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Abstract: Since its emergence, the development of agriculture has always been closely related to
changes in the natural environment. The productivity and development of agriculture largely depend
on natural conditions and agriculture and has an important impact on the environment. The develop-
ment of modern conventional agriculture has also led to a series of ecological, economic, and social
problems that threaten human development and sustenance. China has historically been heavily re-
liant on agriculture and provides food and clothing for approximately 22% of the world’s population
while only accounting for 9% of the world’s cultivated land and 6% of freshwater resources. Since the
21st century, the agricultural development of China has faced increasing resource and environmental
constraints due to rapid industrialization and urbanization. Based on the perspective of efficiency
evolution, data envelopment analysis (DEA) and spatial autocorrelation analysis (SAA) were used to
test the environment adaptability efficiency within China’s agricultural systems across 30 provinces,
autonomous regions, and municipalities, and explore its temporal and spatial evolution patterns and
characteristics. Our study thus possesses both theoretical and practical significance. Furthermore, this
study would enable the development of methods to assess China’s agricultural systems, in addition
to providing a theoretical basis and guidelines for the creation of sustainable agriculture development
strategies both in China and in other countries and regions. The following are the main conclusions
of this study: (1) from 2000 to 2018, the overall environmental adaptability efficiency within China’s
agricultural systems exhibited a gradual upward trend, achieving a transition from medium-level
efficiency towards high-level efficiency, and the environmental adaptability of agricultural systems
continued to increase. However, a certain gap remained between the level achieved and the DEA’s
level of effectiveness, and therefore additional efforts are required to close this gap. (2) The envi-
ronmental adaptability efficiency within China’s agricultural system showed a significant positive
correlation in spatial distribution. Particularly, clear spatial aggregation characteristics were observed
at the provincial level, which was also characterized by strong features of spatial dependence and
spatial heterogeneity. Moreover, the degree of spatial aggregation increased gradually over time.
High-value areas were mainly located along the southeast coastal area, whereas low-value areas
were primarily located in the inland areas of the northwest. Therefore, environmental adaptability
efficiency generally followed a northwest-southeast spatial distribution.

Keywords: agricultural system; environment; data envelopment analysis; efficiency; China

1. Introduction

Since the emergence of agriculture, its development has been closely associated with
changes in the natural environment. The productivity and development of agriculture
depends largely on nature and agriculture and has a considerable impact on the environ-
ment. All countries in the world have experienced, or are experiencing, the transition from
primitive agriculture to traditional agriculture and modern agriculture [1]. However, the
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development of conventional modern agriculture has also brought a series of ecological,
economic, and social problems that threaten human survival and development. In the
future, agriculture will face unprecedented pressure, such as a high demand for food
brought about by the rapid growth of the global population, an increasing demand for
land, water and energy, and the threat of global climate change to agricultural production.

As a large traditional agricultural country, China provides food and clothing for
approximately 22% of the world’s population, whereas it represents 9% of the world’s
cultivated land and 6% of freshwater resources. However, due to significant regional
differences within China’s agricultural systems and its long-term reliance on resource-based
economic development, the contradiction between energy conservation, emission reduction,
and the development of agricultural production has escalated, which has imposed a
substantial impact on the development of agricultural production and the economy [2].
Since the 21st century, the agricultural development of China has faced increasing resource
and environmental constraints due to rapid industrialization and urbanization.

