A simple machine learning model identifies the type
of process with the specific threshold or the cluster of specific factors. A power profile
fluctuates in certain range typically and can seldom be classified into each type of process
with the specific boundary value. Although the sequence of processes relates to the type of
processes, clustering models using simple machine learning tend to ignore the relationship
of the previous process to the next processes. Applying simple machine learning models
to another machine facility causes wholesale change in thresholds and models. Due to
these reasons, simple machine learning models are limited to generalize power profile
classification. In this sense, a classification model was developed using a deep learning
model in this study. The proposed method includes the series of deep learning models that
are adaptable to complex process sequences with a generalized model that identifies high-



Sustainability 2022, 14, 3816 10 of 20

level classification criteria. The proposed method is designed to use an identical model,
from binary classification of classifying stand-by mode and working mode to multiple
process-type classification.

Thus, it is possible to determine what kind of operation type runs at each moment
when obtaining a power profile. This enables synchronization between the power and OCR.
The operations that result in high-power profiles can also be specified through classifying
types of the robot arm. The power profile can be significantly splashed by elements other
than the teach pendant. In this case, the power profile generated by the teach pendant can
be accurately screened relative to the results of the pre-trained algorithms that predict the
usual power profile through operation.

4. Case Study
4.1. Experimental Environment

In the case study, we use an empirical facility, namely CP-Factory V4 provided by
FESTO as shown in Figure 5. The facility is a modular and flexible manufacturing system
for educational and research purposes [24]. It comprises eight operation modules, includ-
ing automated storage/retrieval (AS/RS), measuring, drilling, robot assembly, camera
inspection, magazine, pressing, and furnace tunnel modules. The CP-Factory demonstrates
fabrication of multiple types of imitation products such as smart phone cases and thermo-
hygrometers, as shown in Figure 6. The CP-Factory integrates hardware operation modules
with software packages associated with the manufacturing execution system (MES) and
the energy management system (EMS), as well as the simulation, robot management, and
database systems, thereby automating production processes via specifying production
orders in MES. The centralized database systems automatically collect operation and sensor
data obtained from multiple hardware modules via open platform communications unified
architecture (OPC UA), which is a data interface for secure and reliable data exchange
across a hierarchy of manufacturing systems [25].
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Figure 7 shows a schematic diagram of the robot assembly module (RV-4FL provided
by Mitsubishi Electric), which corresponds to the target application in the case study. When
a product on a pallet enters this module, the robot picks up a printed circuit board (PCB)
and fuses from its buffer stations and then assembles them to the product [26]. The number
of fuses (0, 1, or 2) is determined by the product order instructed in MES. Figure 8 shows a
sequence of sub-actions performed by the robot module.
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4.2. Data Collection

We collected raw data obtained from actual operations of the robot assembly module.
The raw 318 data was comprised of four types of data content as follows: robot video, teach
pendant screen, power, and operation. We recorded the robot’s movements and actions in
audio video interleave (AVI) files. We simultaneously recorded the teach pendant’s screens
in MPEG-4 (MP4) files to capture program codes that instruct the robot’s movements and
actions, as shown in Figure 9. The power data were obtained from a sensor data repository
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after the robot’s operations were completed. The power data from the comma-separated
values (CSV) files consisted of timestamps, resource identification, active, reactive, and
apparent power attributes, and their measured values. We also obtained operation data
from CSV files, which can be extracted from an operation data repository. The operation
data included a work description and start and end timestamps of robot operations. In
the case study, the robot was operated to assemble a PCB and two fuses. We repeated the
operations four times and obtained their associated four-type data content to verify the
consistency and reproducibility of the pipeline proposed in Section 3.
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4.3. Results

Operation information was obtained via the OCR algorithm from the teach pendant
screen to ensure accurate and current operational status information. A fixed camera
was installed to record 60 fps of the active teach pendant. The frames were subsequently
extracted as image files from the video files. Only the pixels corresponding to the operation
portion of the extracted image were cut off, and the string values were returned by the OCR
algorithm. To correct the error in the OCR reading process and match the power data and
data resolution, we set the mode of the 60 strings corresponding to 1 s of operation. The
same data processing was applied to the entire video and it was merged with power data.

