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Abstract: The objective of this paper is to propose a method for evaluating the eco-efficiency of
business organizations. In order to adequately capture the inherent properties of eco-efficiency, we
present a decision support model that can evaluate an organization based on ranking the derived
efficiencies at the operational, energy, and environmental dimensions and taking these factors into
account comprehensively. The proposed model was designed in the form of a combination of data
envelopment analysis (DEA) and TOPSIS, and we tried to make use of the advantages of each method
and offset the disadvantages. Specifically, the operational, energy, and environmental efficiencies were
derived through DEA. Then, each efficiency was set as the criteria, and the eco-efficiency ranking was
determined through TOPSIS. This study shows that it has the advantage of not requiring preference
information from the decision maker and, at the same time, can improve the discriminatory power
between efficient and inefficient decision-making units. To apply the proposed model, the analysis
results are presented through an illustrative example, and the theoretical significance is described. It
is also explained that the proposed model can provide a more realistic and convincing evaluation.

Keywords: eco-efficiency; data envelopment analysis; energy; environment; operations; TOPSIS

1. Introduction

Over the past 30 years, the discussion of efficiency measures related to the envi-
ronment has continued. In the 1990s, Schalteger and Sturm [1] introduced and defined
eco-efficiency as “business connections to sustainable development.” Since then, scholars
have paid attention to measuring and evaluating eco-efficiency. Specifically, measurement
and evaluation models have been developed by operations research scholars [2–7], and the
developed models have been applied to various fields [8–15]. The concept of eco-efficiency
is analyzed at the national level, used in the evaluation of industries or regions within a
country and used to measure and evaluate efficiency at the organizational level. Regardless
of the level of evaluation, obviously, the main concern of measuring eco-efficiency is to
improve economic performance by simultaneously reducing environmental impact and
energy use. In addition, the definition of eco-efficiency differs somewhat among the schol-
ars who present this concept, but fundamentally, they shed light on the common core of
“producing appropriate pollutants and energy efficiently”. There has been growing interest
in eco-efficiency in many business sectors, and it is believed that eco-efficiency evaluation
can supplement the traditional evaluation system that is obsessed with technological and
economic evaluation and support the decision-making process [16].

Data Envelopment Analysis (DEA) has been widely used since it was first proposed
by Charnes et al. [17] as an effective tool to evaluate the productivity and efficiency of
organizations. DEA has the advantage of considering many inputs and outputs. In addition,
DEA does not require a parameter specification of a particular function, nor does it require
a predetermination of the weights of each input and output. For these reasons, since the
original model was carried out, many researchers have contributed to the refinement and
extension of DEA for their various fields of interest.
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Traditional DEA models allow the users to evaluate the economic performance of
individual decision-making units (DMUs) depending on a profitability perspective. How-
ever, addressing the environmental performance and energy utilization has become one of
the important issues for analyzing the performance of organizations. Therefore, extended
DEA methods that take into account those issues are required. For the past 20 years, DEA
has been widely used as a methodology for measuring efficiency while considering en-
vironmental factors (e.g., [2,18–34]) and energy factors (e.g., [20,29,32,35–39]). Although
somewhat different, scholars have presented measures for environmental and energy ef-
ficiency while taking into account the above two factors. In DEA studies, environmental
efficiency has been measured by incorporating environmentally detrimental factors, which
can be considered undesirable outputs. Theoretically, DEA methods taking into account un-
desirable outputs were developed by Färe and Grosskopf [40], Korhonen and Luptacik [2],
Seiford and Zhu [41], and Liu et al. [42]. Since Färe et al. [43] studied energy efficiency,
numerous studies have proposed the method for evaluating energy efficiency by employ-
ing DEA. As such, efforts have been made to evaluate the organization’s performance
through environmental efficiency and energy efficiency, but they have not reached the
point of deriving eco-efficiency by integrating these measures. Recalling the meaning of
eco-efficiency defined above, it would be the most reasonable approach to consider both
environmental efficiency and energy efficiency as well as operational efficiency, which is
fundamental for business organizations.

Nevertheless, the reason why there are not many studies trying to integrate these three
efficiencies is that the preference information indicating the relative importance of each
is not known. In other words, when these three efficiencies are integrated through DEA,
decision makers are required to judge their relative importance in relation to operation, the
environment, and energy. As in Lee and Park [44], demanding relative importance from
decision makers can be an advantage in that it can increase the degree of freedom, but on the
contrary, it can be pointed out as a disadvantage in that it can burden decision makers. In
addition, it may be difficult to use weights because the distribution of efficiency scores is not
homogeneous due to the characteristics of the variables used in each efficiency calculation.

How can an eco-efficiency evaluation be performed that reasonably synthesizes op-
erational, energy, and environmental efficiency? In this context, can the evaluation of
eco-efficiency be sound mathematically and make a sufficiently discriminatory evaluation?
While answering the above questions, we would like to suggest a method that practitioners
can easily understand and apply. Overall, this study proposes a model for evaluating
organizational efficiency in terms of operation, environment, and energy and proposes a
method of assessing eco-efficiency without information on the preference of decision mak-
ers. The relationship between each efficiency derived through DEA and overall efficiency
will be identified, and a ranking method for eco-efficiency by combining with TOPSIS, a
representative Multi-Criteria Decision Making (MCDM) technique, will be presented. The
reasons for using TOPSIS in this study can be summarized in three ways. First, TOPSIS
is intuitive and simple [45]. Second, it does not require the decision makers’ preference
information [46]. Third, the performance measures of all alternatives to the attributes can
be easily visualized. Finally, it allows for a compromise between criteria, where a poor
outcome of one criterion may be overruled by a good outcome for another criterion [47].
These characteristics show that TOPSIS can be one of the most suitable methods for de-
riving a ranking without decision makers’ preference information in consideration of the
fragmentation of multiple efficiency scores derived through DEA. It should be noted that
this does not mean that TOPSIS is the only technique that should be used in combination
with DEA, and other ranking-based MCDM techniques that share the above advantages
can also be utilized.

