
����������
�������

Citation: Zheng, Y.; Wang, J.; Xu, W.;

Li, N.; Zhang, W.; Chen, Y. Impact of

Near-Fault Ground Motions on

Longitudinal Seismic Response of

CHRF Bridges. Sustainability 2022, 14,

3591. https://doi.org/10.3390/

su14063591

Academic Editors: Chengqing Liu,

Zhiguo Sun and Ying Ma

Received: 17 February 2022

Accepted: 4 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Impact of Near-Fault Ground Motions on Longitudinal Seismic
Response of CHRF Bridges
Yongrui Zheng 1,† , Jin Wang 1,*, Weibing Xu 1,† , Nana Li 1,2, Wenxue Zhang 1 and Yanjiang Chen 1

1 Beijing Key Laboratory of Seismic Engineering and Structural Diagnosis and Treatment, Beijing University of
Technology, Beijing 100124, China; yongruirainy@emails.bjut.edu.cn (Y.Z.); weibingx@bjut.edu.cn (W.X.);
linana@succ.edu.cn (N.L.); zhwx@bjut.edu.cn (W.Z.); chenyanjiang@bjut.edu.cn (Y.C.)

2 School of Civil and Traffic Engineering, Shanghai Urban Construction Vocational College,
Shanghai 201999, China

* Correspondence: wangjin0602@bjut.edu.cn; Tel.: +86-134-6660-2056
† These authors contributed equally to this work.

Abstract: Curved high-pier rigid frame bridges (CHRF bridges) are unavoidably affected by near-
fault ground motions (NFGMs), and seismic pounding between adjacent components of CHRF bridge
has a significant effect on the seismic performance of CHRF bridges. The seismic response and
seismic pounding laws of CHRF bridges under NFGMs need further investigation. In this study,
the influence of NFGMs with impulse and directional effects on the dynamic response of CHRF
bridges was studied. Subsequently, the pounding responses between adjacent components of CHRF
bridge were systematically analyzed. The results showed that the impulse and directional effects of
NFGMs have a significant impact on the seismic response of CHRF bridges. The seismic response
of CHRF bridges under near-fault impulse-like ground motions (IPGMs) is greater than that under
near-fault non-pulse-like ground motions (NPGMs). CHRF bridges have the lowest seismic response
under far-fault ground motions (FFGMs). The seismic response of CHRF bridges is significant under
backward region ground motions (BRGMs) and the lowest under forward region ground motions
(FRGMs). The IPGMs induce larger pounding force (PF) and a smaller number of poundings (PN)
compared with FFGMs. The PF and the PN increase from the FRGMs to the BRGMs. Because of
the pounding, the impulse and directional effects of NFGMs cause the shear force of the main pier
and the auxiliary pier of CHRF bridges to increase significantly and the relative bending moment
decreases. Moreover, the shear force and bending moment of the tie beam increases significantly
owing to pounding.

Keywords: CHRF bridges; pounding response; near-fault ground motion; dynamic response;
numerical analysis

1. Introduction

Curved high-pier rigid frame bridges (CHRF bridges) are developed as high-intensity
bridges across faults owing to their excellent spanning ability, terrain adaptability, and low
cost. However, near-fault ground motions (NFGMs) can easily cause irreparable damage
to CHRF bridges [1–5]. The safety hazard of CHRF bridges under NFGMs limits their
application [6,7].

NFGMs have a significant impact on the seismic response of engineering structures.
Many studies have been conducted to investigate the influence of NFGMs (including im-
pulse effects and directional effects) on the dynamic response of structures. Jia et al. [8]
summarized the results on the influence of NFGMs on structures and reported that NFGMs
always amplify the dynamic response of the structures. Süleyman [9] studied the effects
of different ground motions, including near- and far-fault ground motions, on the seismic
response of a suspension bridge. The results indicated that NFGMs cause a significant
increase in the seismic response of the suspension bridge. Su et al. [10] studied the seismic
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response of a curved girder bridge with a longitudinal slope under NFGMs with a direc-
tional effect. The results showed that the main girder rotated more easily around the fixed
pier under NFGMs. The displacement responses of the bearing and beam ends at low piers
were more significant. Dhankot et al. [11] studied the effect of six far-field and 12 near-fault
ground motions on the Triple Friction Pendulum (TFP) bearings. The results showed that
IPGMs made the structure of used TFP bearings more susceptible to damage. Xin et al. [12]
established a finite element model of a concrete-filled steel tube arch bridge and analyzed
the influence of the directional and sliding effects of NFGMs on the dynamic response of
the structure. Based on the results, it was proposed that the directional and sliding effects
of NFGMs should be considered during the design process of concrete-filled steel tube arch
bridges. Li et al. [13,14] analyzed the dynamic response of long-span cable-stayed bridges
under IPGMs. The results showed that IPGMs had a significant impact on the seismic
response of long-span cable-stayed bridges. Furthermore, IPGMs with fling-step pulses
can cause more damage to long-span cable-stayed bridges compared with IPGMs without
fling-step pulses. Xu et al. [15] studied the impact of the pulse parameters of NFGMs on the
dynamic response of long-period bridge structures. Daei et al. [16] quantified the impact of
the pulse effects of NFGMs on the seismic response of three-story reinforced concrete (RC)
frame (MRF) buildings. Zhang et al. [17] carried out shaking table test on a double box
utility tunnel and systematically analyzed the seismic behaviors of the double box utility
tunnel under different ground motions. Song et al. [18] used the incremental dynamic
analysis (IDA) method to analyze the influence of the directional effect of NFGMs on the
fracture risk of pre-Northridge welded column splices (WCS). The results showed that the
influence of the directional effect of NFGMs on the seismic response of the Pre-Northridge
WCS was significant. The dynamic response law of small-span bridges and low-middle-rise
buildings under NFGMs has been systematically studied. However, the seismic response of
complex bridges and buildings (such as curved high-pier rigid frame bridges, suspension
bridges, and super high-rise structures) under NFGMs needs further investigation.