Foreign research on agricultural systems mainly focuses on improving the stability,
self-recovery capacity, and sustainability of agricultural ecosystems, especially farmlands.
Therefore, due to the excessive consumption of resources and environmental impacts of
agriculture, green agriculture and ecological agriculture have recently garnered increasing
attention. For example, Walters et al. analyzed the systematic interaction between several
influencing factors and the economic, environmental, and social sustainability of agricul-
tural production [3]. Furthermore, Sanaullah et al. compared the impacts of traditional and
conservational agricultural management systems on land ecosystem functions from the
perspective of environmental sustainability and soil quality [4]. Huyghe et al. assessed the
resilience, vulnerability, and stability of agricultural systems, and elucidated the role of
these concepts in solving agronomic problems [5]. Barati et al. applied the Micmac and
Analytic Hierarchy Process (AHP) methods to comprehensively manage a selection of key
strategic variables of agricultural systems [6]. Olde et al. summarized the appropriate
indicators for evaluating agricultural sustainability [7]. Anas et al. tested effective strategies
for improving rice yield and quality when organic and inorganic nitrogen fertilizers were
applied together [8]. Ruhollah et al. evaluated the land suitability for the cultivation
of two main crops [9]. Wassmann et al. analyzed the relationship between adaptation,
food security, and mitigation, which the authors considered the key pillars of agricultural
development [10]. Mekonnen et al. studied the interactions between different elements of
agricultural innovation systems to analyze agricultural technology efficiency in developing
countries [11]. Aklilu et al. evaluated the advantages and constraints of agricultural exten-
sion systems, and provided suggestions on the status quo, optimal conditions, solutions,
and their expansion opportunities among small-scale irrigation users [12]. Kallenbach et al.
considered three complex influencing factors of the agricultural ecosystem and analyzed
how to improve the capacity of soil carbon storage [13]. Finally, Bunting et al. used the
Drive force-Pressure-State-Impact-Response (DPSIR) framework to assess the contribution
of shrimp-rice agroecosystems to social-ecological resilience [14].

Domestic research on agricultural systems has mainly focused on the perspectives of
ecological civilization and sustainable development, and assesses the ecological efficiency
of agricultural systems, their modernization levels, and associated innovations to maximize
the use of agricultural resources and effective protection of the ecological environment.
For example, Niu evaluated the agroecological civilization index of various provinces
and typical regions in China [15]. Additionally, Zhang studied the level of agricultural
development in the Yangtze River Delta and its spatial differentiation characteristics [16].
Wang conducted research on the development status, regional differences, and influencing
factors of China’s agroecological efficiency [17]. Ding et al. measured the efficiency of
regional agricultural innovation systems across provinces in China and analyzed the major
influencing factors [18]. Pang conducted a comprehensive spatiotemporal measurement to
assess China’s regional agroecological efficiency and analyzed the associated influencing
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factors [19]. Hu et al. [20] and Liu et al. [21] examined the agroecological efficiency of the
Jiangsu and Anhui provinces, respectively.

Early overseas research on adaptability sought to determine how to adapt to global
environmental changes in the 1990s. As relevant research has become more specific, it
has gradually developed and expanded into the field of development and assessment of
sustainability capability. Currently, relevant research mainly focuses on defining adapt-
ability, the differentiation of related concepts, and the development and assessment of an
adaptive framework. For example, Brown proposed that adaptability itself represents a
comprehensive process [22]. Moreover, Sandra analyzed the adaptations of small farm-
ing systems to climate variability [23]. Massimo et al. evaluated adaptation options in
Italian agricultural farming systems [24]. Chen et al. evaluated the intensification and
diversification of adaptation activities at a global scale [25]. Panda analyzed the concept of
adaptability in agricultural systems [26]. Eakin et al. investigated the impacts of cognition
and institution on farmers’ adaptability to agricultural transformation and change [27].
Vervoort assessed the current challenges in agriculture development and food security
in the context of climate change [28]. Steward et al. analyzed the adaptability of corn
production to climate stress [29]. Dogulu et al. analyzed the priorities and measures for
adaptation activities in response to regional climate change [30]. John et al. evaluated the
implementation of innovations for climate change adaptation in crop-based systems [31].
Kasturi analyzed South Asia’s adaptability to climate change and various measures for
such an adaptation [32]. Finally, Adger believed that adaptability is a key component of
the concept of vulnerability [33].

Since the mid-1990s, domestic researchers have gradually started to focus on the topic
of adaptability, especially the interpretation of this concept, the selection and assessment of
adaptive indicators, and the selection of adaptability strategies. For example, Zhao et al.
summarized a method, framework, and evaluation index system for adaptive research [34].
Su et al. reviewed and commented on the adaptability of the social-ecological system
of tourist destinations [35]. Li et al. analyzed the temporal and spatial differences and
factors that influence the environmental adaptability of the human-sea interaction and
its socioeconomic implications in the Bohai Economic Rim [36]. Wu et al. analyzed the
adaptability types, degree, and influencing factors of farmers’ adaptability towards rural
tourism in traditional villages [37]. Shi established the ecological adaptability theory of the
rural human settlement environmental planning in Chongqing and performed an empirical
analysis [38]. Zhang et al. analyzed the characteristics of the current landscape system
and its adaptation to global change [39]. Yin et al. analyzed the adaptability of farmers
belonging to different adaptation types and associated influencing factors [40]. He et al.
analyzed the adaptability of different types of land-lost farmers in urban fringe areas, as
well as the factors that limited their adaptive capacity [41]. Xu analyzed the environmental
adaptability of the Longdong Loess Plateau agricultural system [42].