The robot arm conducted 22 different operation types to produce a single product.
Due to the time-series and numeric data of the power profile, 22 operation types were
mapped into integer numbers from 0 to 22, with the additional number 0 as waiting status,
as listed in Table 1. Figure 10 shows the graph that represents active power values and
integer values assigned to their corresponding operation types. The X axis indicates time
with a second unit, while the Y axis indicates the power (Watt) consumed by the robot
module. OCR results are grouped by 2 chunks where the set of identical operations is
repeated 10 times.

Table 1. Operations of robot program and corresponding number: the output of the OCR algorithm
is represented by the numbering structure to build a time-series data set.

Operation Number

EMPTY 0

GETCAMRESULT 1

GETCURTOOLNO 2

GRPCLOSE 3

GRPLOCK 4

GRPOPEN 5

GRPRELEASE 6

GRPVACOFF 7
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Table 1. Cont.

Operation Number

GRPVACON 8

INITIALIZE 9

MOUNTBOTFUSE 10

MOUNTPCB 11

MOUNTTOPFUSE 12

PICKFRMSTOPR 13

PICKFRMVISON 14

PICKFUSFRMAG 15

PICKNEWTOOL 16

PICKPCBFRPAL 17

PICKWPFRMASS 18

PLACETOSTOPR 19

PLACETOVISON 20

PLACEWPTOASS 21
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The following sub-sections describe: (1) classification model of operation types,
(2) profile compression model, and (3) power prediction model from the OCR output.
Each model was evaluated using accuracy, sum of time absolute error, and time mean
absolute error to find the best configuration of the learning model. The equations of these
evaluation indices are expressed in Figure 11. The CP-Factory was operated for 2700 s to
receive three power (active, reactive, and apparent power) profile data, of which a half
of the entire data set (1350 data tuples) were used as learning data and the remaining
1350 data tuples were used as test data. At the same time, we obtained operational data
from the teach pendant.

4.3.1. Classification of Operation Types

We constructed a learning model that classified the current process to the best-fit
operation type by using the power profile. Figure 12 illustrates the structure of the learning
model that classifies the current datum to an on or off state. The model was designed to clas-
sify the process operation status and process types by referring to the power corresponding
to the previous 50 s by applying a time window of size 50. The 50 × 3 size data matrix
was entered into the model and passed through three filters: 1 × 3 size filters learning the
correlation between each different power data, 5 × 1 size, and 10 × 1 size to learn the time
relationship between the front and back. The data were passed to the last node via the
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filters. The first experiment placed the last node classifying on (inactive) and off (stand-by)
states. The node returned a value between 0 (indicating Off) and 1 (indicating ON) via
the Sigmoid function, which was classified towards a closer value. The test classifying On
and Off indicated an accuracy of 95.62%. As depicted in Figure 13, most of the data are
classified accurately to 0 and 1. However, some data located in-between 0 and 1 were not
assigned clearly to 0 or 1 because of limitations in learning.
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Conversely, the second experiment placed the last 22 nodes, which represent opera-
tional states of the robot arm. Figure 14 elucidates the structure of this learning model that
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classifies the current datum to its associated operation type. These nodes printed out the
probability that each operation will be applied via Softmax function, thereby classifying it
as “operation” with the highest probability.
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The best accuracy was achieved to 87% in all tests through heuristic modifications of
the hyper-parameters in modeling. This was interpreted as a limitation caused by a low
data resolution of 1 s, although it was accurately learned from the training data as opposed
to a problem with the model. By assigning numbers from 0 to 21 for each operation,
we examined the learning results graphically, as presented in Figure 15. The learning
results reflect the tendency of actual operation types with the best accuracy of 87%. When
measuring the error in “PLACEWPTOASS”, which appears in each work cycle as the basis
to determine the start of the cycle, it was observed that the prediction incurred an average
of a 2 s delay, as listed in Table 2.
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Table 2. Gap between starting points of actual operation modes and estimated operation modes.