Moreover, because of the irregular geometries and complex terrain, earthquake-
induced adjacent pounding may result in more complex local damage or even collapse
of CHRF bridges. Miari et al. [19] summed up previous research concerning earthquake-
induced structural pounding in bridge structuresand decided on the influential factors and
the suggested mitigation measures of earthquake-induced structural pounding. Muthuku-
mar et al. [20] studied the simulation effectiveness of the force-based linear spring model
and Kelvin–Hertz model for seismic pounding between adjacent structures. The results
indicated that the Hertz model can provide more adequate results at low PGA levels,
while the Hertz Damper model was recommended at moderate and high PGA levels.
Dimitrakopoulos et al. [21] proposed a novel beam–stick model to describe the pounding
behavior of curved steel girder bridges and concluded that the seismic pounding affected
the displacement responses of the inelastic bridges. Han et al. [22] built a finite element
model of a skewed bridge through incorporating deck–abutment joints to consider the
pounding along the longitudinal and transverse direction. They found that the rotation
of superstructure was affected by the pounding between the deck and abutments. Kun
et al. [23,24] performed the shake table tests on a straight bridge and a skewed bridge with
abutments. They thought that the pounding significantly affected the bending moments of
the piers and the transverse relative displacements between the deck and the abutment.
Xu et al. [25,26] studied the pounding effect and its influence on curved bridges with a
small radius and a longitudinal slope subjected to near-fault ground motions. They found
that pounding responses were significantly influenced by the characteristics of excitation,
the peak pounding forces under bidirectional excitation were more significant, and the
pounding force near the short pier was greater than that of the tall pier. Bi et al. [27,28]
built a finite element model to study the surface-to-surface pounding and the torsional
response induced eccentric poundings between the deck and the abutment. The results
show that the influence of pounding on the displacement response of the stiff abutments
can be neglected. Jiao et al. [29–32] carried out the shaking table tests and the numerical
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analysis to investigate the pounding effect of curved bridge. It was concluded that the
maximum pounding force was related to the radius of curvature. The pounding forces can
increase the relative radial displacement between the deck corners and the abutment. Based
on this research, the seismic pounding has a significantly effect on the dynamic response of
curved bridges. There are few existing findings on the pounding effect of CHRF bridges,
especially under the near-fault ground motions.

In this study, a nonlinear analysis model of a typical CHRF bridge was established by
considering the pounding between the main and approach spans based on the OpenSees
platform. Subsequently, different types of ground motions were selected based on the PEER
database, including near-fault pulse-like ground motions (IPGMs), near-fault non-pulse-
like ground motions (NPGMs), far-fault ground motions (FFGMs), forward region ground
motions (FRGMs), middle region ground motions (MRGMs), and backward region ground
motions (BRGMs). The seismic response law of CHRF bridges under these different ground
motions was investigated, including the internal force and displacement response of key
parts (the direction of shear and bending moment was the same as the direction of ground
motion excitation). Furthermore, the pounding response between adjacent components of
CHRF bridge was systematically analyzed, and the influence law of the seismic pounding
on the dynamic response of CHRF bridge was clarified.

2. Prototype Bridge

The span arrangement of the prototype CHRF bridge was 3 × 30 + 66 + 130 + 66 + 4
× 30 m (shown in Figure 1a). The radius of curvature of the bridge was 650 m (shown in
Figure 1b). The main beam of the bridge was a single continuous box girder with a variable
cross-section. The cross-section height was 7.0 m near the pier-beam consolidation and
2.8 m at the middle section (shown in Figure 1c,d). The cross-section width was 12.0 m at
the top and 6 m at the bottom. The concrete strength of the main girder was C55. The main
substructure of the bridge was a double-limbed thin-walled pier (the longitudinal and
transverse sizes of the pier were 6500 mm × 1900 mm) (shown in Figure 1e), the longitudinal
and transverse sizes of the tie beam were 5500 mm × 1900 mm (shown in Figure 1f). The
side substructure of the bridge was a double-limbed thin-walled rectangular hollow pier
(the longitudinal and transverse sizes of the pier were 6500 mm × 2600 mm) (shown in
Figure 1g), and the concrete strength of the substructure was C40. The adjacent bridge was
a continuous beam bridge. The substructure of the adjacent bridge was rectangular hollow
piers. The longitudinal reinforcement of the substructure was HRB335, and the stirrup of
the substructure was HRB300. The bearing systems of the bridge were all basin-type rubber
bearings. The expansion joints were arranged between the main bridge and adjacent bridge,
bridgeheads, and embankment of the adjacent bridge. The gap size of the expansion joints
between the main bridge and the adjacent bridge was 240 mm.
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(a) Elevation of the full bridge. 
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(c) The cross-sectional drawing at the bearing. (d) The cross-sectional drawing at the mid-span. 
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(e) Reinforcement of main pier. (f) Reinforcement of tie beam.  (g) Reinforcement of auxiliary pier. 

