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Abstract: The economic losses of vegetation caused by ozone were usually evaluated with existing
ozone concentrations. However, in the case a new project is assessed, the marginal losses induced by
the additional emissions of ozone’s precursors are required. As ozone is VOC-sensitive in China, this
study used novel approaches to assess the marginal economic losses (MELs) for vegetation due to the
emission of VOCs as a precursor of ozone, which integrated the geographically constrained AHC
algorithm with the spatial regression and applied the cluster-specific coefficients of VOC emissions
to the MEL estimation. The new approaches reduce the regression sigma2 from 94.5 to 64.6. The
marginal contributions of VOC emissions to ozone concentrations range from 0.123 to 1.180 µg/m3

per kilotonne of emissions per year per 0.25 × 0.25 degree. Negative marginal contributions of
NOx emissions were found in Southeast China and the Yunan Guizhou Plateau. County-level
marginal increases in AOT40s and MELs due to VOC emissions for crops, semi-natural products,
and coniferous and deciduous forests were presented as maps. These values are exceedingly large
in Northeast China and the Yunan Guizhou Plateau. Due to the high timber prices, sensitivities to
ozone, and long growing seasons, MELs of forests are higher than those of other vegetation types,
and thus factories with VOC emissions should be away from the surrounding areas of forests.

Keywords: marginal economic losses; vegetation; VOC emission; ozone; AOT40; geographically
constrained clustering; spatial regression; China

1. Introduction

Ground-level ozone has become a new threat to human health and vegetation, espe-
cially in summer when the chemical reaction between nitrogen oxides (NOx) and volatile
organic compounds (VOCs) creates more ozone (O3) in the presence of hot sunlight, in
comparison to the relatively heavy particle pollution in winter. The precursors of ozone,
NOx and VOCs, are major anthropogenic emissions increasing with the growth of the
economy, leading to the wide spreading of ozone. Asia has emerged as the continent with
the highest ozone levels, and several regions of China have been identified as places where
ozone is likely to jeopardize food supply and ecosystems [1]. Ozone causes damage to
plants by affecting the respiration of leaves and oxidizing the tissue around stomata. The
damage and related economic losses caused by the existing ozone concentrations have
been assessed for the Yangtze River Delta [2,3], Southern China [4], and China [5]. These
studies are based on ozone concentrations. In contrast to these studies, the purpose of
this paper is to find out the relationship between the additional (marginal) emissions of
ozone’s precursors and the damage or loss caused, as ozone, formed by the photochemical
reaction mentioned above, is not directly emitted from sources. Consequently, to assess
a new project that induces new emissions, in the relationship between emissions and
damage, the emissions of its precursors instead of those of ozone should be used. That is,
by changing from concentrations to emissions, the damage or loss study has to consider
ozone–NOx–VOC sensitivities. With regard to precursors, there are two options, NOx and
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VOCs. As suggested by existing studies [6–8], VOCs play a more critical role in controlling
ozone concentrations in China. Therefore, both precursors were checked in our study with
a focus on VOCs.

VOCs have been identified as a major pollutant that contributes to the ground-level
ozone by the Chinese Ministry of Ecology and Environment, and a comprehensive treat-
ment scheme was proposed to manage the VOC emissions in key industries, i.e., the
petrochemical industry, chemical industry, industrial coating, packaging and printing in-
dustry, and oil storage and transportation. It was found that in certain countries, large
increases in ozone concentrations are generated when industries are located far away from
NOx emission sources and near to natural VOC emissions [9]. In most urban areas of
China, ozone is VOC-sensitive [7], such as Lanzhou [8] and Chengdu and Chongqing [6].
Therefore, VOC emissions in these areas create a high ozone level which could damage
vegetation including agricultural crops and natural plants and induce economic losses.
However, most existing studies did not evaluate the vegetation losses caused by VOC
emissions, only the losses caused by ozone concentrations. As for China, it was found
that relative yield losses, induced by existing ozone concentrations, ranged from 6% to
36.05% for wheat and 4.9% to 23.87% for rice [2–5], and the corresponding economic losses
of wheat and rice are USD 11.1 billion and 7.5 billion, respectively [5]. The economic
losses amount to USD 735 million to 2093 million for wheat and USD 1037 million to
2370 million for rice [2,3] in the Yangtze River Delta and USD 108 million to 486 million
for rice in Southern China [4]. Ozone was estimated to create yield losses of 18% to 21%
for soybean, yield losses of 1.9% to 7.2% for corn, and biomass losses of 11% to 13% for
forests in China [5,10,11], yield losses ranging from 7% to 26% for wheat in Mexico [12],
4% to 48% yield losses for various vegetation types in the Kanto region of Japan [13], and
20% to 31% worldwide yield losses for the grape [14]. Other studies assessed the effects of
ozone on the yields of oilseed rape [15], cotton [16], and semi-natural vegetation [17,18]. In
the Kanto region, crops were found to be most sensitive to ozone levels with a maximum
yield reduction of 40% [13].

Study of the relationship between VOC emissions and vegetation losses is more diffi-
cult than that between ozone concentrations and vegetation losses because emission study
involves ozone–VOC–NOx sensitivities and the complicated compounds in VOCs [19]. As
mentioned above, it is suggested that ozone levels are sensitive to VOCs in Chinese urban
areas. This is not always true. Ozone is believed to be NOx-sensitive in south European
regions [20] and in Delhi, India [21]. Generally, a specific mixing ratio of NOx and VOCs
produces a high ozone concentration [21]. Taking account of these facts, in this study, both
NOx and VOC emissions were considered in our model, and NO2 concentrations were
used in the clustering, as well as the meteorological conditions and topographic factors.
The same VOC emission could produce different levels of ozone depending on the NOx
concentrations, weather conditions such as solar radiation, wind, precipitation, and relative
humidity, and topographic features such as elevation and slope.