Cycle Number C1 C2 C3 C4 C5 C6 C7 C8 C9

Actual Time (s) 375 469 560 652 744 835 927 1019 1111

Predicted Time (s) x 474 563 653 746 836 927 1019 1113

Gap (s) x 5 3 1 2 1 0 0 2

4.3.2. Profile Compression Model of Power Profile in Each Cycle by Using Autoencoder

We constructed a compression model using an autoencoder to reduce the size of data
set of power. The first half layer of the compression model exhibited the same configuration
as the classification model. The second half was symmetrically constructed with the first
half using the transpose convolutional layer and upsampling layer. The autoencoder was
modified and optimized by changing the network structure and activation functions.

The last output value was set as the same shape as the input data, returning a data
matrix of 50 × 3 size. In the same manner as the classification experiment, we learned to
use the previous 1350 s of data and tested them to predict the following 1350 s of data. The
power meter collected three types of profiles concerning active power, reactive power, and
apparent power. The models are generated in all types of profiles using the same data.
Figure 16 shows the predicted and actual values of active power. Here, active power is
more important than reactive and apparent power attributes because it directly affects
actual energy consumption. The compression model predicted power values correctly.
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Figure 17 presents the root-mean square error between the actual and predicted values.
The performance of CNN and LSTM neural networks used for data set compression were
evaluated. CNNs showed a faster speed while LSTM was slower along as the number
of layers increased. In addition, ReLu and Swish were selectively used as the activation
function on the set of neural networks to compare the accuracy of profile reconstruction
after compression. In terms of accuracy, as the latent size of CNN decreased, the accuracy
also decreased. The accuracy of LSTM increased as the number of layers increased. The
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neural network that showed the best performance was the case where four layers were
used in LSTM and ReLu was used as the activation function.
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4.3.3. Power Prediction Model Using Sequence of Operation Types

We constructed a learning model that generated a continuous power profile through
discrete operational data. We simply inputted 22 one-hot encoded operation data, passed
the classic multi-layer perceptron model with a total of 105 nodes, and then returned to
one final node that outputted one power value. As shown in Figure 18, the predicted
power value appeared significantly beyond its absolute value although the periodicity was
accurate. Specifically, except when power was far from other aspects, exactly seven of
the ten peak timings were predicted. In seven cycles, when only the module process that
collected operation data functioned, it accurately predicted the power of the entire line.
However, power could not be accurately predicted by the collected operation data in the
rest three cycles in which the total amount of power fluctuated due to the intervention from
an external auxiliary utility, i.e., an air compressor attached to the robot arm module. In
Figure 18, the accuracy could become high when the power fluctuation itself was not large.
Meanwhile, the three high peaks with more than 60% (0.6 in the graph) induced a large
gap with the predicted values because they were a noise profile generated by the external
utility. In this case, the proposed generation model can be used to separate a measured
power profile for the target machine or a noise profile generated from an external utility
or machine.
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Several types of CNNs and LSTMs were also used for comparison in the generation
models. To create several alternative neural networks, the CNN selectively switched ReLU
and Swish as an activation function and changed the number of layers of the latent space.
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LSTM also applied the two activation functions and changed the number of layers in the
same manner. The two CNN and LSTM models showed performance differences in terms
of the evaluation index. Overall, CNN gained a faster process than LSTM whereas LSTM
achieved a better accuracy than CNN. In addition, both models predicted the start time
of each operation with high accuracy, and even tried to predict the noise caused from an
external machine.