The rest of the paper is organized as follows. Section 2 describes the models for
deriving the overall efficiency and partial efficiency and examines the relationship between
the efficiency measures. In addition, a description of the application of the methodology is
presented along with a theoretical review. Section 3 explains how to derive eco-efficiency
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rankings by synthesizing the operational, energy and environmental efficiencies through
the example of an agricultural production system. Section 4 discusses the theoretical
and practical implications of the study. Section 5 concludes the study by discussing the
limitations of the study and seeking paths for future research.

2. Methods
2.1. Overall Efficiency

In DEA terminology, the organization under evaluation is called a decision-making
unit (DMU). The efficiency of a DMU is expressed as a ratio of the weighted sum of its
outputs to the weighted sum of its inputs. Thus, it is necessary to classify all variables
according to their functional uses in order to define the overall efficiency. In this study,
we decompose the input variables into three types: operational inputs, energy inputs, and
environmental inputs. The output variables are also divided into two types: (general)
outputs and environmental outputs. Given these types of variables, we can define the
operational, energy, and environmental efficiencies as follows:

s

∑
r=1

ury+ro/
m

∑
i=1

vixio (1)

s

∑
r=1

ury+ro/
p

∑
k=1

wkzko (2)

s

∑
r=1

ury+ro/
q

∑
h=1

µhy−ho (3)

Generally, the outputs have the characteristic of being better when having larger values.
For this reason, these outputs are also called desirable outputs. In this study, we set the
(general) outputs y+r as desirable outputs. We define the input variables xi as operational
inputs, typically used in the production process for ensuring greater efficiency as they are
reduced (e.g., labor, machinery, and resources). Now, the operational efficiency of DMU
o is expressed as in Equation (1), where vi and ur are unknown non-negative weights for
the operational inputs and outputs, respectively. The energy efficiency is measured by
separating the energy-related components from the general production resources. Thus,
energy inputs zk are considered input variables, and accordingly, the energy efficiency
of DMU o can be calculated by Equation (2), where wk is the unknown non-negative
weights for the energy inputs. Equation (3) expresses the environmental efficiency. Simply,
environmental efficiency explains how to efficiently produce the outputs relative to the
environmental inputs, and environmental efficiency is calculated as the ratio of the outputs
to the environmental inputs. However, in this study, we define y−h as a set of variables
consisting of environmental inputs and environmental outputs, because the environmental
outputs are also treated as behaving inputs in a fractional form for efficiency calculation.
This idea was also proposed and utilized by Korhonen and Luptacik [2], Zhang et al. [29],
Lee and Park [44], and Cecchini et al. [48].

The conventional DEA method is followed the assumption that all input variables
affected all the output variables. This model implicitly assumes that all DMUs operate a
constant returns to scale (CRS) transformation of the inputs into outputs. We adopt the
CRS assumption in this study. When there are total of m + p + q inputs and s outputs for
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each DMU j (j = 1,2, . . . ,n), the overall efficiency of a particular DMU o can be formulated
as in the following fractional programming model:

max

s
∑

r=1
ury+ro

m
∑

i=1
vixio+

p
∑

k=1
wkzko+

q
∑

h=1
µhy−ho

s.t.
s
∑

r=1
ury+rj

m
∑

i=1
vixij+

p
∑

k=1
wkzkj+

q
∑

h=1
µhy−hj

≤ 1

vi ≥ 0
wk ≥ 0
µh ≥ 0
ur ≥ 0

(4)

Additionally, Equation (4) can be transformed into a linear model by using the Charnes–
Cooper transformation [49]:

max θ =
s
∑

r=1
ury+ro

s.t.
s
∑

r=1
ury+rj −

m
∑

i=1
vixij −

p
∑

k=1
wkzkj −

q
∑

h=1
µhy−rj ≤ 0

m
∑

i=1
vixio +

p
∑

k=1
wkzko +

q
∑

h=1
µhy−ro = 1

vi ≥ 0
wk ≥ 0
µh ≥ 0
ur ≥ 0

(5)

2.2. Partial Efficiency

In Equation (5), the optimal objective function value becomes the efficiency score of
DMU o. If the efficiency score equals one, DMU o is regarded as efficient and is also on
the efficient frontier; otherwise, it is inefficient. Equations (4) and (5) allow the DMU o to
assign the most favorable weights in calculating the ratio of the aggregated output to the
aggregated input. However, the weighting scheme of the traditional DEA model is not
applicable for some cases, since one or very few variables may be heavily weighted, and
the effect of the other variables may be completely ignored. In addition, not all inputs in
the production process necessarily affect all of the output factors. Namely, some inputs
may not influence certain outputs in many settings measured for efficiency. Therefore,
it is necessary to convert the aggregated form of the input-output setting into a form
that can measure the partial efficiency. In addition, we can point out the difficulties
that arise when evaluating performance across multiple dimensions through a measure
of efficiency in DEA. In this case, for a detailed analysis of the efficiency of the DMUs,
it was necessary to determine the efficiency of each individual dimension. The partial
efficiency measures provide deeper insight into how an organization operates and can have
significant business implications [50]. This is also consistent with the DEA’s general purpose
of finding areas where certain inefficiencies are occurring and supporting performance
improvement actions.
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We propose a model that disaggregates efficiency by considering the nature of the
variables. From Equations (1–3), the partial efficiency models for measuring the operational,
energy, and environmental efficiencies can be formulated as follows:

max θ1 =
s
∑

r=1
ury+ro

s.t.
s
∑

r=1
ury+rj −

m
∑

i=1
vixij ≤ 0

m
∑

i=1
vixio = 1

vi ≥ 0
ur ≥ 0

(6)

If the optimal value of the objective function in Equation (6) equals one, then the
specific DMU o is on the operationally efficient frontier:

max θ2 =
s
∑

r=1
ury+ro

s.t.
s
∑

r=1
ury+rj −

p
∑

k=1
wkzkj ≤ 0

p
∑

k=1
wkzko = 1

wk ≥ 0
ur ≥ 0

(7)

If the optimal value of the objective function in Equation (7) equals one, then the
specific DMU o is on the energy efficient frontier:

max θ3 =
s
∑

r=1
ury+ro

s.t.
s
∑

r=1
ury+rj −

q
∑

h=1
µhy−hj ≤ 0

q
∑

h=1
µhy−ho = 1

µh ≥ 0
ur ≥ 0

(8)

If the optimal value of the objective function in Equation (8) equals one, then the
specific DMU o is on the environmentally efficient frontier.