In addition, most air pollutants are spatially correlated [22,23]; to evaluate the marginal
contribution of VOC emissions to ozone levels more accurately, the spillover effects of the
neighboring areas should be controlled. In other words, the background ozone concentra-
tions have to be excluded from the assessment of the effects of local emissions. Hence, in
this study, the spatial regression with a spatial weight matrix, which represents the dis-
tances between locations, was used to evaluate the marginal effects of local VOC emission
on ozone levels. To summarize, the accurate estimation of marginal losses caused by VOC
emissions requires an integrated solution to the following questions: (i) How to differentiate
the effects of local emissions from the dispersion effects of neighboring emissions? (ii) Do
the effects (coefficients) of the emissions on ozone concentrations vary significantly across
geographic regions with different meteorological and topographic features? (iii) How to
integrate the existing satellite data, monitoring data, emission data, and land cover data
for the purpose? (iv) In terms of marginal economic losses, are there significant disparities
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between regions and between vegetation types? To answer these questions, in the following
sections, we introduce relevant data, methods, results, discussion, and conclusions.

2. Materials and Methods
2.1. Data

Data from 2015 were used in our study due to the availability of county-level statistics.
Sampling points included 1493 monitoring station points, after removing four stations with-
out ozone monitoring values. These ground-level observed concentrations were sourced
from the China Environmental Monitoring Center (CEMC). In the CEMC sample we used,
about 4.8% of hourly concentration values were missing, probably due to technical issues
or maintenance. In this study, missing values were not patched with arbitrarily determined
ones. For stations with missing values, as the clustering and the regression models require
only annual mean concentrations, the remaining observed concentrations of the same
year were used to calculate annual averages. With regard to the calculation of AOT40s, it
was assumed that during the missing hours, the concentrations were below the AOT40
threshold (40 ppb), as the mean ozone concentration is about 27.8 ppb. Because the missing
hourly values take up only 4.8% and the AOT40s are calculated for the whole growing
seasons instead of individual days with missing values, it is reasonable to believe that the
estimated AOT40 values can serve as good indicators. The distribution of ozone concentra-
tions is shown in Figure 1. The circles on the map stand for monitoring stations, and colors
inside the circles represent the levels of the observed concentrations. Concentrations were
interpolated by the Kriging algorithm to cover areas without monitoring stations. Besides
ozone concentrations (variable name: O3), NO2 concentrations (variable name: NO2), used
in the clustering algorithm, were also extracted from CEMC.
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Figure 1. Distributions of monitoring stations and observed ozone concentrations.

Emission data came from Multi-resolution Emission Inventory for China (MEIC), and
a subset of the finest resolution, 0.25 × 0.25 degree, was used in this study. As explained
in the previous section, emissions of both VOCs (VOCEM) and NOx (NOXEM) were
used to interpret the ozone levels. The CO emission (COEM) was proven to be positively
correlated with ozone [24], and hence its emission values were included in the model. All
variables mentioned in this section essentially used values from 2015 to be consistent with
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the period of the observed concentrations. When values from 2015 were not available, such
as GobeLand30, data of the closest year were used.

Meteorological data were employed in both the clustering algorithm and the regres-
sion of the ozone concentrations. Meteorological variables were obtained from ERA5.
Meteorological variables used in the clustering algorithm consisted of WG (wind gust), SI10
(10 m wind speed), WU10 (10 m u wind component), WV10 (10 m v wind component), T2
(2 m temperature), BLH (boundary layer height), CP (convective precipitation), SP (surface
pressure), SSR (surface solar radiation), SSRD (surface solar radiation downwards), TP
(total precipitation), and RH (relative humidity). A subset of the above meteorological
variables was used in the spatial regression for ozone concentrations, after solving the
multicollinearity issue and selecting explanatory variables based on the validation results.

Topographic factors such as DEM (digital elevation model) and SLOPE8K (average
slope within 8 km from the sampling point) and a vegetation index such as EVI (enhanced
vegetation index) were also used both in the clustering and regression. DEM data were
extracted from SRTM (Shuttle Radar Topography Mission), and slopes were calculated
based on the DEM data. EVI values were sampled from MODIS (Moderate Resolution
Imaging Spectroradiometer), a satellite data source. Distributions of the clustering variables
are given in Figure 2. Kaiser–Meyer–Olkin (KMO) values were calculated to assess the
adequacy of the clustering variables [25].
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Figure 2. Spatial distributions of the clustering variables.

Several additional variables were utilized in the spatial regression model, such as the
areas of forests and water bodies from GlobeLand30. The areas of forests and water bodies
were proven to be important for the prediction of ozone concentrations [26]. In our study,
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the forest and water areas were aggregated for buffers within 8 km from the sampling points
as 8 km was believed to be effective for the estimation of pollutant concentrations [27].
Another explanatory variable for ozone concentrations is the distance to the coast. The
distances were calculated based on GIS. Statistical descriptions of variables used in the
spatial regression are presented in Table 1, where SK stands for skewness. HS Mode in the
table means the half-sample mode, which presents an estimator for the highest-density
region of a distribution. Numeric modes become illogical as there are usually multiple
modes for these real numbers and each numeric mode has a very low frequency. Moreover,
most numeric modes do not correspond to the highest-density regions of these variables.
In Table 1, values of EVI, NOXEM, VOCEM, and COEM were divided by 1000, values
of SP were divided by 10,000, values of SSR were divided by 1,000,000, and values of TP
were multiplied by 1000 to avoid very small or large values. We added 153 to DEM to get
positive values (negative DEM values are not in the sampling points).