Figure 1. Elevation of the full bridge (unit: cm). 
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Figure 1. Elevation of the full bridge (unit: cm).

3. Numerical Model
3.1. Main Parameters

The main beam of the bridge generally does not enter the plastic state during dynamic
analysis. The elastic beam-column elements were selected to construct the main beam of
the bridge. The main girder had 270 nodes and 269 elements. Nonlinear beam-column fiber
elements were selected to model the piers and tie beams. The cross-sections of the piers
and tie beams were composed of three types of fibers: unconstrained concrete, constrained
concrete, and steel bars. Concrete 01 was used to model the concrete (Figure 2, Detail 2).
Steel 02 was used to model the reinforcement. The material properties of reinforcement
and concrete in the model are shown in Table 1. The bearing was simulated using zero-
length elements, and its constitutive model was a bilinear hysteretic model. In addition, a
pounding element was set at the expansion joints of the bridge to simulate the pounding
between the main bridge and adjacent bridges at the expansion joints. The constitutive
model of the pounding element was the Hertz-damp model. A finite element model of the
full-bridge is shown in Figure 2. Newmark-beta method was chosen to solve the equation
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of motion for dynamic analysis in OpenSees 3.3.0. The parameters of the Newmark-beta
were selected as γ = 0.5, β = 0.25.
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Table 1. Material properties of reinforcement and concrete in the model.

Reinforcement Yield Strength
(MPa)

Ultimate
Strength (MPa) Concrete Axial

Compressive Strength (MPa)
Axial Tensile

Strength (MPa)

HRB335 335 400.98 C40 23.1 1.71
HPB300 300 383.65 C55 25.3 1.96

3.2. Bearing Parameters

Bilinear elastoplastic elements were used to simulate the pot rubber bearings to
consider the sliding friction of the actual bearings. The restoring force model of the
bearings is shown in Figure 2 (Detail 1). The critical sliding friction force (Fmax) and the
initial stiffness of the bearing are expressed as follows:

Fmax = udR (1)

k =
Fmax

xy
(2)

where ud is the sliding friction coefficient (generally equal to 0.02). R is the weight of the
superstructure (kN), and xy is the horizontal yield displacement of the bearing (generally
equal to 0.002–0.005 m). The parameters of each bearing are given in Table 2.
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Table 2. Bearing parameters.

Parameter B-1 B-2 B-3 B-4

ud 0.02 0.02 0.02 0.02
R (kN) 8029.87 3610.41 7566.94 7606.5

xy 0.003 0.003 0.003 0.003
Fmax 160.60 72.21 151.34 152.13

k 53,532.43 24,069.42 50,446.28 50,710

3.3. Pounding Parameters

The natural vibration periods of the main bridge and adjacent bridge were significantly
different. Similarly, the displacement responses of the main bridge and adjacent bridge
were different. The main bridge is prone to pounding with an adjacent bridge near the
expansion joint. To examine the pounding effect on the seismic response of the CHRF
bridge, a simplified Hertz-damp model was used to simulate the pounding between the
main and adjacent bridges (Figure 2, Detail 3). The equivalent stiffness of the pounding
element (Keff) is expressed as follows:

Ke f f = Kh
√

δm (3)

where Kh is the pounding stiffness of the Hertz-damp model. The pounding stiffness
is equal to the first-order modal stiffness of the bridge, which can be calculated based
on previous studies [19,25]. δm is the maximum intrusion displacement between the two
contact surfaces. In this case, the energy dissipation of one-circle pounding can be expressed
as follows:

∆E = (Kt1 − Kt2) δy(δm − δy) (4)

where δy is the yield displacement of the pounding model, which can be calculated as
δy = aδm. The yield parameter, a, was set to 0.1. Kt1 is the initial stiffness of the pounding
model. Kt2 is the strain-hardening stiffness of the pounding model. In this case, the
equivalent stiffness Keff is calculated as:

Ke f f δm = Kt1δy + Kt2(δm − δy) . (5)

Equations (4) and (5) can be combined to calculate the initial stiffness, Kt1, and strain
hardening stiffness, Kt2, of the simplified model, as follows:

Kt1 = Ke f f +
∆E
αδ2

m
(6)

Kt2 = Ke f f −
∆E

(1 − α)δ2
m

(7)

In contrast, the energy dissipation, ∆E, of one-circle pounding for the Hertz-damp
model can be expressed as:

∆E =
Khδn+2

m (1 − e2)

n + 1
(8)

On the basis of this equation, the pounding parameters of the Hertz-damping model
can be obtained by combining Equations (7) and (8). In this study, the relevant design
parameters of the pounding model were as follows: the initial gap, g, was 240 mm. The
invasion displacement, δm, was 24 mm [33]. The Hertz index, n, was 1.5. The regression
coefficient, e, was equal to 0.6. The theoretical collision stiffness, Kh, was 8910 kN/m3/2. The
equivalent stiffness, Keff, was 43,652 kN/m, and the initial stiffness, Kt1, was 155,402 kN/m.
The strain hardening stiffness, Kt2, was 31,235 kN/m.
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3.4. Basic Dynamic Characteristics of the Numerical Model

The five basic dynamic parameters of the numerical model built by using OpenSees
and Midas Civil platforms (design platform) are listed and compared in Table 3.

Table 3. Comparison of the first five modes of the model.