5. Discussion

The proposed pipeline provides a data-driven power analysis encompassing pre-
processing, on/off identification, operation classification, and profile regression to verifica-
tion. This pipeline can aid in implementing an innovative EMS based on a cyber-physical
system. The proposed pipeline also resolves the difficulty in power prediction for the entire
production line. The results of the experiment implied that an EMS can be evolved if power
analysis accommodates the following functionalities:

1. Extract power values for a specific machine or specific process from multiple machines
or processes, and re-organize process plans by detecting power peak times to avoid
excessive power consumption in a short interval.

2. Synchronize the data obtained from multi-sensors, including a power meter and teach
pendant, which may be connected with IoT networks on a shop floor, along times-
tamps to compose a well-prepared data set for energy prediction and optimization.

3. Identify the amount of power consumption in each machine program and correlate
the power with the machine program.

4. Compress power profile data by using the latent space of the auto-encoder to reduce
the size of data sets, thereby reducing the burden of a database.

This study demonstrated the possibility of the application of deep learning to power
prediction. However, a limitation is that the proposed pipeline should be developed
whenever a new manufacturing facility is deployed. To overcome the limitation, a method
to generalize the learning model using data entities as defined in ISO standards is needed.

6. Conclusions

In the study, a method and experiments were provided to predict power consumption,
to compress large amounts of power data effectively, and to predict power consumption
by classification of operation types. The proposed method enabled an automated data
pipeline for power estimation. The advantages of the proposed method are as follows:
(1) power consumption is estimated using a machine program, (2) multiple sensor data
coming from a multi-machine production line are separated to the power data for a specific
machine or process, (3) the starting and ending points of each operation from a continuous
power profile are identified to synchronize the operation with other sensor data or machine
programs, and (4) a data set’s size is reduced by using the latent space of the auto-encoder.

However, the limitations of the proposed method are as follows: only the robot cell
module was applied in the experiments, and scheduling algorithms were not integrated
to embody the whole process of power-optimized process planning. We will attempt to
consider all modules of the factory in future studies. Correction of data synchronization
will be subsequently performed by increasing the resolution of power data.

Author Contributions: Conceptualization, J.U.; methodology, J.U. and T.P.; validation, T.P.; formal
analysis, J.U. and T.P.; investigation, T.P.; resources, S.-J.S. and H.-W.C.; data curation, S.-J.S. and
H.-W.C.; writing—original draft preparation, J.U. and T.P.; writing—review and editing, S.-J.S.; visu-
alization, J.U. and T.P.; supervision, J.U. and S.-J.S.; project administration, J.U.; funding acquisition,
J.U. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the KIAT (Korea Institution for Advanced of Technology)
grant funded by the Korea Government (MOTIE: Ministry of Trade Industry and Energy) as the
Advanced Training Program for Smart Factory (No. N0002429) and KEIT (Korea Evaluation Institute



Sustainability 2022, 14, 3816 19 of 20

of Industrial Technology) Korea Government(MOTIE: Ministry of Trade Industry and Energy).
(No. 20016343).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: All authors thank the help of Heejin Seol for technical support of Smart Factory
Laboratory (Varient4) at Hanyang LINC+ Analytical Equipment Center in Seoul.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kachi, M.; Yoshimoto, Y.; Makita, H.; Nozue, N.; Shida, Y.; Kitagami, S.; Sawamoto, J. FEMS: Factory Energy Management System

based on production information. In Recent Advances in Energy and Environment Integrated Systems; WSEAS Press: Attica, Greece,
2013; p. 41.

2. Ocampo-Martinez, C. Energy efficiency in discrete-manufacturing systems: Insights, trends, and control strategies. J. Manuf. Syst.
2019, 52, 131–145.