Definition 1. A DMU o is said to be operationally efficient if its partial efficiency score θ1 = 1.

Definition 2. A DMU o is said to be energy efficient if its partial efficiency score θ2 = 1.

Definition 3. A DMU o is said to be environmentally efficient if its partial efficiency score θ3 = 1.

Theorem 1. If a DMU is partially efficient, it is efficient overall.

Obviously, the overall efficiency score is larger than or equal to the maximum value
of the three partial efficiency scores. As shown in Equation (5), the overall efficiency
evaluation model includes all the variables used in each of the partial efficiency evaluations,
and thus it has more choices for having the most favorable weight.
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Theorem 2. For any DMU j, θ∗j ≥ max
{

θ1
j , θ2

j , θ3
j

}
.

Proof. (1) When assuming that max
{

θ1
j , θ2

j , θ3
j

}
= θ1

j < 1, the first constraint in Equation (6)
is a more restricted version than that in Equation (5). Thus, Equation (5) permits multipliers
which identify other input variables. The more variables considered, the greater the chance
some inefficient DMUs will dominate the added dimension. (2) When assuming that
max

{
θ1

j , θ2
j , θ3

j

}
= θ1

j = 1, by Theorem 1, θ∗j = 1. By combining (1) and (2), the theorem is
proven. �

Furthermore, DMUs that were not efficient through partial efficiency evaluation could
be classified as efficient units in overall terms. From the above discussion, we can conclude
that the overall efficiency model overestimates the efficiency of DMUs, although it contains
variables related to operation, energy, and environment.

2.3. No Preference Information

The original DEA model minimizes decision maker intervention in that it measures the
relative efficiency without including judgment on the decision maker’s preferences. Various
DEA techniques that can utilize a decision maker’s preference information have been
proposed. Examples include Golany’s method of setting targets [51], Athanassopoulis’s
method of using weight restrictions [52], and Charnes et al.’s method of using the cone
ratio [53]. However, all of the above-mentioned methods require the decision maker’s
preference information, and in most cases, it is subjective and can be difficult to obtain. In
addition, these methods focus on capturing preference information for the variables used in
DEA. In such a situation, if the number of variables increases, it becomes difficult to reflect
the preference information, which increases the burden on decision makers. Furthermore,
if preference information for each variable is considered in the form of weights, there is
a possibility that the merits of DEA, which is based on optimistic self-evaluation, may be
diluted. Therefore, it can be said that a method that can reflect the common characteristics
of variables while maintaining the advantage of DEA that does not utilize the decision
maker’s preference information is required.

In this study, using the concept of partial efficiency presented in the above subsection,
we derive efficiency measures that convey the common characteristics of the inputs and
outputs and propose a method to evaluate the overall performance based on this. If the
operational, energy, and environmental efficiencies, which are the main interest of this
study, are defined as partial efficiency, and each efficiency score is derived, the distribution
of each efficiency score will not be homogeneous. In a situation where there are multiple
partial efficiency scores, how to make a comprehensive judgment without the decision
maker’s preference information becomes a critical problem. MCDM techniques can help
solve this problem. In this study, we propose a method for evaluating performance based
on ranking by synthesizing multiple partial efficiencies using TOPSIS, one of the most
popular MCDM techniques.

2.4. TOPSIS

TOPSIS (a technique for order preference by similarity to an ideal solution) is one of
the major classical MCDM methods that was originally developed by Hwang and Yoon in
1981 [54]. The mechanism of this approach is based on the relative distance measure by
calculating the distance from each alternative to the ideal solution (PIS) and negative ideal
solution (NIS), where n is the number of criteria in the decision problem. With TOPSIS,
the best alternative is determined with the greatest relative closeness to the ideal. In this
study, the partial efficiency scores are recognized as criteria, and the DMUs are regarded as
the alternatives to determine the ranking order of all DMUs. The procedure of TOPSIS is
presented below in five steps. In Step 1, the alternative data are normalized via Equation



Sustainability 2022, 14, 3489 7 of 18

(9), where θij is the appraisal matrix R of alternative (DMU) i under the appraisal criterion
(partial efficiency) j and rij is the normalized appraisal matrix R:

rij = θij/

√√√√ n

∑
j=1

θ2
ij , i = 1, 2, . . . , m (9)

In Step 2, these normalized values rij are weighted via Equation (10), where vij is the
weighted normalized values of DMU i under partial efficiency j:

vij = wirij, i = 1, 2, . . . , m; j = 1, 2, . . . , n (10)

In Step 3, the PIS and NIS are determined via Equations (11) and (12), respectively:

A+ =
{

v+1 , . . . , v+n
}
=
{
(maxi vij)| i = 1, 2, . . . , m} (11)

A− =
{

v−1 , . . . , v−n
}
=
{
(mini vij)| i = 1, 2, . . . , m} (12)

The original TOPSIS method can also obtain the PIS and NIS for the lager-the-better
criteria as well as the smaller-the-better criteria. However, since the criteria used in this
study are efficiency scores, the lager-the-better criteria applies, and Step 3 is more simplified.
Step 4 calculates the separation of each alternative from the PIS and NIS for each partial
efficiency using the n-dimensional Euclidean distance:

S+
i =

√√√√ n

∑
j=1

(vij − v+j )
2, i = 1, 2, . . . , m (13)

S−i =

√√√√ n

∑
j=1

(vij − v−j )
2, i = 1, 2, . . . , m (14)

Lastly, Step 5 calculates the relative closeness to the ideal solution (C∗i ):

C∗i =
S−i

S+
i + S−i

, i = 1, 2, . . . , m (15)

This indicates that the smaller the difference between the partial efficiency and ideal
values, the better the performance the DMU will have.