Period (T/s) T1 T2 T3 T4 T5

OpenSees (T1/s) 2.408 1.801 1.539 1.487 1.287
Midas (T2/s) 2.283 1.707 1.388 1.355 1.176
(T1–T2)/T2 5.18% 5.21% 9.78% 8.85% 8.62%

As presented in Table 3, the errors of the first five vibration frequencies between the
OpenSees analysis results and the Midas Civil results are both within 10%. Based on the
setting parameters of the two numerical models, the potential source of discrepancy of the
natural vibration periods between the OpenSees and Midas modes includes the difference
between the fiber element dimensions of the main pier, the section division of the main
pier, and the section division of the main girder. The OpenSees analysis model can be used
for the subsequent nonlinear time history analysis of the CHRF bridge.

3.5. Analysis Cases

The input ground motions are required to be consistent with the target response
spectrum [34]. Hence, to select effective ground motions, firstly, the design spectrum of the
prototype bridge was determined based on the JTG/T 2231-01-2020. Then, the near-fault
non-pulse ground motions (NPGM) were selected to satisfy the design spectrum. The
selected principle of the NPGMs is that the error between the design spectrum value and
the spectrum value of the selected ground motions is less than 20% at the typical natural
vibration periods of the bridge. Subsequently, the fault distance was chosen as >60 km or
<20 km to select the far-fault or near-fault ground motions. Additionally, the impulse-like
ground motion was selected among the above near-fault ground motions with certain
pulse periods. Finally, the directional effect ground motions were selected according to the
position relationship between the fault region and the location of seismograph station. If
the seismograph station is located near the rupture zone, the recorded ground motions is
defined as MRGMs. If the seismograph station is located in front of the extension direction
of the rupture zone, the recorded ground motions is defined as FRGMs. If the seismograph
station is located behind the extension direction of the rupture zone, the recorded ground
motions are defined as BRGMs.

To analyze the dynamic response of a CHRF bridge under different NFGMs, we
selected 42 ground motions from the latest database of the PEER NGA-West 2, including
near-fault impulse ground motions (IPGM), near-fault non-pulse ground motions (NPGM),
and far-fault ground motions (FFGM), which were selected as the input ground motions
to consider the pulse impact on the dynamic response of the CHRF bridge. Furthermore,
NFGMs in the forward region (FR), in the middle region (MR), and in the backward region
(BR) were also selected as the input to consider the directional effect on the dynamic
response of the CHRF bridge. Seven ground motions were selected for each type of NFGMs.
Additionally, the dynamic response (bending moment, shear force, and pounding force)
was the average value from each of the seven ground motions. Figure 3 shows the response
spectrum curves and their average values for the six types of NFGMs. Table 4 shows the
detailed record of each ground motion.

As shown in Figure 3 and Table 4, the IPGMs have velocity pulses. The velocity pulse
period is significantly large (>4 s). The response spectrum value of the IPGMs is greater
than that of the NPGMs and FFGMs over a long period. The response spectrum value of
MRGMs is greater than that of FRGMs and BRGMs. Ground motions in the area before the
rupture often have obvious velocity pulses, and the long-period response spectrum values
of the rupture area and the area before the rupture are larger than those of the area behind
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the rupture. During the simulation, all the selected ground motions were input along the
X-direction excitation (tangential of the bridge), Y-direction excitation (radial of the bridge),
and X + Y-direction excitation (the above two directions). The peak acceleration value of
each ground motion was adjusted to 0.6 g.
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Figure 3. Seismic response spectra of NFGMs. 
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4. Dynamic Response of the Original CHRF Bridge
4.1. Pulse Effect
4.1.1. Main Pier (Pier 5 and Pier 6)

Figure 4 shows the typical time history curves of the shear force at the bottom of the
main pier under different ground motions.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 22 
 

4. Dynamic Response of the Original CHRF Bridge 

4.1. Pulse Effect 

4.1.1. Main Pier (Pier 5 and Pier 6) 

Figure 4 shows the typical time history curves of the shear force at the bottom of the 

main pier under different ground motions. 

0 20 40 60 80 100 120
-2

-1

0

1

2
×10

4

time/s

F
/k

N

 

 

0 20 40 60 80 100 120
-2

-1

0

1

2
×10

4

time/s

F
/k

N

 

 

1200 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

1.5
×10

4

time/s

F
/k

N

 

 

RSN1572(FFGM)RSN1537(NPGM)RSN1550(IPGM)

 

(a) (b) (c) 

Figure 4. Shear time history of main pier bottom; (a) X direction; (b) Y direction; and (c) X + Y direc-

tion. 

As Figure 4 shown, the IPGMs (RSN1550) cause significant residual displacements 

of the main piers, whereas NPGMs and FFGMs do not cause significant residual displace-

ments of the main piers. It should be noted that the residual displacement is not zero; this 

may be caused by the situation that the displacement integral of the impulse-like acceler-

ation time history itself is not zero. It is a hotspot study to consider the low frequency 

component of the NFGMs on the residual displacements of CHRF bridges in future. The 

shear force of the main piers under IPGM and NPGM is significantly larger than that of 

the main piers under FFGMs. IPGMs are more destructive to curved bridges. Figure 5 

shows a comparison of the shear force and the bending moment at the bottom of the main 

pier caused by IPGMs, NPGMs, and FFGMs. The pier numbers are shown in Figure 3. 