Table 1. Statistical descriptions of variables used in the spatial regression.

Variable Obs Mean Std. Dev. Min Max 25% 50% 75% SK HS Mode

O3 1493 55.636 13.054 20.660 97.421 46.127 55.336 64.239 0.190 56.000
NOXEM 1493 22.849 26.048 0.013 147.736 5.672 13.509 28.091 2.106 3.500
VOCEM 1493 29.334 38.526 0.014 270.773 7.434 16.042 32.238 2.692 4.600
COEM 1493 117.444 125.785 0.019 741.955 36.128 77.111 149.699 2.158 36.000

EVI 1493 1.588 0.560 0.134 3.797 1.210 1.490 1.894 0.732 1.300
T2 1493 287.864 5.296 271.298 298.734 284.182 288.756 291.363 −0.519 288.000

BLH 1493 473.049 85.929 183.316 996.144 413.709 460.157 516.998 0.925 441.000
RH 1493 66.272 11.244 29.996 84.438 57.158 69.3149 75.845 −0.599 72.00
SP 1493 9.611 0.786 5.736 10.172 9.511 9.953 10.099 −2.381 10.000

SSR 1493 12.117 1.393 8.706 17.685 11.060 12.200 13.062 0.153 13.000
TP 1493 3.235 1.837 0.080 8.750 1.650 2.840 4.750 0.441 1.700

DEM 1493 536.006 652.541 150.000 4671.000 179.000 239.000 569.000 2.896 163.000
SLOPE8K 1493 2.766 3.275 0.110 25.616 0.597 1.627 3.612 2.635 0.250

WU10 1493 −0.114 0.663 −2.420 1.880 −0.641 −0.198 0.310 0.366 −0.700
WV10 1493 −0.120 0.482 −1.923 1.767 −0.424 −0.158 0.169 0.364 −0.210

FOREST 1493 38.866 51.896 0.000 270.059 0.509 15.569 59.431 1.683 0.000
WATER 1493 11.865 16.870 0.000 177.726 1.599 5.433 14.141 2.903 0.000
SEADIST 1493 512.538 560.695 0.035 3567.830 100.461 399.684 715.983 2.279 0.170

The county-level marginal yield/biomass losses and marginal economic losses of the
vegetation were estimated with data from 2858 counties. County-level areas (within the
boundary of a county) of cultivated lands, deciduous forests, coniferous forests, and semi-
natural vegetation types were calculated based on land cover data (GlobeLand30) and the
1:1,000,000 vegetation atlas of China. During the estimation of the marginal yield/biomass
losses and economic losses, the provincial cultivated land areas, quantities of agricultural
products, and market values were obtained from the China Agricultural Statistical Yearbook.
The provincial data were used to produce the average yields of different types of lands
and the province-specific prices of different products. There are no missing values in
meteorological, topographic, provincial, and land cover data.

2.2. Methodology
2.2.1. Geographically Constrained Clustering Algorithm

Direct use of a spatial regression model will generate spatially invariable coefficients
for the explanatory variables, which is not reasonable considering the spatial heteroscedas-
ticity of the pollution. Another group of regressions, which considers the spatial het-
eroscedasticity, called geographically weighted regression (GWR), produces variable coeffi-
cients for each location. However, the coefficients provided by GWR seem to lack patterns
and are too variable to be used, and the marginal estimates from GWR are nearly incom-
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prehensible. However, it was found that GWR works well in health risk assessment [28],
which we will discuss in future studies.

An intermediary approach between the two models was proposed in this study, which
combines the clustering algorithm and the spatial regression. By validating with the
resulting clusters, the geographically constrained agglomerative hierarchical clustering
(AHC) was proven to be able to generate realistic results. As a popular clustering algorithm,
AHC sequentially combines smaller clusters into larger ones [29]. In this study, geographic
constraints were applied in the algorithm to keep the clustering results (called clusters
or regimes) geographically continuous, which is required by the spatial regression. The
implementation of the geographically constrained AHC algorithm with the Ward linkage
is given in Algorithm 1. Y is a set of yi, which in our case denotes a monitoring station with
clustering attributes. Ci is a cluster, and RClist keeps a list of the resulting clusters. The
Ward linkage minimizes the sum of squared differences within each cluster. The queen
type connection means the geographical connection directions are similar to a queen’s
movement directions in chess, i.e., moving horizontally, vertically, or diagonally. The
number of clusters was set and each attribute z was scaled by (z—mean of z)/(75% quantile
of z—25% quantile of z) before the running of the algorithm. To balance the representation
of the spatial heteroscedasticity and the sample size within a cluster required to perform
an effective spatial regression, 10 was used for the number of clusters by validation. The
clustering results were evaluated by Silhouette or Dunn scores [30,31].

Algorithm 1. The main part of the geographically constrained AHC algorithm.

(1) Y = {y1, y2, . . . , yn}
(2) Ci = {yi}, for ∀i in 1..n
(3) For t = Lengh(Y) to NumofClusters step -1

RClist = {C1, C2, . . . , Ct}
d(i, j) = WardDistance(Ci, Cj), ∀i,j in 1 . . . t, i 6= j, and Ci and Gj are geographically

(queen) connected
p, q = argminx1,x2 d(x1, x2)
Cp = {Cp} ∪ {Cq}
Delete Cq from RClist