3. Illustrative Example

In this section, we describe how we used our approach to evaluate the operational,
energy, and environmental efficiencies. The LCI data of the agricultural production systems
for 94 soybean farms were first presented by Mohammadi et al. [55]. The data presented
herein were collected for a combinational use of LCI and DEA in the work of Mohammadi
et al. [55]. In addition, Lee and Park [44] modified this dataset to be suitable for DEA. The
reader is referred to Mohammadi et al. [55] for the original data source.

It is very important to select the input and output variables prior to performing DEA
(Table 1). Correlation analysis was performed to validate the isotonic relationship between
the input and output variables, and three inputs were eliminated that were negative to the
output variable (correlation coefficients: −0.04 (water), −0.15 (seed), and −0.03 (CH4)). All
remaining inputs were positively correlated with the output variable; that is, an increase
in any input would not result in a decrease in the output [56–58]. In addition, K2O, an
environmental input, was consumed by only 12 out of 94 farms, so it was also removed.
Therefore, in this illustration, 94 soybean farms were defined as DMUs, and each DMU had
two operational inputs, two energy inputs, five environmental inputs, one environmental
output, and one (general) output. The data are shown in Table A1 of Appendix A.
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Table 1. Input and output variables.

Category Variables

Operational Inputs Labor, Machinery
Energy Inputs Diesel, Electricity

Environmental Inputs Herbicides, Insecticides, Urea, FYM, P2O5
Environmental Output Straw

General Output Soybeans

To verify the relationship between the number of variables and the number of DMUs
used in this case, it is noted that the rule of thumb by Golany and Roll [57] and Cooper
et al. [59] was satisfied, because the number of DMUs was over three times higher than the
total number of input and output variables.

3.1. Overall Efficiency and Partial Efficiency Scores

The operational, energy, and environmental efficiency scores were derived through
Equations (6)–(8), respectively, and the overall efficiency via Equation (5) was derived to
compare the results. Through this result, it was possible to identify the flaws of utilizing the
overall efficiency. First, the discriminant power was very low. Among the 94 DMUs, 57 were
efficient. The parsimonious variable setting was particularly important. As more variables
are included in a DEA model, the ability to distinguish between efficient and inefficient
DMUs decreases, as more DMUs appear to be efficient due to increased dimensionality. In
the overall efficiency evaluation model set up for comparison with the partial efficiencies
we would utilize, all inputs were included, making the efficiency difficult to judge. Second,
the overall efficiency model did not address the characteristics of the variables (whether
an operational variable, an energy variable, or an environmental variable). Through this
model, it was possible to figure out which variables were contributing to the efficiency
score through multipliers, but since a large number of variables was included in the model,
it was difficult to determine what role the common characteristics of the input variables
played in deriving the efficiency.

The concept of partial efficiency, defined as the partitioning of input variables, leads
to specific implications for the efficiency evaluation of DMUs. The partial efficiency model
increased the discriminant power by reducing the number of efficient DMUs. This was a
natural result because we reduced the number of variables in each model by decomposing
the input variables into three groups. Through Equations (6–8), 12, 2, and 34 DMUs were
derived as efficient DMUs in terms of operation, energy, and the environment, respectively.
The distribution of efficiency scores gives an idea of how partial efficiencies can be used for
a comprehensive assessment.

Table 2 shows that, overall, the environmental efficiency was higher than the opera-
tional and energy efficiencies. This phenomenon was due to the number of variables for
calculating the efficiency scores; that is, a large number of environmental inputs made the
environmental efficiency score higher. Thus, the overall efficiency highly depended on
the environmental efficiency. The correlation coefficients presented in Table 3 are helpful
in understanding this phenomenon. The values in parentheses shown in Table 3 indicate
p-values.
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Table 2. Descriptive statistics of efficiency scores.

Operational
Efficiency

Energy
Efficiency

Environmental
Efficiency

Overall
Efficiency

Mean 0.787 0.543 0.872 0.934
Median 0.795 0.529 0.891 1.000

S. D. 0.144 0.155 0.129 0.099
Range 0.491 0.760 0.465 0.344

Minimum 0.509 0.240 0.535 0.656
Maximum 1.000 1.000 1.000 1.000

Table 3. Spearman’s correlation coefficients.

Energy Efficiency Environmental
Efficiency Overall Efficiency

Operational
Efficiency 0.666 (0.00) * 0.216 (0.03) 0.565 (0.00)

Energy Efficiency 0.350 (0.00) 0.628 (0.00)
Environmental

Efficiency 0.722 (0.00)

* Values in parentheses indicate p-values.

It can be found that there was a significant difference in the dispersion as well as the
locations of the efficiency scores. In particular, in the case of energy efficiency, it can be
observed from Table 2 and Figure 1 that the degree of dispersion was significantly larger
than those of the other efficiencies. Here, since the order of the DMUs was nominal, there
was no need to give meaning to the pattern along the horizontal axis. If eco-efficiency is
derived by simply integrating the three partial efficiencies with different distributions in
this way, it is inevitably biased to a specific efficiency value. In this analysis, a high degree
of bias for the environmental efficiency may have occurred.
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3.2. Ranking Evaluation

Because it was impossible to show the calculation results of all 94 DMUs due to space
limitations, only the efficiency scores, the indicators used in the final calculation of TOPSIS,
and the derived rankings were reported. These results are presented in Table 4. In addition,
to help the reader understand, the calculation process and its results are explained with
the example of DMU 11. The partial efficiency of DMU 11 showed the scores of 0.885
(operational efficiency), 0.647 (energy efficiency), and 0.897 (environmental efficiency)
through Equations (6)–(8), respectively. It is noteworthy that the overall efficiency score of
this DMU was one, and Equation (5) classified this DMU as an efficient unit. The efficiency
results of DMU 11 show that the DMU, which was inefficient through partial efficiency
evaluation, could be classified as an efficient unit in the overall aspect (Theorem 2). It can be
confirmed that this phenomenon also appeared in other DMUs such as DMU 6, 9, 10, 36, 42,
44, 50, 67, 87, 88, 91, 93, and 94. In sum, a total of 13 DMUs demonstrated this phenomenon.