ele1 ele2 ele3 ele4

X- direction Y- direction X+Y- direction

8

9

10

11

12

13

14

15

16

S
h

e
a
r 

fo
rc

e
/k

N

×10
3

IP NP FF IP NP FF IP NP FF

Condition  

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

B
e
n
d

in
g
 m

o
m

e
n

t/
k

N
·m

×10
4

IP NP FF IP NP FF IP NP FF

Condition

ele1 ele2 ele3 ele4

X- direction Y- direction X+Y- direction

 
(a) (b) 
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As Figure 4 shown, the IPGMs (RSN1550) cause significant residual displacements of
the main piers, whereas NPGMs and FFGMs do not cause significant residual displacements
of the main piers. It should be noted that the residual displacement is not zero; this may be
caused by the situation that the displacement integral of the impulse-like acceleration time
history itself is not zero. It is a hotspot study to consider the low frequency component of
the NFGMs on the residual displacements of CHRF bridges in future. The shear force of the
main piers under IPGM and NPGM is significantly larger than that of the main piers under
FFGMs. IPGMs are more destructive to curved bridges. Figure 5 shows a comparison of
the shear force and the bending moment at the bottom of the main pier caused by IPGMs,
NPGMs, and FFGMs. The pier numbers are shown in Figure 3.
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As shown in Figure 5, the internal forces of ele1 and ele4 are similar, and the internal
forces of ele2 and ele3 are similar. The internal forces of ele1 and ele4 are larger than those
of ele2 and ele3. The internal force of the pier bottom is the largest under IPGMs and
smallest under FFGMs. The pier bottom shear force of the CHRF bridges under IPGMs is
approximately 1.22–1.58 times larger than that under FFGMs. The bending moment of the
pier bottom under IPGMs was approximately 1.17–1.74 times larger than that under FFGMs.
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The shear force of the pier bottom under NPGMs was approximately 1.17–1.33 times larger
than that under FFGMs. The bending moment of the pier bottom under NPGMs was ap-
proximately 1.07–1.49 times larger than that under the FFGMs. The results show that IPGMs
have a significant effect on the dynamic response of CHRF bridges. In addition, the shear
force of the pier bottom under bidirectional excitations was approximately 1.18–1.53 times
larger than that under the X-direction excitation. The bending moment of the pier bot-
tom under bidirectional excitations was approximately 1.01–1.18 times larger than that
under the Y-direction excitation. Thus, the dynamic response of the pier bottom under
bidirectional excitations was significantly larger than that under unidirectional excitations.

4.1.2. Tie Beams and Auxiliary Piers (Pier 3)

Figure 6 shows the time history curve of the bending moment of the tie beam and the
auxiliary pier under typical NFGMs.
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Figure 6. Bending moment time history of tie beam and auxiliary pier; (a) X direction of tie
beam; (b) Y direction of tie beam; (c) X + Y direction of tie beam; (d) X direction of auxiliary pier;
(e) Y direction of auxiliary pier; and (f) X + Y direction of auxiliary pier.

As shown in Figure 6a–c, the bending moment of the tie beam was the largest under
the action of IPGM. The bending moment of the tie beam was the smallest under the action
of FFGM. Near-fault ground motions (IPGM and NPGM) caused obvious residual internal
forces in the tie beams. The bending moment of the tie beam under two-way excitation was
higher than that under one-way excitation. Two-way excitation caused significant damage
to the tie beam.

As shown in Figure 6d–f, the bending moment of the auxiliary pier under the action of
IPGM was relatively large for the three excitation methods. The structural response under
the action of NPGM was greater than that under the action of FFGM and even exceeded the
moment of the auxiliary pier under the action of IPGM. The structure had the least response
under the action of the FFGM. The bending moment of the auxiliary pier with bidirectional
excitation was higher than that of the auxiliary pier with unidirectional excitation. Figure 7
shows a comparison of the shear and bending moments of tie beams and auxiliary piers
under the action of three excitation methods, IPGMs, NPGMs, and FFGMs.
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Figure 7. Shear bending moment of tie beam and auxiliary pier; (a) tie beam internal force;
(b) auxiliary pier internal force.

As shown in Figure 7a, the internal force of the tie beam under the action of IPGMs
was greater than that under NPGMs; however, the internal force response of the tie beam
was the smallest under FFGMs. The bending moment of the tie beam under IPGMs and
NPGMs was approximately 1.23–2.59 and 1.06–2.47 times larger than that under FFGMs.
The shear force of the tie beam under IPGMs and NPGMs was approximately 1.06–1.51 and
1.03–1.19 times larger than that under FFGMs. In addition, the bending moment response of
the tie beam under IPGMs was significantly large. The bending moment response of the tie
beam exceeded the bending moment of the main pier under two-way excitation. Therefore,
the development of plastic hinges of tie beams of super-high pier bridges may precede
the development of plastic hinges of the main pier. The energy dissipation design of the
tie beam is an important structural measure of the seismic resistance of super-high-pier
bridges.

As shown in Figure 7b, under the three excitation conditions, the internal force re-
sponse change of the auxiliary pier was similar to that of the tie beam. The internal force of
IPGMs was the maximum, and the NPGMs’ seismic action was minimized. The auxiliary
pier bending moments under IPGMs and NPGMs were about 1.14–1.61 and 1.03–1.23 times
larger than that under FFGMs. The auxiliary pier shear force under IPGMs and NPGMs
were approximately 1.41–1.54 and 1.07–1.21 times larger than that under FFGMs. The
internal force provided by the auxiliary piers under X-direction excitations was minimized,
and the laterally fixed bearings could realize the internal force distribution of each pier.

4.1.3. Bearing

Figure 8 shows the shear forces along the bridge of the B-1–B-4 bearings under different
ground motions.