3. Suwa, H.; Samukawa, T. A new framework of energy-efficient manufacturing systems based on energy load profiles. Procedia
CIRP 2016, 41, 313–317. [CrossRef]

4. Duflou, J.R.; Sutherland, J.W.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.; Kellens, K. Towards energy and
resource efficient manufacturing: A processes and systems approach. CIRP Ann. 2012, 61, 587–609. [CrossRef]

5. Thiede, S.; Turetskyy, A.; Loellhoeffel, T.; Kwade, A.; Kara, S.; Herrmann, C. Machine learning approach for systematic analysis of
energy efficiency potentials in manufacturing processes: A case of battery production. CIRP Ann. 2020, 69, 21–24. [CrossRef]

6. Shin, S.J.; Woo, J.; Rachuri, S. Energy efficiency of milling machining: Component modeling and online optimization of cutting
parameters. J. Clean. Prod. 2017, 161, 12–29. [CrossRef]

7. Zhang, Y.; Ma, S.; Yang, H.; Lv, J.; Liu, Y. A big data driven analytical framework for energy-intensive manufacturing industries.
J. Clean. Prod. 2018, 197, 57–72. [CrossRef]

8. Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett.
2015, 3, 18–23. [CrossRef]

9. Duflou, J.; Kellens, K.; Dewulf, W. Unit process impact assessment for discrete part manufacturing: A state of the art. CIRP J.
Manuf. Sci. Technol. 2011, 4, 129–135. [CrossRef]

10. Huang, B.; Wang, W.; Ren, S.; Zhong, R.Y.; Jiang, J. A proactive task dispatching method based on future bottleneck prediction for
the smart factory. Int. J. Comput. Integr. Manuf. 2019, 32, 278–293. [CrossRef]

11. Woodall, P.; Oberhofer, M.; Borek, A. A classification of data quality assessment and improvement methods. Int. J. Inf. Qual. 2014,
3, 298–321. [CrossRef]

12. ISO Standard No. 8000-61:2016; Data Quality Management: Process Reference Model. International Organization for Standardiza-
tion: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/63086.html (accessed on 5 July 2021).

13. Perez-Castillo, R.; Carretero, A.G.; Caballero, I.; Rodriguez, M.; Piattini, M.; Mate, A.; Kim, S.; Lee, D. DAQUA-MASS: An ISO
8000-61 based data quality management methodology for sensor data. Sensors 2018, 18, 3105. [CrossRef] [PubMed]

14. Woodall, P.; Giannikas, V.; Lu, W.; McFarlane, D. Potential Problem Data Tagging: Augmenting information systems with the
capability to deal with inaccuracies. Decis. Support Syst. 2019, 121, 72–83. [CrossRef]

15. ISO Standard No. 50001:2018; Energy Management. International Organization for Standardization: Geneva, Switzerland, 2018.
Available online: https://www.iso.org/iso-50001-energy-management.html (accessed on 7 July 2021).

16. ISO Standard No. 14955-3:2020; Machine Tools—Environmental Evaluation of Machine Tools—Part 3: Principles for Testing Metal-
Cutting Machine Tools with Respect to Energy Efficiency. International Organization for Standardization: Geneva, Switzerland,
2020. Available online: https://www.iso.org/standard/72179.html (accessed on 17 August 2021).

17. ISO Standard No. 14649-201:2011; Industrial Automation Systems and Integration—Physical Device Control—Data Model
for Computerized Numerical Controllers—Part 201: Machine Tool Data for Cutting Processes. International Organization
for Standardization: Geneva, Switzerland, 2011. Available online: https://www.iso.org/standard/60042.html (accessed on
17 August 2021).

18. Um, J.; Stroud, I.A.; Park, Y.k. Deep Learning Approach of Energy Estimation Model of Remote Laser Welding. Energies 2019,
12, 1799. [CrossRef]

19. Blume, C.; Blume, S.; Thiede, S.; Herrmann, C. Data-Driven Digital Twins for Technical Building Services Operation in Factories:
A Cooling Tower Case Study. J. Manuf. Mater. Process. 2020, 4, 97. [CrossRef]

20. Gong, X.; De Pessemier, T.; Joseph, W.; Martens, L. A power data driven energy-cost-aware production scheduling method for
sustainable manufacturing at the unit process level. In Proceedings of the 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8.