(4) Return RClist

The dispersion of pollutants is influenced by weather conditions and terrains; therefore
it is natural to include them in the clustering factors. As the effects of VOC emissions on
ozone levels depend on whether the study location is in a NOx-sensitive regime (with
relatively low NOx and high VOCs) or in a NOx-saturated (VOC-sensitive) regime [32],
the concentration of NO2 was added as an important clustering factor in our study. In
NOx-saturated regimes, the response of ozone concentrations could negatively relate to
NOx emissions and positively correlate with VOCs [6,7]. In NOx-sensitive regimes, mainly
in rural areas, where concentrations of NOx are low, concentrations of ozone increase
with the increasing NOx emission [8]. Figure 3 gives the scatter plots of the relationships
between ozone concentrations and VOC or NOx emissions. In the figure, high ozone levels
do not relate to large emissions of VOCs or NOx. After the concentrations of VOCs or
NOx become saturated, ozone concentrations tend to be negatively related to additional
emissions. Therefore, the concentration of NO2 was added into the clustering variables
to reflect the existing levels of NOx and allow a variable coefficient of VOC emissions in
response to the NOx levels.
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2.2.2. Clustering Spatial Regression

The clustering spatial regression was used to measure the sensitivity of ozone for-
mation to VOC emissions. The marginal change of the ozone concentration caused by a
marginal change of VOC emissions in a cluster is indicated by the coefficient of VOC emis-
sions estimated from the clustering spatial regression. Due to the diffusion of air pollutants,
it is necessary to use spatial regressions which can capture the spillover effects of pollutants
on the adjacent areas. The spatial regression model is appropriate for the estimation of
models with spatial correlations of dependent variables or disturbance terms. There are
several forms of spatial regression models, such as SAR (spatial autoregressive model), SEM
(spatial error model), and SARAR (spatial autoregressive model with spatial error) [33,34].
Correspondingly, three clustering spatial regression models, CSAR (clustering SAR), CSEM
(clustering SEM), and CSARAR (clustering SARAR), are presented in this study, shown in
Equations (1)–(3), respectively. CSARAR is a combination of CSAR and CSEM. Subscript
c is an index for clusters. Clusters are generated from the clustering algorithm. Wc is the
spatial weight matrix for cluster c, created by an inverse distance weight function. λc and
ρc are the spatial autoregressive coefficients for cluster c. βc is the coefficient vector for
cluster c. yc denotes the vector of the dependent variable, i.e., ozone concentrations, in
cluster c. εc stands for the disturbance vector of cluster c, and each element in the vector
follows iid (independently identically distribution). µc is the error vector including the
spatial autocorrelation for cluster c. Xc is a matrix that consists of explanatory variables.
The explanation variables include VOC emissions, NOx emissions, CO emissions, EVI, T2,
BLH, RH, SP, SSR, TP, DEM, SLOPE8K, WU10, WV10, forest areas within 8 km (FOREST),
water body areas within 8 km (WATER), and distances to the coast (SEADIST). The absolute
values of WU10 and WV10 were used in the regression. The selection of variables was
based on existing studies [26] and cross-validation. As suggested by Elhorst et al., spatial
models could be selected based on sigma2 [35], which is the variance of the regression
residuals, in addition to the Lagrange multiplier (LM) diagnostic tests for spatial error
dependence and spatial lag dependence.

yc = ρcWcyc + Xcβc + εc (1)

yc = Xcβc + µc, and µc = λcWcµc + εc (2)

yc = ρcWcyc + Xcβc + εc, and µc = λcWcµc + εc (3)

2.2.3. Estimation of the Marginal Damage to Vegetation

To estimate the marginal damage to vegetation, hourly mean ozone concentrations
were converted into AOT40 (accumulated ozone exposure over a threshold of 40 ppb
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under effective light conditions during the vegetation growing seasons). The conversion
was performed with Equation (4) [36]. N is the number of hours included in the growing
season. The growing seasons of wheat and rice [10], various types of forests [37], and crops
and horticultural plants [36] were sourced from existing studies. It is noteworthy that the
growing seasons should be consistent with the slope coefficient β in Equation (5).

AOT40 = ∑N
i=1([Ozone]i − 40) f or [Ozone] > 40 ppb (4)

The relative yield (RY) was calculated with Equation (5) [4,36]. Y0 is the production
without ozone-induced damage, and Y is the production of the vegetation with the losses
caused by ozone. The AOT40 in the equation is in ppm h.

RY =
Y
Y0

= α+ β·AOT40 (5)

The slope coefficient β in the equation stands for the marginal gain/loss of RY caused
by a marginal change of the local AOT40. Equation (5) is also called the dose–response
function, which measures the relationship between the pollution doze (AOT40) and the
response of the production (RY). The coefficients α and β in Equation (5) were obtained
from existing studies, and they vary with vegetation types depending on their sensitivity to
ozone levels. In our study, we opted to use the coefficients estimated by national studies [10].
When national coefficients were not available, corresponding coefficients from international
studies were applied [36–38]. It was found that there were no significant differences in the
regression coefficients derived from experiments conducted in different countries [36].

2.2.4. Estimation of Marginal Economic Losses

The marginal change of ozone concentrations induced by a marginal emission of
VOCs in a county, i.e., the coefficient of the VOC emission, was obtained from the closest
monitoring station, and the clustering category of the county was also inherited from that
station. The changes of ozone concentrations were converted into the changes of AOT40,
which is used in Equation (5) to calculate the marginal gain/loss of the relative yield.

Marginal economic losses, in USD 2015, were estimated based on the marginal yield
losses of crops or biomass losses of forests and semi-natural products by multiplying them
by their prices. The prices of the corresponding crops or forest products, in RMB 2015, were
obtained by dividing the total output values by the total quantity, both from the China
Agricultural Statistical Yearbook. The annual average currency exchange rate from RMB to
USD was from the Chinese Statistical Yearbook.