As shown in Figure 8, the bearing shear force along the bridge under Y-direction
excitation was small, and the displacement demand along the bridge was small. Under
X + Y direction excitation, the bearing had the largest shear force along the bridge. This
is mainly because the dynamic response along the bridge of the structure was high. The
auxiliary pier bore a large vertical load, and the transmitted shear force was large. The
B-1 bearing had the largest shear force along the bridge. The B-2 bearing had the second
largest, and the B-3 bearing had the smallest shear force along the bridge. IPGMs support
the largest shear force, while FFGMs support the smallest shear force.
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Figure 8. Shear force of bearing under pulse effect ground motions.

In summary, under the action of ground motions, the internal force responses are
relatively large, for example, the internal force response of the bottom section of the main
pier, auxiliary pier, the connection between the pier and the beam, and the connection
between the tie beam and the main pier. Key sections should be considered in the design. In
addition, the tie beam may be affected before the main pier of the CHRF bridge. Therefore,
the energy dissipation design of the tie beam is a significant part of the seismic design
of CHRF bridges. IPGMs have a greater impact on CHRF bridges owing to their pulse
characteristics. The internal forces under FFGMs are the smallest. The impact of near-fault
ground motions should be considered in the seismic design of CHRF bridges, especially
the impact of near-fault pulse-type ground motions.

4.2. Directional Effect
4.2.1. Main Pier (Pier 5 and Pier 6)

Figure 9 shows the typical time history curve of the shear force at the bottom of the
main bridge pier under different ground motions.
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As presented in Figure 9, the shear force at the bottom of the main pier was the largest
under BRGMs. However, the shear force at the bottom of the main pier was the smallest
under FRGMs. The shear force at the bottom of the main pier under two-way excitation
was significantly greater than that under one-way excitation. Figure 10 shows a comparison
of the shear force and the bending moment at the bottom of the main pier considering the
directional effects of ground motions under the three excitation methods.
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As shown in Figure 10, for the three excitation methods, the internal force at the
bottom of the main pier was the largest under BRGMs; however, the internal force at
the bottom of the CHRF bridges was the smallest under FRGMs. The pier bottom shear
force and bending moment at the pier bottom of the CHRF bridges under MRGMs were
approximately 1.36–2.27 and 1.24–2.30 times larger than those under FRGMs. The pier
bottom shear force and bending moment of the CHRF bridges under BRGMs were about
1.56–2.53 and 1.32–3.14 times larger than those under FRGMs. BRGMs affect CHRF bridges
significantly. In addition, the internal force of the pier bottom of the CHRF bridges under
bidirectional excitation is significantly greater than that under unidirectional excitation.
The shear force of the pier bottom of the CHRF bridges under bidirectional excitation was
approximately 1.34–1.46 times larger than that under the X-direction excitation. BRGMs
significantly increase the internal force of CHRF bridges. MRGMs have a greater influence
on the internal force of CHRF bridges than FRGMs.

4.2.2. Tie Beams and Auxiliary Piers (Pier 3)

Figure 11 shows the typical time history curve of the bending moment of the tie beam
and the auxiliary pier under different ground motions.
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As shown in Figure 11a–c, under the three excitation modes, the bending moment of
the tie beam was the largest under BRGM (RSN1539). However, the bending moment of the
tie beam was the smallest under FRGM (RSN1198). The bending moment of the tie beam
under two-way excitation was significantly greater than that under one-way excitation.
Two-way excitation generated a significant residual internal force under the three typical
ground motions, indicating that the structure had a plastic failure.

As shown in Figure 11d–f, the bending moment of the auxiliary pier was the largest
under BRGM (RSN1539), and the moment of the auxiliary pier was the smallest under
FRGMs (RSN1198). Figure 12 shows a comparison of the internal forces of the tie beams
and auxiliary piers considering the directional effects of ground motions under the three
excitation methods.
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(b) auxiliary pier internal force.

As shown in Figure 12, the internal force of the tie beam and auxiliary pier was the
largest under BRGMs; however, the internal force was the smallest under FRGMs. The
shear force of the tie beams and auxiliary piers of the CHRF bridges under MRGMs were
approximately 1.05–2.60 times larger than that under FRGMs, and the shear force of the
tie beams and auxiliary piers of the CHRF bridges under BRGMs were approximately
1.23–2.69 times larger than that under FRGMs. It should be noted that the impact of near-
fault ground motions on the internal force of auxiliary piers was more significant. Therefore,
the design of structural auxiliary piers should focus on the seismic design of CHRF bridges.

4.2.3. Bearing

Figure 13 shows the shear forces in the bridge direction of B-1–B-4 bearings under
different ground motions.
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As shown in Figure 13, the shear force of the bearings was the largest under BRGMs.
However, the shear force of the bearings was the smallest under FRGMs. Under Y-direction
excitation, the shear force of the bearings was the smallest. While the shear force of
the bearings under bidirectional excitation was the largest, the dynamic response of the
structure was higher. The relationship between the magnitude of the shear force of the
B-1–B-4 bearings caused by the directional effect of ground motion was the same as the
relationship caused by the pulse effect ground motion.

4.3. Pounding Response and Impact
4.3.1. Pounding Response

Table 5 shows the average pounding force (PF) and the number of poundings (PN)
at the beam ends under the action of the three excitation methods under different ground
motions. Figure 14 shows the acceleration time history of the main beam and the time
history curve of the pounding force under typical ground motions.

Table 5. Statistics of pounding force and number of poundings.