Current studies on agricultural development have produced promising results. How-
ever, there are still many limitations that must be addressed. Firstly, from a research scope
and entry point perspective, very few studies have assessed the adaptability of agricul-
tural and environmental systems. Particularly, studies on the environmental adaptability
of agricultural systems are quite limited, and the available research is in its preliminary
exploration stage. Secondly, from the perspective of research ideas and methods, very
few studies have combined spatial analysis models and geographic information system
(GIS) technology while also considering spatial and temporal dimensions to obtain com-
prehensive and integrated measurements of environmental adaptability in agricultural
systems. Therefore, the present study sought to bridge this knowledge gap. Specifically,
this study takes the environmental adaptability of agricultural systems as the entry point
to enrich and improve the research on the adaptability of agricultural and environmental
systems. Furthermore, based on GIS technology and a spatial analysis model, the spatial
and temporal integrated measurements of the environmental adaptability of agricultural
systems were obtained to enrich and improve the current research ideas and methods.
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Based on the perspective of efficiency evolution, the present study applies data en-
velopment analysis (DEA) and spatial autocorrelation analysis (SAA) to test environment
adaptability efficiency within China’s agricultural systems across 30 provinces, autonomous
regions, and municipalities, and explores its temporal and spatial evolution patterns and
characteristics. Therefore, this study has considerable theoretical and practical significance.
Particularly, this study can contribute to the enrichment and development of the methods
used to assess China’s agricultural systems. Additionally, our study provides a theoretical
basis and decision support for China to formulate a sustainable development strategy of
regional agricultural systems, as well as a reference for other countries and regions.

2. Data and Methodology
2.1. Indicator System and Data Sources

The establishment of the indicator system of this study is based on the existing re-
search results of other scholars [43–46]. Here, we selected representative indicators that
are frequently used and meet the research requirements, after which an input-output
indicator system for measuring environmental adaptability efficiency within China’s agri-
cultural systems was established (Table 1). This study is based on data obtained between
2000 and 2018 from a variety of sources, including the China Statistical Yearbook, the
China Rural Statistical Yearbook, the China Agricultural Statistics Yearbook, statistical
yearbooks of various provinces (autonomous regions and municipalities directly under the
central government), the National Economic and Social Development Statistical Bulletin,
Environmental Bulletins, and other relevant materials and documents.

Table 1. Indicator system used for assessing environmental adaptability efficiency within China’s
agricultural systems.

The Target Layer The Standard Layer The Index Layer Unit

Environmental
adaptation efficiency

within China’s
agricultural systems

Input indicators

Total area of cultivated land hm2

Agricultural practitioner number of people
The amount of fertilizer applied ton
The amount of pesticide applied ton
The quantity of plastic film used ton

Effective irrigation area hm2

Total power of agricultural machinery kW

Output indicators

Agricultural
economic system

Utilization rate of cultivated land %

Agricultural labor productivity China Yuan/number
of people

Farmland productivity China Yuan/hm2

Agricultural
social system

Engel’s coefficient for rural residents %
Per capita income of farmers China Yuan
Ratio of working population

in agriculture %

Agricultural
environmental system

Carbon dioxide emission intensity
in agriculture ton/China Yuan

Soil erosion rate %
Grey water footprint in agriculture m3

2.2. Research Method
2.2.1. DEA Model

Efficiency measurement methods mainly include life cycle evaluation, stochastic
frontier analysis and DEA model. Life cycle evaluation is highly subjective, and its regional
comparability is poor, as this method is much better suited for the comparison of individual
products and industries. The stochastic frontier analysis method can only be used to assess
single output problems and has poor ability to deal with multiple output problems. DEA
model is a non-parametric analysis method, which can well deal with the problem of
multi-input and multi-output. The measurement of efficiency can better reflect the real
situation and meet the actual demand. Therefore, this research chooses DEA model.
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In this study, a slack based model with undesirable outputs (SBM-Undesirable) was
used to measure the environmental adaptability efficiency within China’s agricultural
systems based on the following assumptions [47–51]: there are n decision-making units, m
input indicators, s1 expected outputs indicators, and s2 unexpected outputs indicators. xim
represents the m-th input indicator of the i-th decision-making unit, yiS1 means the s1-th
expected output indicator of the i-th decision-making unit, yiS2 is the s2-th unexpected
output indicator of the i-th decision-making unit, R represents the real number matrix of
input, expected and unexpected output. The input matrix X, expected output matrix Y,
and unexpected output matrix Z of the i-th decision-making unit were then calculated
as follows:

X = (xi1, xi2, · · · , xim) ∈ Rn×m, X > 0
Y =

(
yi1, yi2, · · · , yiS1

)
∈ Rn×S1 , Y > 0

Z =
(
yi1, yi2, · · · , yiS2

)
∈ Rn×S2 , Z > 0

(1)

The production set of all possible decision-making units is:

P(x) = {(x, y, z)|x ≤ λX, y ≤ λY, z ≤ λZ, λ ≥ 0} (2)

In this formula, P(x) represents the production set, x is the input indicator set, y is the
expected output indicator set, z is the unexpected output indicator set, λ represents the
vector density, and X, Y, Z are the input matrix, expected output matrix and unexpected
output matrix respectively.

The mathematical form of the model is:

ρ = min
1− 1

N ∑N
n=1

sx
n

xn0

1 + 1
M+I

(
∑M

m=1
sy

m
ym0

+ ∑I
i=1

sb
i

bi0

) (3)

st


∑K

k=1 zkxnk + sx
n = xn0, n = 1, 2, . . . , N

∑K
k=1 zkymk − sy

m = ym0, m = 1, 2, . . . , M
∑K

k=1 zkbik + sb
i = bi0, i = 1, 2, . . . , I

∑K
k=1 zk = 1

sx
n ≥ 0, sy

m ≥ 0, sb
i ≥ 0, zk ≥ 0, k = 1, 2, . . . , K

(4)

in Formulas (3) and (4), ρ is the objective function value of the SBM-Undesirable model,
and the value range is [0, 1], N is the number of inputs (x), M is the number of expected
outputs (y), I is the number of undesirable outputs (b), xn0, ym0, bi0 represent the n-th input,
m-th expected output, and i-th undesirable output, respectively, st represents the constraint
conditions of the objective function, sx

n, sy
m, sb

i represent the slack variable of the input,
expected output, and undesirable output, respectively, K means the number of decision-
making units, and k is the k-th decision-making unit, xnk, ymk and bik are the n-th input
vector, the m-th expected output and the i-th undesirable output of the k-th decision-making
unit, respectively, and zk is a density vector that represents the weight of each element. The
decision-making unit was deemed valid if ρ = 1 and sx

n = sy
m = sb

i = 0. Otherwise, the
decision-making unit was considered invalid, meaning that the input or output variables
could be further improved.

2.2.2. Global Spatial Autocorrelation Analysis (Global Moran’s I)

The spatial pattern of environmental adaptability efficiency within China’s agricultural
systems was analyzed using the spatial autocorrelation model, and the global Moran’s I
index was implemented to establish whether an aggregation or dispersion pattern existed
in the region using the following formula [47,52–54]:

I =
n ∑n

i=1 ∑n
j 6=1 Wij

(
Yi −Y

)(
Yj −Y

)
∑n

i=1 ∑n
j 6=1 Wij ∑n

i=1
(
Yi −Y

)2 (5)
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where I is the value of Global Moran’s I, n is the number of evaluation objects, Y is the
average value of the attribute values of all evaluation objects, Yi is the attribute value of the
i-th evaluation object, Yj is the attribute value of the j-th evaluation object, and Wij is the
spatial weight matrix.

To further assess whether a spatial autocorrelation pattern existed in the region, a
significance test was conducted for I using the following formula:

Z =
I − E(I)√

Var(I)
(6)

where Z is the global Moran’s I test value, I is the value of Global Moran’s I, E(I) is the
expected value of I, and Var(I) is the variance of I. The uncertainty analysis in the spatial
autocorrelation model is relatively complicated, there are many factors to consider, and the
interpretability of the calculation results can be reduced. Therefore, uncertainty analysis
was not conducted in this research.