http://doi.org/10.1016/j.procir.2015.10.011
http://doi.org/10.1016/j.cirp.2012.05.002
http://doi.org/10.1016/j.cirp.2020.04.090
http://doi.org/10.1016/j.jclepro.2017.05.013
http://doi.org/10.1016/j.jclepro.2018.06.170
http://doi.org/10.1016/j.mfglet.2014.12.001
http://doi.org/10.1016/j.cirpj.2011.01.008
http://doi.org/10.1080/0951192X.2019.1571241
http://doi.org/10.1504/IJIQ.2014.068656
https://www.iso.org/standard/63086.html
http://doi.org/10.3390/s18093105
http://www.ncbi.nlm.nih.gov/pubmed/30223516
http://doi.org/10.1016/j.dss.2019.04.007
https://www.iso.org/iso-50001-energy-management.html
https://www.iso.org/standard/72179.html
https://www.iso.org/standard/60042.html
http://doi.org/10.3390/en12091799
http://doi.org/10.3390/jmmp4040097


Sustainability 2022, 14, 3816 20 of 20

21. Culjak, I.; Abram, D.; Pribanic, T.; Dzapo, H.; Cifrek, M. A brief introduction to OpenCV. In Proceedings of the 2012 proceedings
of the 35th international convention MIPRO, Opatija, Croatia, 21–25 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1725–1730.

22. Smith, R. An overview of the Tesseract OCR engine. In Proceedings of the Ninth international conference on document analysis
and recognition (ICDAR 2007), Curitiba, Brazil, 23–26 September 2007; IEEE: Piscataway, NJ, USA, 2007; Volume 2, pp. 629–633.

23. Park, H.; Um, J.; Jung, J.Y.; Ruskowski, M. Developing a Production Scheduling System for Modular Factory Using Constraint
Programming. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Kaiserslautern,
Germany, 19–21 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 126–133.

24. FESTO. CP Factory–The Cyber-Physical Factory. Available online: https://www.festo-didactic.com/int-en/learning-systems/
learning-factories,cim-fms-systems/cp-factory/cp-factory-the-cyber-physical-factory.html (accessed on 29 May 2020).

25. OPC Foundation. OPC Unified Architecture Specification–Part 1: Overview and Concepts, Release 1.04. Available online:
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/ (accessed on
29 May 2020).

26. Mitsubishi Electric. Specifications Vertical Type Robot. Available online: https://www.mitsubishielectric.com/fa/products/rbt/
robot/pmerit/vertical/fseries/spec.html (accessed on 29 May 2020).

https://www.festo-didactic.com/int-en/learning-systems/learning-factories,cim-fms-systems/cp-factory/cp-factory-the-cyber-physical-factory.html
https://www.festo-didactic.com/int-en/learning-systems/learning-factories,cim-fms-systems/cp-factory/cp-factory-the-cyber-physical-factory.html
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://www.mitsubishielectric.com/fa/products/rbt/robot/pmerit/vertical/fseries/spec.html
https://www.mitsubishielectric.com/fa/products/rbt/robot/pmerit/vertical/fseries/spec.html

	Introduction 
	Literature Survey 
	Energy Collection 
	Life Cycle Inventory 
	Unit Block to Discretize the Whole Power Profile 
	Application of Artificial Intelligence and Virtual Sensor 

	Energy Use Analysis 
	Data Quality 
	High-Level Information 

	Summary and Opportunities 

	System Architecture of Power Analysis for Modular Factory 
	System Architecture 
	Overall Pipeline of Power Analysis 
	Data Connection 
	Data Conversion 
	Pre-Processing of Unstructured Data: Text Recognition of Teach Pendant 
	Classification and Synchronization with Power Profile 

	Cognition and Configuration 

	Case Study 
	Experimental Environment 
	Data Collection 
	Results 
	Classification of Operation Types 
	Profile Compression Model of Power Profile in Each Cycle by Using Autoencoder 
	Power Prediction Model Using Sequence of Operation Types 


	Discussion 
	Conclusions 
	References