The first step of TOPSIS is normalization. The partial efficiency scores θj were normal-
ized by Equation (9). Thus, the normalized vector for DMU 11 was calculated as rj = (0.129,
0.172, 0.103). Next, a process was required to apply weights for the operational, energy,
and environmental factors. However, in this study, an equal weight was applied to each
partial efficiency to reflect the situation in which the preference information of the decision
maker was not considered; that is, all wj became one, and hence vj was considered equal
to the normalized vector rj. This process was executed for all DMUs to derive all vij, and
the PIS and NIS for each partial efficiency were found to be A+ = (0.129, 0.183, 0.117) and
A− = (0.033, 0.011, 0.033), respectively; that is, the PIS and NIS of the operational efficiency
were 0.129 and 0.033. The separation measures were derived by substituting the ideal solu-
tions of each partial efficiency and the weighted normalized vector into Equations (13) and
(14). The calculated separation indices were S+ = 0.018 and S− = 0.200. Finally, the relative
closeness to the ideal solution was calculated to be C∗ = 0.200/(0.018 + 0.200) = 0.918.
All the relative closeness indices were derived for all DMUs, and the ranks were derived
in descending order. The ranking of DMU 11 used in the example was analyzed as the
21st-ranked DMU.

Table 4. Efficiency scores and eco-efficiency ranks.

DMU Operational
Efficiency

Energy
Efficiency

Environmental
Efficiency

Overall
Efficiency S+ S− C Eco-Efficiency

Rank

1 1.000 0.971 0.937 1.000 0.018 0.200 0.918 2
2 0.931 0.896 1.000 1.000 0.040 0.178 0.817 5
3 0.693 0.521 0.823 0.836 0.154 0.067 0.302 69
4 0.748 0.481 0.874 0.888 0.154 0.075 0.328 64
5 0.665 0.425 1.000 1.000 0.166 0.090 0.351 56
6 0.759 0.624 0.772 1.000 0.133 0.082 0.380 50
7 1.000 0.662 1.000 1.000 0.103 0.145 0.585 11
8 0.613 0.505 0.892 0.970 0.160 0.071 0.309 68
9 0.598 0.587 0.861 1.000 0.149 0.076 0.338 61

10 0.535 0.465 0.760 1.000 0.177 0.045 0.202 80
11 0.885 0.647 0.897 1.000 0.112 0.112 0.500 21
12 0.818 0.436 0.852 0.895 0.157 0.078 0.330 62
13 0.804 0.437 0.669 0.903 0.168 0.059 0.259 73
14 0.606 0.494 0.607 0.783 0.177 0.038 0.177 86
15 0.678 0.400 1.000 1.000 0.169 0.089 0.347 57
16 0.635 0.432 0.823 0.823 0.172 0.055 0.242 75
17 0.840 0.420 0.860 0.872 0.158 0.081 0.339 60
18 0.555 0.479 0.764 0.923 0.174 0.047 0.214 79
19 0.555 0.385 0.701 0.704 0.189 0.030 0.136 90
20 0.838 0.347 1.000 1.000 0.165 0.102 0.381 49
21 1.000 0.560 0.751 1.000 0.135 0.111 0.451 37
22 0.827 0.598 1.000 1.000 0.124 0.114 0.478 28
23 0.642 0.414 0.745 0.745 0.177 0.043 0.194 83
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Table 4. Cont.

DMU Operational
Efficiency

Energy
Efficiency

Environmental
Efficiency

Overall
Efficiency S+ S− C Eco-Efficiency

Rank

24 0.777 0.534 0.917 0.983 0.142 0.089 0.386 47
25 0.805 0.700 1.000 1.000 0.104 0.126 0.548 17
26 0.635 0.281 0.777 0.797 0.191 0.042 0.179 85
27 0.614 0.240 0.699 0.780 0.199 0.028 0.124 94
28 0.982 0.900 1.000 1.000 0.035 0.185 0.841 4
29 0.870 0.608 1.000 1.000 0.119 0.120 0.500 20
30 0.517 0.402 1.000 1.000 0.180 0.086 0.323 66
31 1.000 0.788 1.000 1.000 0.069 0.163 0.702 8
32 0.992 0.832 1.000 1.000 0.056 0.171 0.753 6
33 0.747 0.418 0.828 0.841 0.165 0.064 0.279 71
34 1.000 0.470 1.000 1.000 0.142 0.130 0.478 27
35 1.000 0.705 0.745 1.000 0.106 0.129 0.549 16
36 0.629 0.378 0.948 1.000 0.175 0.075 0.301 70
37 0.747 0.526 0.953 0.964 0.144 0.091 0.388 46
38 0.674 0.430 1.000 1.000 0.165 0.090 0.354 55
39 0.760 0.493 1.000 1.000 0.149 0.099 0.400 44
40 0.875 0.583 1.000 1.000 0.124 0.118 0.487 24
41 0.589 0.457 0.796 0.834 0.173 0.051 0.226 78
42 0.993 0.657 0.911 1.000 0.106 0.132 0.556 15
43 0.866 0.446 0.750 0.881 0.158 0.076 0.323 65
44 0.768 0.562 0.832 1.000 0.140 0.079 0.361 53
45 0.894 0.702 1.000 1.000 0.096 0.135 0.583 12
46 0.600 0.442 0.661 0.666 0.181 0.033 0.156 89
47 0.825 0.518 0.824 0.901 0.145 0.081 0.359 54
48 0.907 0.650 1.000 1.000 0.108 0.129 0.545 18
49 0.634 0.389 0.770 0.770 0.180 0.044 0.196 82
50 0.915 0.496 0.988 1.000 0.139 0.115 0.452 35
51 0.821 0.364 1.000 1.000 0.164 0.100 0.379 51
52 0.706 0.544 1.000 1.000 0.144 0.099 0.408 41
53 0.721 0.320 0.623 0.830 0.189 0.037 0.162 88
54 0.731 0.550 1.000 1.000 0.141 0.101 0.418 39
55 0.932 0.514 1.000 1.000 0.135 0.121 0.471 31
56 0.924 0.552 1.000 1.000 0.128 0.122 0.487 23
57 0.858 0.533 1.000 1.000 0.135 0.112 0.452 34
58 0.918 0.553 0.761 0.920 0.138 0.094 0.406 42
59 0.837 0.440 0.862 0.932 0.155 0.082 0.346 58
60 0.741 0.364 0.819 0.837 0.173 0.060 0.258 74
61 0.619 0.403 0.775 0.780 0.179 0.044 0.199 81
62 0.980 0.690 1.000 1.000 0.096 0.145 0.602 9
63 0.678 0.541 0.705 0.781 0.158 0.056 0.261 72
64 0.871 0.620 1.000 1.000 0.117 0.121 0.509 19
65 1.000 0.711 0.848 1.000 0.096 0.136 0.586 10
66 0.647 0.415 0.701 0.750 0.179 0.038 0.175 87
67 0.762 0.582 0.859 1.000 0.136 0.085 0.384 48
68 0.733 0.433 0.740 0.766 0.168 0.053 0.239 76
69 0.818 0.606 1.000 1.000 0.123 0.114 0.480 26
70 0.625 0.418 0.587 0.656 0.187 0.028 0.131 92
71 0.736 0.436 0.919 0.958 0.160 0.079 0.329 63
72 0.601 0.357 0.695 0.695 0.189 0.029 0.135 91
73 0.731 0.406 1.000 1.000 0.164 0.093 0.362 52
74 0.544 0.296 0.726 0.798 0.198 0.029 0.128 93
75 0.818 0.444 1.000 1.000 0.153 0.102 0.400 43
76 0.818 0.499 1.000 1.000 0.144 0.105 0.422 38
77 0.739 0.561 0.820 0.855 0.144 0.075 0.343 59
78 0.509 0.334 0.883 0.883 0.190 0.059 0.236 77
79 0.762 0.566 0.716 0.853 0.147 0.069 0.319 67
80 0.965 0.641 1.000 1.000 0.108 0.137 0.558 13
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Table 4. Cont.