2.2.3. Hotspot Analysis (Local Getis-Ord G* Exponent)

Hotspot analysis (local Getis-ORD G* index) was conducted to characterize the spatial
dependence and heterogeneity of environmental adaptability efficiency within China’s
agricultural systems, as well as to examine the characteristics and patterns of local spatial
autocorrelation using the following formula [55–57]:

G∗i =
∑n

i=1 Wijxi

∑n
i=1 xi

(7)

where xi is the observed value of region i, n is the number of evaluation objects, and Wij is
the spatial weight matrix. G∗i represents a local G statistic, significantly positive G∗i values
suggest that the value around region i is relatively high, and region I can be categorized as
a hotspot. Otherwise, it is categorized as a coldspot.

3. Results and Discussion
3.1. Spatiotemporal Evolution of Environmental Adaptability Efficiency within China’s
Agricultural Systems

The adaptability efficiency of agricultural systems within 30 provinces of China be-
tween 2000 and 2018 was calculated using the SBM-Undesirable model (Table 2). According
to the calculation results and relevant literature [17], and considering the actual situation,
the degree of environmental adaptability efficiency within China’s agricultural systems
was categorized (Table 3). Moreover, a distribution diagram of the degree of environmental
adaptability efficiency within China’s agricultural systems for each province in 2000, 2005,
2010, 2015, and 2018 was also created (Figure 1).

Between 2000 and 2018, the average value of environmental adaptability efficiency
within China’s agricultural systems exhibited a steady upward trend, thus transitioning
from a medium level to a high level. This suggests that the overall environmental adapt-
ability efficiency within China’s agricultural systems is continuously rising. However, a
certain gap remains between the level achieved and DEA’s level of effectiveness, meaning
that additional efforts are required to fill this gap.
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Figure 1. Distribution map of environmental adaptability efficiency within China’s agricultural systems.

In 2000, Beijing and Guangdong stood out as province-level cities or provinces with
the highest degree of environmental adaptability efficiency within China’s agricultural
systems, and both reached the DEA’s level of effectiveness. Furthermore, Shanghai and
Hainan reached high levels, Fujian and Henan were at medium to high levels, Tianjin
and Hebei were at medium levels, and Shanxi and Gansu were at low levels. This was
largely attributed to the socioeconomic development level of each region, in addition
to agricultural production technology and capital investment. In 2005, the number of
low-level provinces decreased, whereas the number of high-level provinces increased,
especially in the southeastern coastal areas. Beijing, Guangdong, and Hainan displayed
the highest level of efficiency, and reached the DEA’s level of effectiveness. Shanghai
and Shandong reached high levels, Hebei and Tianjin were at a medium to high levels,
Shanxi and Heilongjiang were at medium levels, and the Gansu province was at a relatively
low level. This was mainly due to the rapid economic development of southeast coastal
areas, as well as increased agricultural production level and financial support. In 2010, the
number of provinces with medium and high levels increased significantly, and provinces
with low levels no longer existed. Beijing and Shanghai displayed the highest level of
efficiency and reached the DEA’s level of effectiveness. Tianjin and Hebei were at high
levels, Jilin and Liaoning were at medium to high levels, and Gansu and Shanxi were at
medium levels. This was mainly due to the economic growth of China’s inland areas, and
the improvement of agricultural resources and agricultural production level. In 2015, the
number of provinces reaching the DEA’s level of effectiveness increased significantly, and
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the majority of the provinces were distributed across the eastern and southeastern coastal
areas. Beijing and Shanghai displayed the highest level of efficiency and reached the DEA’s
level of effectiveness. Hebei and Tianjin were at high levels, Shanxi and Sichuan were
at medium to high levels, and Gansu was at a medium level. This is mainly due to the
overall improvement of China’s economic development level, as well as the improvement of
agricultural production level. In 2018, there was a rapid increase in the number of provinces
at high levels and above, middle-level and low-level provinces no longer existed, and the
gap between the various provinces became narrower. Beijing and Shanghai displayed the
highest level of efficiency and reached the DEA’s level of effectiveness. Hebei and Tianjin
were at high levels, and Chongqing and Sichuan were at medium to high levels. This was
mainly due to the narrowing of the economic development gap between different regions
in China, improved investment and agricultural production level, and increased awareness
of consumption safety. Overall, between 2000 and 2018, the environmental adaptability
efficiency within China’s agricultural systems maintained a relatively fast growth rate, the
number of provinces at medium and high levels gradually increased, and the gap between
provinces displayed a narrowing trend. The environmental adaptability efficiency within
China’s agricultural systems was higher in the southeast region and lower in the northwest
region. It decreased from the southeast coastal areas towards the northwest inland region,
thus exhibiting a northwest-southeast spatial distribution pattern.