3. Results
3.1. Clustering Results

The results of the clustering algorithm are illustrated in Figure 4. The clustering
algorithm automatically recognizes the regional characteristics of meteorological factors,
topographic features, and NO2 concentrations. Resulting clusters reflect the climatic type
distribution and topographic characteristics in China, including Northwest China (cn = 0,
cn is the serial number of a cluster), the Yunnan Guizhou Plateau (cn = 1), Northeast China
(cn = 2), the Jianghuai Region (cn = 3), the Qinghai–Tibet Plateau (cn = 4), Southeast China
(cn = 5), the southeast coastal cluster (cn = 6), the Shanxi–Shaanxi Basin (cn = 7), the Sichuan
Basin (cn = 8), and the Huabei Plain (cn = 9). As the clusters are automatically generated by
the algorithm, the boundaries of the clusters named above are not strictly consistent with
the boundaries of the same geographic name areas. Since there are no clear topographic
or meteorological boundaries between the Jianghuai Region and the Huabei Plain, the
division between these two clusters is mainly caused by the concentrations of NO2. By
removing NO2 from the clustering variables, these two clusters will be combined into one.
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The Silhouette score for the clustering is 0.15. In contrast with a normal clustering
which can freely adjust the parameters to get a perfect clustering, the clustering in this
study, however, is fused with the spatial regression, and more stress is the accuracy of
the regression as it produces the marginal contribution of emissions to the concentration.
Specifically, first, the geographic (connective) constraint is applied to each cluster to gen-
erate a reasonable spatial weight matrix for the spatial regression. If we use a k-means
clustering without the geographic constraint, the Silhouette score can reach 0.228. Second,
the Silhouette score decreases from 0.3917 (cluster number = 2) to 0.15 (cluster number = 8)
with the increase in the cluster number and stays around 0.15 when the cluster number is
greater than 8. However, if the cluster number is set to 2 to get the largest score of 0.3917, it
will cause a lack of variations in concentration–emission sensitivities (only two coefficients
obtained from the spatial regressions for the two large clusters). A certain larger cluster
number could slightly increase the Silhouette score too, but it causes a lack of enough
samples to perform the spatial regression within each cluster, as the number of samples
within a cluster decreases with the increasing cluster number. Thus, to balance between
the clustering algorithm and the spatial regression, especially to satisfy the requirements
of the spatial regression, the cluster number 10 was chosen by iterative validations with
different cluster numbers. The current configuration generated realistic clustering results
that apparently reflect the meteorological, topographic, and NOx concentration distribution
patterns of the country.

The KMO values of the clustering variables are between 0.601 and 0.869, ranging from
mediocre ones to meritorious ones, without unacceptable values. The density distributions
of the clustering variables for each cluster are shown in Figure 5. It was found that, on
average, the Huabei Plain has the highest NO2 concentration, and the Qinghai–Tibet
Plateau cluster has the lowest concentration. The lowest average wind speed was found
in the Sichuan Basin, whereas the strongest wind is in Northeast China. The highest
average temperature is in the southeast coastal cluster, the lowest average temperature in
the Qinghai–Tibet Plateau, the highest average humidity in the southeast coastal cluster,
and the lowest average humidity in Northwest China. All of the four northern clusters have
low precipitation. The solar radiation of the Huabei Plain concentrates in a relatively high
value region near 1.3, and thus it tends to accelerate the formation of ozone. In nearly all
clusters, elevations and slopes highly concentrate in low-value regions, the surface pressure
concentrates in high values, and BLH and EVI concentrate in medium ones.
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3.2. Spatial Autocorrelation of Ozone Concentrations and OLS Residuals

To determine whether spatial regressions should be used, the Moran’s I tests were per-
formed, and the Moran’s I scatter plots of ozone concentrations and OLS residuals are given
in Figure 6a,b, respectively. The statistics of Moran’s I test for global spatial autocorrelation
are presented in the titles of the plots. The p values of Moran’s I statistics suggest that both
ozone concentrations and OLS residuals are significantly spatially correlated. Therefore,
spatial regressions instead of OLS should be used in order to reduce estimation errors.

3.3. Selection of Spatial Models

The Lagrange Multiplier diagnostic tests for spatial error dependence (for SEM) and
spatial lag dependence (for SAR) are presented in Table 2. Both the LM test and the robust
LMT test significantly reject H0: λSpatial error = 0, but the robust LM test cannot reject H0:
ρSpatial lag = 0, indicating that the spatial error dependence is better than the spatial lag
dependence, and thus SEM is preferred. This conclusion is checked again by comparing
the sigma2 from the spatial regression results in the next step.
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Table 2. The LM tests for spatial error dependence and spatial lag dependence.

Hypothesis Test Statistic df p-Value

H0: λSpatial error = 0
Lagrange multiplier 526.738 1 0.000

Robust Lagrange multiplier 37.552 1 0.000

H0: ρSpatial lag = 0
Lagrange multiplier 489.226 1 0.000

Robust Lagrange multiplier 0.039 1 0.843

3.4. Spatial Regression Results

Regression results of the OLS, SAR, SEM, and SARAR models are given in Table 3. It
was found that the emission of VOCs has significantly positive effects on ozone concentra-
tions, and the emission of CO has significantly negative effects on ozone concentrations,
whereas the emission of NOx does not significantly affect ozone concentrations. EVI signif-
icantly increases ozone concentrations as vegetation emits biogenic VOCs. Temperature
reduces ozone concentrations, which is consistent with the ozone concentration map given
in Figure 1. The southern parts of China, where the temperature is high, have lower ozone
concentrations. SSR significantly increases the level of the ozone as solar radiation takes
part in the photochemical formation of ozone. The effect of SSR seems in contradiction
to the effect of the temperature as one may think that high SSR occurs in Southern China.
However, Figure 5 clearly indicates that the three clusters in the northern parts of China,
except Northeast China, have the highest radiation, partially because of the dry and less
cloudy weather. North and south wind (v direction) causes more decrease in ozone concen-
trations than west and east wind (u direction) does. High values of BLH, relative humidity,
and surface pressure facilitate the formation of ozone, and ozone concentrations increase
with the increase in elevations.
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Table 3. Regression results of the OLS, SAR, SEM, and SARAR models.