DMU Operational
Efficiency

Energy
Efficiency

Environmental
Efficiency

Overall
Efficiency S+ S− C Eco-Efficiency

Rank

81 1.000 0.636 0.962 1.000 0.109 0.137 0.556 14
82 0.606 0.483 0.678 0.715 0.174 0.040 0.188 84
83 1.000 1.000 0.992 1.000 0.002 0.213 0.991 1
84 1.000 1.000 0.829 1.000 0.037 0.202 0.847 3
85 0.824 0.592 1.000 1.000 0.126 0.113 0.473 30
86 0.799 0.594 1.000 1.000 0.127 0.111 0.465 32
87 0.871 0.722 0.666 1.000 0.113 0.108 0.488 22
88 0.909 0.572 0.882 1.000 0.128 0.105 0.452 36
89 1.000 0.650 0.653 1.000 0.125 0.118 0.485 25
90 0.613 0.554 1.000 1.000 0.150 0.096 0.391 45
91 0.678 0.627 0.926 1.000 0.132 0.094 0.416 40
92 1.000 0.637 0.535 1.000 0.137 0.115 0.455 33
93 0.791 0.637 0.957 1.000 0.119 0.108 0.475 29
94 0.906 0.843 0.889 1.000 0.063 0.152 0.707 7

The analysis of the ranking of eco-efficiency obtained by the proposed method showed
different results from the analysis using aggregated measures. First, the analysis results
indicate that all DMUs from the 1st to 41st in the derived eco-efficiency ranking were
organizations with an overall efficiency that satisfied one. In other words, the DMUs
analyzed as being efficient overall through DEA using an aggregated measure were ranked
high in the eco-efficiency evaluation. However, our analysis shows that these 41 DMUs
were specifically identified by presenting their ranks. Second, this analysis showed a
ranking reversal. The overall efficiency of DMU 58, ranked 42nd in eco-efficiency, was
0.920, which was analyzed to be an inefficient DMU. However, 16 DMUs which ranked
lower in eco-efficiency than DMU 58 were overall efficient DMUs. For example, DMU 10
was evaluated as an overall efficient DMU, but the eco-efficiency ranking was 80th, a fairly
low ranking.

This was because the environmental efficiency score of DMU 10 was higher than the
other partial efficiency scores, and it seems that it was because the environmental efficiency
had the lowest discriminant power in the partial efficiency analysis. More comprehensively,
it can be said that the overall efficiency was highly dependent on the environmental
efficiency, and on the contrary, it was the result of a lack of correlation with the operational
and energy efficiencies. In this paper, we discussed in Section 3.1 that the reason for these
results was related to the number of variables involved in DEA. In order to support the
empirical results of this discussion, Spearman and Kendall’s rank correlation analysis was
performed. The rank correlation coefficient was derived according to how each partial
efficiency showed a correlation to the overall efficiency and eco-efficiency, and the results
are summarized in Table 5.

Table 5. Spearman and Kendall’s Tau correlation coefficients.

Overall Efficiency Rank Eco-Efficiency Rank

Spearman Kendall Spearman Kendall

Operational Efficiency Rank 0.590 0.472 0.858 0.658
Energy Efficiency Rank 0.618 0.485 0.683 0.686

Environmental Efficiency Rank 0.712 0.616 0.618 0.473

4. Discussion
4.1. Theoretical Contribution

In the case of evaluating the eco-efficiency using aggregated measures through DEA,
it was shown that, theoretically, even if only one of the partial efficiencies was analyzed
to be efficient, it was determined to be an overall efficient DMU (Theorem 1). In addition,
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it was shown that the overall efficiency could be expressed as one even if it was not
classified as an efficient DMU in any partial efficiency (Theorem 2). It was also empirically
demonstrated that a significant number of DMUs exhibited this phenomenon through a
case study. This study explained that when evaluating the eco-efficiency inherent in the
concept of multiple partial efficiencies such as operational, energy, and environmental,
a method that can supplement DEA is required, and TOPSIS is presented as one of the
complementary methods.