Table 2. Environmental adaptability efficiency within China’s agricultural systems.

Province 2000 2005 2010 2015 2018 AVG

Beijing 1.00 1.00 1.00 1.00 1.00 1.00
Tianjin 0.56 0.70 0.89 0.99 0.98 0.83
Hebei 0.51 0.69 0.85 0.92 0.96 0.77
Shanxi 0.31 0.43 0.55 0.78 0.80 0.56

Inner Mongolia 0.53 0.75 0.85 0.93 0.97 0.80
Liaoning 0.51 0.73 0.79 0.86 0.96 0.75

Jilin 0.50 0.61 0.72 0.82 0.92 0.71
Heilongjiang 0.49 0.60 0.67 0.79 0.90 0.68

Shanghai 0.81 0.98 1.00 1.00 1.00 0.97
Jiangsu 0.54 0.74 0.80 0.93 0.95 0.79

Zhejiang 0.60 0.77 0.89 1.00 1.00 0.86
Anhui 0.57 0.78 0.84 0.95 0.99 0.83
Fujian 0.64 0.67 0.89 1.00 1.00 0.86
Jiangxi 0.43 0.67 0.77 0.87 0.94 0.73

Shandong 0.77 0.93 1.00 1.00 1.00 0.95
Henan 0.66 0.86 0.86 0.94 0.98 0.86
Hubei 0.60 0.73 0.89 1.00 1.00 0.85
Hunan 0.65 0.81 0.92 0.96 0.98 0.85

Guangdong 1.00 1.00 1.00 1.00 1.00 1.00
Guangxi 0.40 0.58 0.78 0.88 0.94 0.71
Hainan 0.82 1.00 1.00 1.00 1.00 0.98

Chongqing 0.37 0.54 0.62 0.76 0.79 0.62
Sichuan 0.38 0.57 0.65 0.78 0.80 0.64
Guizhou 0.35 0.53 0.64 0.75 0.78 0.61
Yunnan 0.36 0.48 0.66 0.79 0.79 0.61
Shannxi 0.44 0.54 0.63 0.79 0.89 0.63
Gansu 0.31 0.40 0.47 0.59 0.68 0.47

Qinghai 0.40 0.57 0.71 0.79 0.85 0.67
Ningxia 0.41 0.52 0.62 0.75 0.81 0.60
Xinjiang 0.35 0.51 0.64 0.71 0.79 0.60

AVG 0.54 0.69 0.79 0.88 0.92 0.76
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Table 3. Ranking of China’s agricultural systems according to the degree of environmental adaptabil-
ity efficiency.

Rank Low-Level Medium-Level Medium to High-Level High-Level DEA’s Level of Effectiveness

Efficiency range (0, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1) 1

3.2. Spatial Aggregation Characteristics of Environmental Adaptability Efficiency within China’s
Agricultural Systems
3.2.1. Global Spatial Autocorrelation Analysis

Global spatial autocorrelation reflects the features of an attribute in a global space.
This parameter can be used to reflect whether the environmental adaptability efficiency
of China’s agricultural system is spatially dependent, as well as to explore its spatial ag-
glomeration mode. The value range of the global spatial autocorrelation index is [–1, 1]. If
this value exceeds 0, the spatial correlation is considered positive; if it is below 0, spatial
correlation is negative; if it is equal to 0, it has no spatial correlation. The global Moran’s
I index of environmental adaptability efficiency within China’s agricultural system was
determined between 2000 and 2018 (Table 4). The Z values were greater than 1.96 and this
effect was significant at a 5% level. Therefore, between 2000 and 2018, the environmental
adaptability efficiency within China’s agricultural systems exhibited a significantly pos-
itive correlation with spatial distribution. Moreover, adjacent provinces with high (low)
efficiency displayed aggregation patterns, and the aggregation characteristics were obvious
at the provincial level. More specifically, provinces with different efficiency levels were
not randomly distributed but displayed high (low) regional spatial aggregation patterns.
Moreover, provinces tended to be surrounded or located close to other provinces with
similar efficiency levels, either low or high. The global Moran’s I index exhibited an upward
trend, suggesting that its degree of spatial autocorrelation kept gradually increasing. More
specifically, the degree of spatial aggregation distribution for provinces with high or low
efficiency levels exhibited and overall increase throughout the study period.