Variable OLS SAR SEM SARAR

NOXEM −0.049 −0.049 −0.052 −0.059
VOCEM 0.059 *** 0.039 ** 0.059 ** 0.055 **
COEM −0.021 *** −0.011 * −0.020 ** −0.016 **

EVI 1.558 ** 1.445 *** 1.281 ** 1.374 **
T2 −0.711 *** −0.283 *** −1.079 *** −0.633 ***

BLH 0.023 *** 0.012 ** 0.022 ** 0.016
RH 0.178 *** 0.148 ** 0.234 ** 0.180
SP 13.860 *** 10.925 *** 21.351 *** 16.782

SSR 1.590 *** 0.772 ** 1.817 *** 1.333 ***
TP 0.048 −0.209 0.293 0.085

DEM 0.016 *** 0.013 *** 0.022 *** 0.019 ***
SLOPE8K 0.242 0.225 0.501 ** 0.401 **

WU10 −1.072 0.201 0.352 −0.024
WV10 −2.725 *** −1.716 *** −1.097 −1.818 **

FOREST −0.053 *** −0.032 *** −0.042 *** −0.040 ***
WATER 0.027 0.029 0.032 0.032

SEADIST −0.003 *** −0.001 0.001 −0.001
_cons 77.988 ** −67.899 ** 99.357 −2.486
rho 1.241 *** 0.628 ***

lambda 1.455 *** 0.941 ***
sigma2 138.389 *** 100.618 *** 94.477 *** 100.152 ***

The dependent variable is ozone concentrations. *, **, and *** represent significance levels of 10%, 5%, and 1%,
respectively.

SEM has a regression sigma2 (the bottom row of Table 3) lower than OLS, SAR, and
SARAR, which confirms the previous LM test results. The spatial Durbin model and
the general Cliff-Ord model were also checked. The general Cliff-Ord model generates a
larger sigma2 than that of SEM. The spatial Durbin model produces a similar sigma2 to
that of SEM, but it comes with a long list of lagged explanatory variables, which causes
multicollinearity. Therefore, the results of SEM are used in the following clustering spatial
analysis, and the clustering spatial error regression results are presented in Table 4.

CSEM_0–CSEM_9 indicate the results of cluster 0 to cluster 9. Sigma2s of most clus-
tering spatial regressions are better than those of the global spatial regressions given in
Table 3, except cluster 0, the Northwest China cluster with a vast area and a small number
of monitoring stations. This implies that the coefficients of the clustering spatial regression
are more accurate than those of the global spatial regression. Coefficients of VOC emissions
are only significant in several clusters, indicating that the effects of VOC emissions depend
on the existence and the level of other precursors such as NO2 and the meteorological
and topographic conditions. Following statistical rules, the subsequent estimation of the
marginal losses was performed only for clusters with significant coefficients of VOC emis-
sions, which are clusters 1, 2, 3, 5, and 6. The coefficient of cluster 8 (the Sichuan Basin)
was also used in the loss assessment as the coefficient of 0.363 is close to the results of an
existing sensitivity study for the same region, which is discussed in the next section.

Compared with the significantly positive coefficients of VOC emissions, most coef-
ficients of NOx emissions are not significant, and coefficients of cluster 1 (the Yunnan
Guizhou Plateau) and cluster 5 (Southeast China) are even significantly negative, which
means lower emissions of NOx create higher ozone levels.

Similar to the global spatial regression, CO emissions are mainly negatively correlated
with ozone pollution except in Southeast China. Temperature has negative effects except
in the Yunnan Guizhou Plateau. Essentially, in most clusters, BLH, RH, SP, and DEM
are positively connected with ozone concentrations. In contrary to the global spatial
regression, the clustering spatial regression identifies regions where ozone concentrations
are significantly affected by the west and east wind (v direction), such as the southeast
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coastal cluster, the Jianghuai cluster, and Northwest China, which are either on the east
side or on the west side of the country.

Table 4. The regression results of the clustering spatial error models.

Variable CSEM_0 CSEM_1 CSEM_2 CSEM_3 CSEM_4

NOXEM 0.114 −0.817 ** −0.100 0.046 12.864 **
VOCEM −0.304 1.180 *** 0.299 *** 0.123 * −2.115
COEM −0.025 −0.092 *** −0.065 −0.067 ** −5.161 ***

EVI 0.221 1.414 6.967 *** −2.445 * 5.169
T2 −0.767 9.677 *** −0.099 −1.985 *** 1.046

BLH −0.016 0.105 ** 0.038 0.088 −0.019
RH −0.620 1.698 *** 0.530 1.292 * −0.728
SP 18.199 ** −68.793 *** 39.834 *** 24.620 −19.055