Another contribution relates to the use of preference information. Prior studies have
evaluated eco-efficiency by applying weights according to subjective judgment by asking
the decision makers for their preference information or using equal weights [16,29,57,58].
However, since the use of these weighting schemes involves the subjectivity of the decision
maker, it may be difficult for stakeholders to trust the results. Therefore, based on the
independent evaluation of each partial efficiency, we proposed a decision support tool
that could evaluate the partial efficiencies in a balanced manner without incorporating
the preference information. The key to balancing here is that it reflects the distribution
of the derived partial efficiency scores, which can add credibility to the evaluation of the
eco-efficiency.

4.2. Practical Implication

This study presented a method for explicitly classifying the state of each DMU, even
when evaluating the eco-efficiency of a large number of DMUs. When practitioners evaluate
a number of input and output variables through DEA, discriminant power often decreases,
making practical application difficult and often meaningless. In addition, the results are
only explained by relying on specific variables, failing to derive practical implications
for how the eco-efficiency score is good or poor in terms of operation, energy, or the
environment. This study pointed out the problems of previous studies using integrated
measures that offset the characteristics of each variable, even though it is possible to develop
partial efficiency indicators suitable for each aspect when variables can be classified in
terms of operation, energy, and the environment. In other words, it helps practitioners
understand by structuring the factors involved in measuring eco-efficiency into operational,
energy, and environmental dimensions and presenting a way to illuminate the nature of
each dimension. In addition, through the combined use of DEA and TOPSIS, the evaluation
results for eco-efficiency can be presented in a discriminative ranking, which means that it
is easy for practitioners to actually use them.

In addition, it conveys to practitioners and stakeholders that environmental efficiency
and eco-efficiency cannot be regarded as the same concept. Practitioners must remember
that in order to consider the operational perspective of the organization and to properly
follow the definition of eco-efficiency, measurements and evaluation must be carried out in
a form that encompasses operation, energy, and the environment, as in this study.

5. Conclusions

In this paper, a performance evaluation model based on the concept of eco-efficiency
was proposed, which was constructed by combining DEA and TOPSIS. The analysis was
performed through calculations of the operational, energy, and environmental efficiencies,
and the eco-efficiency ranking was finally derived. The model proposed in this paper can
provide a more realistic and persuasive evaluation, and its value can be summarized in
three aspects as follows:

1. Considering the characteristics of DEA, it was shown that the derivation of the
overall efficiency could not actually capture the eco-efficiency. Theoretically, this part
was pointed out, and this phenomenon was confirmed and explained through an
illustrative example.

2. An analysis technique that can make a ranking evaluation considering the distribution
of partial efficiencies, even in a situation where preference information is not requested
from the decision makers, is presented.
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3. Another research value is that a decision-making support tool that could balance the
operational, energy, and environmental aspects at the same time was presented.

The analysis presented in this study provides clues to future research along with sev-
eral limitations. Although the rank-based DEA methods have the advantage of specifying
the ranking of efficient DMUs, this study did not directly derive the eco-efficiency measure
for the rankings. This phenomenon occurs when evaluating alternatives by ranking and
may make numerical comparison difficult when comparing the performance with other
alternatives. Specifically, for example, it is difficult to determine at a glance how much
the eco-efficiency of a specific DMU is better than those of other DMUs. Therefore, it
may be difficult to utilize this in research where the measurement of the eco-efficiency is
important in itself. When it is necessary to directly derive the eco-efficiency, the prefer-
ence information of the decision makers is inevitably required. If the decision maker can
sufficiently present preference information, it may be possible to derive the eco-efficiency
by aggregated partial efficiency using weights. It is expected that future studies will find
ways to capture the eco-efficiency by designing aggregated measures without increasing
the burden on decision makers.

Another remark relates to the use of MCDM techniques, which consider multiple
efficiency measures as the criteria. However, this study is meaningful in that it showed
that the shortcomings of the comprehensive evaluation through DEA can be supplemented
through other mathematical analysis techniques. Although this study utilized TOPSIS, it
should be noted that this is not necessarily the only tool that can overcome the shortcomings
of DEA. In this study, it was explained that TOPSIS, as one of the intuitive and simple
MCDM techniques, does not require decision maker preference information and allows a
compromise that does not depend on a single criterion. However, other MCDM techniques
(especially VIKOR) that have the above advantages can also be used in combination with
DEA. Comparing the results using MCDM techniques other than TOPSIS to evaluate the eco-
efficiency ranking will also be a task to be addressed in future research. Furthermore, even
if the methods do not have the above advantages, it is possible to develop methodologies
through appropriate modifications according to the decision-making situation. For example,
it is expected that techniques such as the analytic hierarchy process and best-worst method
can be used if sufficient resources are available for pairwise comparison.
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Appendix A

Table A1. Data.

DMU Labor
(h)

Machinery
(h)

Diesel
(L)

Electricity
(kWh)

Herbicides
(kg)

Insecticides
(kg)

Urea
(kg)

P2O5
(kg)

FYM
(kg)

Soybean
(kg)

Straw
(kg)

1 169 16 70 0 4 1.5 110 46 0 3500 4312
2 142 15 65 0 3 0.5 55 23 2500 3000 3889
3 197 22 88 1953 2 1 96 69 2500 3000 3889
4 254 35 122 1286 3 2 110 46 7500 3600 4397
5 138 32 111 1432 2 2.5 78 23 2222 3000 3889
6 152 28 98 0 3 2 110 46 2000 3150 4016
7 148 28 109 703 3 3 110 46 563 4150 4862
8 213 27 109 1406 1 2 137 115 1250 3500 4312
9 159 18 76 0 0 2 76 46 0 2300 3296

10 137 28 96 0 3 3.5 76 46 0 2300 3296

https://doi.org/10.1016/j.jclepro.2013.05.019
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Table A1. Cont.