Table 4. Global Moran’s I Index of environmental adaptability efficiency within China’s
agricultural systems.

Year Moran’s I Z P

2000 0.156 2.592 0.010
2001 0.223 3.462 0.001
2002 0.265 3.995 0.000
2003 0.302 4.416 0.000
2004 0.222 3.358 0.001
2005 0.225 3.380 0.001
2006 0.344 4.946 0.000
2007 0.312 4.514 0.000
2008 0.313 4.511 0.000
2009 0.317 4.549 0.000
2010 0.333 4.731 0.000
2011 0.322 4.594 0.000
2012 0.362 5.097 0.000
2013 0.314 4.480 0.000
2014 0.322 4.595 0.000
2015 0.370 5.209 0.000
2016 0.405 5.668 0.000
2017 0.397 5.544 0.000
2018 0.376 5.297 0.000

3.2.2. Hotspot Analysis

In this study, local spatial autocorrelation analysis was conducted for the years 2000,
2005, 2010, 2015, and 2018 to characterize the environmental adaptability efficiency within
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China’s agricultural systems. The degree of correlation between the attribute value of
each spatial unit and the attribute value of its neighboring spatial unit were characterized
based on coldspots, secondary coldspots, secondary hotspots, and hotspots. This approach
allowed for the analysis of the local spatial relationships in the study region (Figure 2).
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Figure 2. Spatial evolution of coldspots and hotspots of environmental adaptability efficiency within
China’s agricultural systems.

In 2000, seven provinces were categorized as hotspots (including Shanghai and
Jiangsu), the Gansu province was categorized as a coldspot, Qinghai and Sichuan were
categorized as secondary coldspots, and the remaining 20 provinces were categorized as
secondary hotspots, accounting for 67% of all provinces and exhibiting the widest dis-
tribution. High-value areas were mainly distributed in an aggregated manner. In 2005,
the number of hotspot provinces increased to eight (including Shanghai and Jiangsu),
the number of coldspot provinces increased to two (Gansu and Qinghai), the number of
secondary coldspot provinces remained at two (Xinjiang and Sichuan), and the number
of secondary hotspot provinces decreased to eighteen, accounting for 60% all provinces
and still exhibiting the widest distribution. Again, high-value areas appeared strongly
aggregated. In 2010, the number of hotspot provinces decreased to five (including Shanghai
and Jiangsu), the number of secondary hotspot provinces decreased to three (including
Shandong and Jiangxi), the number of coldspot provinces increased to four (including Qing-
hai and Sichuan), and the number of secondary coldspot provinces increased to eighteen,
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accounting for 60% of all provinces and with the widest distribution. The aggregation range
of high-value areas shrunk, whereas the aggregation range of low-value areas expanded
greatly, resulting in an aggregation distribution pattern dominated by low-value areas. In
2015, the number of hotspot provinces increased to seven (including Jiangxi and Hubei),
the number of secondary hotspot provinces remained as three (including Shandong and
Guangdong), the number of coldspot provinces remained as four (including Qinghai and
Sichuan), and the number of secondary coldspot provinces was further reduced to sixteen,
accounting for 53% of all provinces and exhibiting the widest distribution. Additionally,
low-value areas were mainly distributed in an aggregated manner. In 2018, the number
of hotspot provinces remained as seven (including Shandong and Liaoning), the number
of coldspot provinces was reduced to three (including Qinghai and Gansu), the number
of secondary coldspot provinces decreased to three (including Xinjiang and Yunnan), and
the number of secondary hotspot provinces increased to seventeen, accounting for 57% of
the total number of provinces and with the widest distribution. The aggregation range of
low-value areas shrunk, whereas the aggregation range of high-value areas expanded, with
the distribution of high-value areas becoming dominant.

Overall, the environmental adaptation efficiency within China’s agricultural systems
displayed obvious spatial aggregation characteristics between 2000 and 2018, which was
also characterized by strong features of spatial dependence and spatial heterogeneity.
Additionally, the degree of spatial aggregation in terms of high-value areas and low-value
areas was enhanced. The aggregations of high-value areas were mainly distributed in the
southeast coastal area, whereas the aggregations of low-value areas were mainly located
in the inland areas of the northwest, exhibiting an overall northwest-southeast spatial
distribution pattern.