SSR −6.225 * −9.702 *** 3.746 5.468 −2.479
TP −2.869 −1.136 2.149 −0.485 −1.994

DEM 0.034 *** 0.000 0.038 * 0.023 −0.017
SLOPE8K 1.353 ** −1.195 *** 0.756 0.774 −1.022

WU10 7.705 ** −8.582 6.383 12.168 ** 23.069 ***
WV10 −2.567 −14.088 *** −0.017 7.325 −34.474 *

FOREST 0.039 0.027 −0.049 −0.039 −0.085
WATER 0.095 0.456 *** 0.165 *** 0.031 4.315 ***

SEADIST 0.000 0.025 −0.002 −0.006 −0.012
_cons 194.611 −2.2 × 103 *** −433.573 205.339 79.803
rho 0.734 *** −0.414 ** 0.407 ** 0.774 *** −0.898 ***

sigma2 100.611 *** 55.472 *** 84.852 *** 83.387 *** 6.521 ***

CSEM_5 CSEM_6 CSEM_7 CSEM_8 CSEM_9

NOXEM −0.742 ** −0.107 0.299 −0.612 0.270
VOCEM 0.261 ** 0.146 *** −0.155 0.363 −0.087
COEM 0.047 * −0.066 * −0.037 −0.024 −0.041 *

EVI 1.110 −1.160 2.901 4.938 *** 1.976
T2 −1.997 *** −6.807 *** −7.059 −9.354 −0.100

BLH 0.039 −0.024 −0.082 0.063 0.094
RH 0.891 0.166 0.025 0.156 0.162
SP 25.446 * 31.524 12.070 29.052 5.528

SSR 2.062 −0.785 −6.103 −15.597 * 11.400
TP −0.124 7.100 *** −14.782 −5.283 8.365

DEM 0.044 *** 0.066 −0.005 0.059 *** −0.006
SLOPE8K −0.396 −0.162 −2.628 −1.489 * 3.701 *

WU10 1.016 −13.384 *** −9.013 −12.553 ** −6.336
WV10 0.891 5.358 * 6.477 −21.468 * −0.850

FOREST −0.027 −0.019 0.159 0.028 −0.099
WATER 0.107 *** 0.040 0.114 0.279 −0.019

SEADIST −0.003 −0.408 *** 0.008 −0.057 * −0.009
_cons 269.174 1717.164 2095.955 2640.544 * 110.109

lambda 0.752 *** 0.484 ** 0.472 * 0.698 *** 0.820 ***
sigma2 72.242 *** 48.403 *** 61.393 *** 69.833 *** 63.018 ***

The dependent variable is ozone concentrations. *, **, and *** represent significance levels of 10%, 5%, and 1%,
respectively.

3.5. Changes in AOT40s Caused by the Marginal Emission of VOCs

According to the clustering spatial regression results, the clusters with significant
coefficients of VOC emissions and cluster 8 were used in the marginal analysis. The county-
level changes of AOT40s caused by a marginal emission of one kilotonne of VOCs are
presented in Figure 7, calculated by applying the cluster-specific coefficients and converting
from concentrations to AOT40s with Equation (4).
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Figure 7. Marginal changes in AOT40s caused by an additional kilotonne of VOC emissions. (a) Crops;
(b) forests; (c) wheat; (d) rice.

In the calculation of delta AOT40, growing seasons were adjusted according to the veg-
etation types, resulting in different AOT40 changes for the same county. Hence, Figure 7a–d
demonstrate various patterns of distributions. Not all vegetation types are included in
Figure 7, such as horticultural vegetation, the distribution of which is similar to that of
crops. It was found that additional emission of VOCs induces greater increases in AOT40s
in Northeast China and the Yunnan Guizhou Plateau. The growing season of rice is signifi-
cantly different from the other vegetation types, and this induces relatively large increases
in AOT40s in Southeast China.

3.6. Marginal Economic Losses Due to the VOC Emission as a Precursor of Ozone

The estimated county-level marginal economic losses (MELs) due to an additional
kilotonne of VOC emissions as a precursor of ozone are shown in Figure 8. Values are
in USD 2015 K (1000) per year. The values of MELs of a vegetation type depend on the
county-level marginal AOT40 changes, county-level distributions and yields of the specific
type of vegetation, and the localized prices. For example, MELs of coniferous forests are
high in the Greater Khingan Range in Northeast China, where dense coniferous forests
are growing, and in the Yunnan Guizhou Plateau, a region with large marginal changes of
AOT40s and abundant forest resources. The MELs of coniferous forests range from 0 to
USD 241 K per kilotonne of VOC emissions per year per 0.25 × 0.25 degree, as a precursor
of ozone.

The MELs of deciduous forests are larger than those of the coniferous forests, ranging
from USD 0 to 330.5 K per kilotonne of VOC emissions per year per 0.25 × 0.25 degree, as
deciduous forests, with relatively large leaves, are more vulnerable to ozone pollution. In
contrast with the coniferous forests, the MELs of deciduous forests are high both in the
Greater Khingan Range and in the mountainous areas on the opposite side of Northeast
China. MELs of deciduous forests are also high in the Yunnan Guizhou Plateau and the
Qinling Mountains.
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MELs of semi-natural lands, mainly grasslands, are high in Inner Mongolia, although
only a small part of this region was included in the Northeast China cluster. Large areas of
grasslands are a striking landscape feature of that region. Another area with high semi-
natural economic losses is the Yunnan Guizhou Plateau due to the large marginal increase
in AOT40s and abundant vegetation types. The MELs of the semi-natural vegetation range
from USD 0 to 0.42 K per kilotonne of VOC emissions per year per 0.25 × 0.25 degree,
as a precursor of ozone. Because of the low-value biomass products of the semi-natural
vegetation, the MELs are lower than those of forests and crops. Forests have the highest
MEL values as their growing seasons are longer than other vegetation types and they are
more sensitive to ozone concentrations, in addition to high wood prices.

The MELs of the crops and horticultural products range from USD 0 to 5.19 K per
kilotonne of VOC emissions per year per 0.25 × 0.25 degree, as a precursor of ozone. These
values are between those of forests and semi-natural products, as growing seasons of crops
are shorter than those of forests, and crops are not as sensitive to ozone levels as the forests.
The MELs of the crops and horticultural products are high in the Northeast Plain, the
eastern parts of the Yunnan Guizhou Plateau, the eastern parts of the Sichuan Basin, the
middle reaches of the Yangtze River, and the coastal areas of Northern China.