DMU Labor
(h)

Machinery
(h)

Diesel
(L)

Electricity
(kWh)

Herbicides
(kg)

Insecticides
(kg)

Urea
(kg)

P2O5
(kg)

FYM
(kg)

Soybean
(kg)

Straw
(kg)

11 272 26 105 0 3 2 103 115 750 3500 4312
12 185 31 126 1406 3 4.5 82 92 1500 3400 4227
13 228 35 119 781 3 5 82 92 7500 3000 3889
14 264 22 91 0 3 2 100 72 0 2315 3309
15 200 45 150 1758 0 1.5 92 0 16,667 3750 4524
16 289 32 115 2179 3 1.5 114 115 7500 3250 4100
17 282 35 130 1758 3 2.5 105 92 4500 3500 4312
18 209 24 83 1524 3 1 92 0 6000 2600 3550
19 268 33 119 2901 3 8 92 0 12,500 3000 3889
20 210 55 168 1538 0 1 64 46 10,000 35,007 4312
21 139 27 108 732 3 4.5 114 115 9375 3500 4312
22 179 23 109 1154 5 0.5 69 0 4000 4000 4735
23 200 40 131 820 3 3.5 114 115 1111 3115 3986
24 245 29 106 1172 3 1.5 87 46 3750 3500 4312
25 222 31 93 1289 3 8 0 0 11,000 4200 4904
26 263 54 175 2175 3 3.5 92 0 12,500 3100 3974
27 285 64 203 2175 3 2.5 92 0 25,000 3000 3889
28 124 17 69 0 3 0.5 78 23 0 3200 4058
29 215 15 88 3282 0 1 87 46 0 3500 4312
30 134 14 76 1406 0 1.5 69 0 0 2000 3043
31 137 17 64 1318 3 3 78 23 833 3300 4143
32 201 17 68 879 3 0.5 110 46 0 3600 4397
33 159 38 128 2051 3 2.5 110 46 7500 3500 4312
34 269 50 160 732 3 5.5 64 46 0 4200 4904
35 223 10 65 2813 3 4.5 64 46 1500 3000 3889
36 145 24 101 2075 0 3 64 46 0 2500 3466
37 176 29 108 1172 3 2 64 46 2083 3500 4312
38 183 29 100 1450 3 10.6 48 35 208 2800 3720
39 167 23 93 3076 3 2.5 50 69 0 3000 3889
40 238 26 95 879 3 2.5 64 46 0 3330 4168
41 290 34 117 3516 3 6 197 92 0 3500 4312
42 206 24 93 2051 3 5 128 92 3000 4000 4735
43 350 21 120 1538 4 5 159 92 3000 3400 4227
44 133 31 100 1154 3 6.5 96 69 0 3500 4312
45 169 25 92 1025 3 3.5 0 0 6250 4000 4735
46 157 34 108 820 3 3 110 46 3750 2800 3720
47 239 35 120 1641 3 3.6 156 46 15,000 4000 4735
48 170 21 89 855 3 1.5 115 0 0 3500 4312
49 220 50 146 1582 3 4 135 81 10,000 3500 4312
50 277 29 117 2813 1.25 4.5 110 46 0 3800 4566
51 186 48 165 1791 1.5 3 92 0 21,429 3700 4481
52 189 20 81 781 0 1.5 64 46 0 2666 3606
53 104 35 124 2110 3 3 83 23 12,000 2600 3550
54 170 19 75 1465 3 2 92 0 0 2700 3635
55 112 20 101 2110 2 3 92 0 0 3400 4227
56 144 25 106 1074 3.5 0.3 110 46 1500 3570 4371
57 179 15 86 1978 0 1.5 92 0 0 3000 3889
58 215 30 109 769 3 3 123 138 22,500 3500 4312
59 146 34 134 1846 3 2.5 87 46 15,000 3800 4566
60 162 40 147 2369 3 2.5 87 46 15,000 3500 4312
61 245 34 119 1410 3 3 92 0 10,000 3000 3889
62 196 9 61 513 3 2.5 32 23 417 2500 3466
63 187 19 79 1934 2 2.5 137 115 0 2800 3720
64 163 21 88 1465 3 3 115 0 2500 3570 4371
65 243 21 86 824 3 3 123 138 5000 3700 4481
66 196 22 103 2175 3 2.5 137 115 0 2800 3720
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Table A1. Cont.

DMU Labor
(h)

Machinery
(h)

Diesel
(L)

Electricity
(kWh)

Herbicides
(kg)

Insecticides
(kg)

Urea
(kg)

P2O5
(kg)

FYM
(kg)

Soybean
(kg)

Straw
(kg)

67 178 26 100 0 3.5 0.3 110 46 1500 3000 3889
68 214 33 132 1367 3.5 3 110 46 7500 3500 4312
69 169 27 92 1282 3.5 0.5 92 0 7500 3600 4397
70 208 28 104 1432 3 3 123 138 20,000 2800 3720
71 165 37 124 1758 3 2 77 0 15,000 3500 4312
72 261 32 124 2179 3 1.5 114 115 7500 2900 3804
73 283 38 138 1758 3 1.5 69 0 5000 3550 4354
74 167 37 136 1904 3 1 92 0 7500 2600 3550
75 211 31 122 1477 0 1 46 0 10,000 3400 4227
76 155 36 129 1030 3 2.5 69 0 10,000 3800 4566
77 154 30 96 1007 3 2 110 46 7500 3300 4143
78 176 28 119 2344 3 2.5 92 0 0 2600 3550
79 195 18 89 1846 3 6 119 69 10,000 3300 4143
80 144 21 93 1641 2 3 137 115 0 3900 4651
81 108 29 98 820 3.5 1.5 64 46 7500 3700 4481
82 279 27 116 916 4 4.5 160 115 15,000 3300 4143
83 309 12 55 820 1 1 128 92 0 3600 4397
84 95 12 66 0 3.5 2.5 87 46 10,000 3400 4227
85 141 25 105 0 2 1.5 174 92 0 3200 4058
86 152 27 103 0 0 2.5 91 115 12,500 3150 4016
87 127 19 82 0 3 4.5 114 115 9375 3050 3931
88 121 21 84 1172 3 2 46 0 10,000 3100 3974
89 213 6 47 1074 2 1.5 105 92 0 2000 3043
90 171 17 69 2344 3 1 92 0 0 2500 3466
91 192 18 87 328 3 1 64 46 18,667 3000 3889
92 217 6 48 1074 3 1.5 105 92 0 2000 3043
93 199 19 72 2110 3 2 64 46 0 3000 3889
94 211 16 58 1007 3 1.5 110 46 0 3200 4058
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