Different Ground
Motions Types

Pounding Force/MN Number of Poundings

X Y X + Y X Y X + Y

Pulse effect
IP −54.89 −17.47 −68.75 3 2 3
NP −53.99 −27.43 −63.28 4 6 7
FF −52.29 −30.94 −61.73 5 11 6

Directional effect
FR −18.08 - −23.74 2 - 3
MR −28.40 −17.50 −35.30 3 2 3
BR −48.99 −29.77 −59.95 3 5 4
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As shown in Table 5 and Figure 14, the impact response of the main and approach
bridge of the CHRF bridges was significantly affected by the ground motion. The peak
pounding forces between the main and approach bridge under the three types of ground
motions were PFIP > PFNP > PFFF, and the poundings under the three types of ground
motions were PNIP < PNNP < PNFF. Therefore, from the above observations, it can be
inferred that the velocity pulse of IPGMs significantly increased the seismic response of
the structure. The velocity pulse caused the peak force of pounding between the main and
approach bridges (within the range of the velocity pulse duration). The frequency spectrum
range of FFGMs was wide, and the ground motion response was stable. Thus, FFGMs will
cause a sizeable pounding within a certain period of time, even if the pounding force is
small. The pounding force coincided with the peak point of the acceleration time history of
the main beam. The duration of pounding had a significant influence on the acceleration of
the main beam. The instantaneous acceleration under IPGMs was large, and the number
of poundings was low. The damage caused by pounding should not be ignored. The PNs
under FFGMs were larger than that under IPGMs, and the peak acceleration of the main
beam under FFGMs was smaller than that under IPGMs.

Moreover, the rupture direction effect of the near-fault ground motion was significant
for the pounding response between the main and approach bridges of the CHRF bridges.
The peak pounding force between the main and approach bridges caused by the three types
of ground motions in the rupture zone satisfied PFBR > PFMR > PFFR, and the corresponding
pounding times satisfied PNBR > PNMR > PNFR. Based on the aforementioned observations,
it can be inferred that the higher PF and the increased PNs under BR were mainly due to the
smaller fault distance. The MRGMs continued to propagate forward, and the Doppler effect
became obvious. The propagation process releases energy; therefore, the PN increases, and
the PF increases.

4.3.2. Pounding Impact

Table 6 shows a comparison of the maximum shear force (SF) and bending moments
(BM) of the critical components with pounding (P) and without pounding (NP) under
different ground motions, with impulse and directional effects.

Table 6. Statistics of shear force and bending moment of each component.

Key
Sections

F/kN Pulse Effect Directional Effect

M/kN·m IPGMs NPGMs FFGMs FRGMs BRGMs MRGMs

Main pier

P-SF 10,590.49 10,117.43 9191.15 6408.41 8911.81 9336.09
NP-SF 7309.57 8796.20 8282.48 8194.44 7291.88 8566.71
Ratio 44.89% 15.02% 10.97% −21.80% 22.22% 8.98%
P-BM 39,880.16 43,713.81 41,745.36 35,492.88 36,120.56 40,817.47

NP-BM 47,637.19 52,693.09 48,254.57 32,146.77 41,858.16 48,255.54
Ratio −16.28% −17.04% −13.49% 10.41% −13.71% −15.41%

Tie beam

P-SF 15,069.49 15,056.09 14,241.88 11,597.53 12,266.59 14,276.41
NP-SF 5110.90 6617.80 5676.14 6607.25 4730.14 5784.67
Ratio 194.85% 127.51% 150.91% 75.53% 159.33% 146.80%
P-BM 49,622.31 47,224.76 40,602.63 39,667.17 41,710.43 48,767.46

NP-BM 16,989.43 34,651.89 19,284.19 22,532.77 15,424.39 18,815.00
Ratio 192.08% 36.28% 110.55% 76.04% 170.42% 159.19%

Auxiliary
pier

P-SF 1846.72 1787.68 1582.90 1053.28 1279.40 1624.74
NP-SF 3895.29 4497.91 4438.73 3008.92 3221.54 3667.43
Ratio −52.59% −60.26% −64.34% −64.99% −60.29% −55.70%
P-BM 154,555.07 171,933.93 150,589.00 71,415.64 86,874.46 155,610.80

NP-BM 112,460.89 248,338.46 129,086.01 42,970.71 99,640.83 112,749.89
Ratio 37.43% −30.77% 16.66% 66.20% −12.81% 38.01%
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As shown in Table 6, under the impulse and directional effect of ground motions,
the shear force of the main pier increases significantly, and the bending moment of the
main pier decreases owing to pounding. The shear force and bending moment of the tie
beam increase owing to pounding. Therefore, pounding has a significant impact on the tie
beams. The shear force of the pier is reduced, and the bending moment of the auxiliary
pier increases significantly owing to pounding. The internal forces of the structure under
IPGMs are greater than those under FFGMs, with and without pounding. The pounding
under the near-fault ground motion is more obvious. Therefore, pounding reduction
measures should be implemented for bridge structures near faults. The internal force of
the structure under BRGMs, with and without pounding, was the largest, and the internal
force of the structure under FRGMs, with and without pounding, was the smallest. When
CHRF bridges were excited under the impulse and directional effect of ground motions, the
bending moment and shear force of the tie beam increased significantly after the pounding.
Therefore, an energy dissipation design should be developed to avoid damage due to
near-fault earthquakes. It should be noted that when the pounding occurs, the acceleration
response of the main girder increases (as Figure 14 shown). Therefore, the inertia force
of the main girder increases. Additionally, the pier top shear force will increase. On
the other hand, the pounding may induce high-order vibration mode of the main pier.
Additionally, the pier bottom shear force and the pier bottom bending moment are affected
by high-order vibration of the main pier and connection of the tie beam. Thus, it is hard to
clarify the variation trends of the pier bottom shear force and pier bottom bending moment
after pounding.