3.3. Discussion

Recent studies have also analyzed regional environmental adaptation efficiency and
have reached similar conclusions. For instance, Akbar et al. used the SBM-Undesirable
model to calculate the agricultural ecological efficiency of 31 provinces in China from 2007
to 2017 and reached conclusions that were consistent to those reported herein. China’s
agricultural ecological efficiency generally showed an upward trend; however, the regional
differences were obvious, and efficiency was higher in the eastern region compared to the
central and western regions [58]. Based on panel data from 2003 to 2013, Pang conducted a
study on agricultural ecological efficiency in China. The authors reported that China’s agri-
cultural ecological efficiency is at a medium level, and the overall trend is fluctuating [19].
Bagheri et al. used the data envelopment analysis (DEA) method to estimate the agri-
cultural environmental efficiency of different provinces in Iran, and the results indicated
that agricultural environmental efficiency decreased with higher levels of greenhouse gas
emissions [59]. Zheng et al. used the DEA model to calculate the agricultural ecological
efficiency of Gansu Province from 2000 to 2014, and the results showed that the agricultural
ecological efficiency was generally low and showed an upward trend [60]. Wu et al. used
DEA model to study the ecological efficiency of agricultural land in Henan Province from
2012 to 2016, and the results showed that the overall agroecological efficiency level was
low [61]. Nsiah et al. used the DEA model to study agricultural productivity and the
determinants of agricultural production in 49 African countries. The authors reported that
agricultural aid, agricultural infrastructure development, sanitation, and good governance
are the main drivers of agricultural efficiency growth [62]. Linh et al. used DEA model
to analyze agricultural productivity and environmental efficiency in nine eastern Asian
countries. Interestingly, large differences in agricultural productivity and environmental
performance were identified between the nine countries [63]. Anik et al. assessed agricul-
tural productivity in South Asian countries and found that they exhibited different rates of
agricultural productivity [64].

Sustainable agricultural development is unquestionably crucial for any country or
region. Therefore, additional efforts are needed to improve the current environmental
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protection strategies for agricultural systems, as well as to develop eco-friendly agriculture
practices, promote agricultural waste recycling and reduce or eliminate the impacts of
reusing such waste, increase innovation in agricultural science and technology, and improve
the agricultural infrastructure so that the environmental adaptability efficiency within
China’s agricultural systems can be effectively improved. Of course, our study had a series
of limitations. For example, the factors that affect the environmental adaptability efficiency
of agricultural systems are diverse, and such influencing factors could vary for different
agricultural industries. Moreover, due to the difficulty of obtaining relevant basic data, no
specific quantitative analysis was conducted in the present study. Future research should
therefore consider these limitations to further improve research quality.

4. Conclusions

Between 2000 and 2018, the overall environmental adaptability efficiency within
China’s agricultural systems showed a gradual upward trend, achieving a transition from
medium-level efficiency towards high-level efficiency, and the environmental adaptability
of agricultural systems continued to increase. However, a certain gap remained between
the level achieved and the DEA’s level of effectiveness, meaning that additional efforts
are required to fill this gap. Additionally, the environmental adaptability efficiency within
China’s agricultural systems kept a relatively fast growth rate, the number of provinces
at medium and high levels had gradually increased, and the gap between the provinces
generally displayed a narrowing trend. The environmental adaptability efficiency within
China’s agricultural systems was high in the southeast region, and low in the northwest
region, thus exhibiting a northwest-southeast spatial distribution pattern.

Between 2000 and 2018, the environmental adaptability efficiency within China’s
agricultural systems exhibited a significant positive correlation in spatial distribution.
Moreover, adjacent provinces with high (low) efficiency tended to aggregate. Specifically,
provinces tended to be surrounded or located near other provinces with similar efficiency
levels, either high or low. The environmental adaptability efficiency within China’s agricul-
tural systems exhibited strong spatial aggregation at the provincial level, which was also
characterized by strong features of spatial dependence and spatial heterogeneity. Further-
more, the degree of spatial aggregation increased gradually over time. High-value area
aggregates were primarily located in the southeast coastal area, whereas low-value area
aggregations were mainly found in the inland areas of the northwest, thus exhibiting a
northwest-to-southeast spatial distribution pattern.
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