Figure 15 shows the time history curves of the shear and bending moments of the
critical section under typical ground motions.

As Figure 15a,b shows, the shear force of the main pier time history curve increases
significantly with pounding, and the bending moment time history curve decreases. The
shear force time history curve of the IPGM increases obviously in the pulse period, and the
pounding has a significant impact on the pulsed ground motions. The internal force of the
structure of the IP and NP ground motions is much greater than that of the FFGM, and all
three excitation methods show this change. The shear force and bending moment of the
main pier bottom of the IPGM (RSN1550) are slightly smaller than those of the NPGMs.
This is because the structure response of the IPGM is obvious only in the pulse period.

As shown in Figure 15c,d, the shear force and the bending moment of the tie beam
increased significantly after pounding. Owing to the pounding under the three excitation
methods, the shear force of the tie beam under IP and NP ground motions increased, and
the shear force under FFGMs decreased. Therefore, pounding had an adverse effect on
the bending moment of the tie beam. The bending moment of the tie beam was relatively
large; therefore, the bending failure of the tie beam should be considered in the design. The
internal force of the structure, with and without pounding, under the two near-fault ground
motions, was greater than that under far-fault ground motions, and this was observed
under all three excitation methods.

As shown in Figure 15e,f, the shear force time history curve of the IPGMs increases
significantly in the pulse period, and the bending moment time history curve of the
structure with pounding under the three pulse-effect ground motions is significantly higher
than that of the structure without pounding. Owing to the pounding under the three
excitation methods, the shear force of the auxiliary pier generally decreased, and the
bending moment of the auxiliary pier increased. The internal force of the structure, with
and without pounding, of the two near-fault seismic waves was much greater than that of
the far-fault ground motion. The structural internal force of the auxiliary pier of the IPGM
(RSN1550) was smaller than that of the NPGM (RSN1537).
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Figure 15. Internal force time history curve of critical section with and without pounding; (a) X + Y
shear force time history curve of main pier; (b) X + Y bending moment time history curve of main
pier; (c) X + Y shear force time history curve of tied beam; (d) X + Y bending moment time history
curve of tie beam; (e) X + Y shear force time history curve of auxiliary pier; and (f) X + Y bending
moment time history curve of auxiliary pier.
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In summary, the internal force of the structure under the directional effect of ground
motion exhibited the same change trends as that under the pulse effect ground motion
with and without pounding. The shear force of the main pier and the auxiliary pier were
significantly increased, and the shear force and bending moment of the tie beam were
significantly increased. However, the bending moment of the main pier and auxiliary pier
decreased significantly. As shown in Table 5, the structure had the largest response under
BRGMs and had the smallest response under FRGMs; therefore, the internal force time
history curve of each component of the ground motion with different directional effects is
not given. It should be noted that this study is mainly focused on the dynamic response and
pounding response of the CHRF bridges under horizontal ground motions. The influence
of vertical components and spatial variation of ground motions on the CHRF bridges, as
well as the plasticity/damage of the main girder of CHRF bridges, will be the main focus
of study in future.

5. Conclusions

In this study, a nonlinear analysis model of a curved high-pier rigid frame bridge
(CHRF bridge) was established using the OpenSees platform. The seismic response law of
the CHRF bridge was symmetrically analyzed under different near-fault ground motions
(NFGMs). Subsequently, the pounding response between adjacent components of CHRF
bridge was investigated, and the influence law of the seismic pounding on the dynamic
response of CHRF bridge was clarified. The main conclusions are as follows:

1. The seismic response of CHRF bridges under IPGMs is significantly larger than that
of under NPGMs, while the dynamic response of CHRF bridges under FFGMs is
minimum. IPGMs induce a larger pounding force and a smaller number of poundings
compared with FFGMs. The energy dissipation design of the tie beam is a significant
part of the seismic design of CHRF bridges under the NFGMs.

2. The directional effect of NFGMs has a significant impact on the seismic response of
CHRF bridges. The internal force of the structure and the shear force of the bearing
are the largest under BRGMs, and the seismic response of the structure is the smallest
under FRGMs. The directional effect of ground motions results in a trend that the
pounding force and the number of poundings increase from the FRGMs to the BRGMs.

3. Comparing the cases with pounding with the cases without pounding, under the
pulse effect and directional effect of ground motions, the shear force of the main pier
increased and the bending moment of the main pier decreased, the bending moment
of the tie beam increased, the shear force of the auxiliary pier decreased, and the
bending moment of the auxiliary pier increased.
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Nomenclature

BR backward region
BRGMs backward region ground motions
CHRF bridges curved high-pier rigid frame bridges
FF far-fault
FFGMs far-fault ground motions
FR forward region
FRGMs forward region ground motions
IP impulse-like
IPGMs impulse-like ground motions
NFGMs near-fault ground motions
NP non-pulse-like
NP-BM bending moments without pounding
NPGMs non-pulse-like ground motions
NP-SF shear force without pounding
MR middle region
MRGMs middle region ground motions
P-BM bending moments with pounding
PF pounding force
PN number of poundings
P-SF shear force with pounding
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