4. Discussion

This study integrated the clustering algorithm with the spatial regression and clustered
the country with variables including the NO2 concentration. Clustering with meteorological
and topographic factors significantly reduces the regression square errors, sigma2, from
94.5 to a cluster average of 66.2. The inclusion of NO2 concentrations in the clustering
variables further reduces the average sigma2 to 64.6 as the VOC emission reacts differently
in NOx-saturated and NOx-sensitive regimes. Density distributions of the clustering
variables were presented for each cluster, and this assisted in the explanation of regression
results, such as the effects of the high solar radiation in the north and the effects of wind
directions. The effect of the v direction wind in the coastal areas is consistent with a study
of Shenzhen, a southeast coastal city, where high ozone concentrations are related to the
westerly wind [39]. A negative link between NOx emissions and ozone concentrations in
the Yunnan Guizhou Plateau and Southeast China was found in this study, which conforms
to the existing studies. For example, during the COVID-19 lockdowns, NOx emissions in
Wuhan and four European cities decreased by 42–56%, while ozone concentration increased
by 17–84% [40,41]. Other studies also found that ozone concentrations are negatively
correlated with NOx emission and suggested that the sole control of NOx emissions is not
appropriate for the management of ozone pollution [6,42]. In contrast with existing studies,
the clustering spatial regression is capable of presenting the variation of NOx emissions’
effects across different clusters.

It is also a novel approach to apply clustering spatial regression coefficients to the
marginal loss estimation, which makes the estimation of marginal economic losses of
vegetation due to marginal VOC emission as a precursor of ozone more accurate. In
addition to the clustering algorithm, this approach considers the spatial correlation of the
pollutant and distinguishes the effect of VOC emissions on ozone levels from the diffusion
of the ozone from neighboring areas. Hence it ensures that the estimated coefficients
represent the pure impacts of local emission and ensures the high accuracy achieved in the
marginal loss estimation. Furthermore, the coefficients of VOC emissions were diversified
into cluster-specific ones to produce localized marginal changes in ozone concentrations
caused by the marginal emission of VOCs.

Our cluster-specific coefficients are close to existing sensitivity results from simulation
studies. For example, Cao et al. found that, on average, when VOC emissions decrease by
25%, the ozone concentrations are reduced by 3.1 µg/m3 in the urban area of Chongqing [6].
The average annual emission in the urban areas in Chongqing is 30,944 tonnes (sourced
from the MEIC), and thus 3.1/(30,944 ∗ 25%) = 0.0004 µg/m3 per tonne = 0. 4 µg/m3 per
kilotonne, close to our coefficient of 0.363 for cluster 8.
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Marginal AOT40 changes derived from the marginal concentration changes were per-
formed on an hourly basis to strictly obey the calculation rule of AOT40s and to ensure the
accuracy of the estimation of marginal vegetation yield/biomass losses. In the calculation
of marginal economic losses, localized areas of crops, forests, and grasslands and local
yields and prices for different vegetation types were used to improve the accuracy.

This study identified the counties where emissions of VOCs have significantly positive
effects on ozone concentrations. The selected areas shown in Figures 7 and 8 are similar
to Cao et al.’s study [4], except that our clusters were automatically generated by the
clustering algorithm and selected by the clustering spatial regression, and thus Northeast
China was included as a separate region. Our study also identified the counties where
large marginal AOT40 changes are created by the same amount of VOC emissions and
discerned the counties where marginal yield/biomass losses and marginal economic losses
are large due to the marginal emission of VOCs. Usually, these places with large losses
have a dense distribution of high-value vegetation, high marginal increases in AOT40s,
sensitive yields, and high prices of vegetation products. These county-level marginal loss
values could assist in assessing a new project, which may introduce more VOC emissions.

5. Conclusions

Using novel approaches that fused the clustering algorithm with the spatial regression,
this study assessed the marginal economic losses of vegetation caused by an additional
kilotonne of VOC emissions as a precursor of ozone. Ten clusters were created by the
clustering algorithm, which apparently reflect the climatic and topographic distributions
of the country. The consideration of the spatial autocorrelation distinguishes the ozone
generated by local emissions from the ozone spilled from the neighbors, and the integration
of the clustering and the spatial regression significantly reduces the regression sigma2. The
clusters with significantly positive coefficients of VOC emissions are mainly in the south
part of China and Northeast China. It was found that less NOx emission creates higher
ozone levels in Southeast China and the Yunnan Guizhou Plateau. The AOT40 marginal
change maps indicate that Northeast China and the Yunnan Guizhou Plateau have the
highest increase in AOT40s in response to the marginal emission of VOCs. Aside from that
the highest MELs due to the emission of VOCs of semi-natural products occur in Inner
Mongolia, MELs are peaking for all other vegetation types in Northeast China and the
Yunnan Guizhou Plateau, with exceedingly large MELs for forests in the Greater Khingan
Range. In addition to these regions, MELs of crops are prominent in the middle reaches of
the Yangtze River, and MELs of deciduous forests are notable in the mountainous areas
such as the Qinling Mountains. The soaring MELs of forests are caused by the high prices
of timber, the long growing seasons, and the sensitivities of trees to ozone levels.

6. Recommendations

Considering the results found in this study, it is recommended that new factories with
VOC emissions should not be placed near the forest areas, especially, avoiding being close
to mountainous areas. Large VOC emission sources should be moved out of Northeast
China and the Yunnan Guizhou Plateau as the same amount of emissions will produce large
AOT40 changes and MELs in these two regions. VOC emission sources should also avoid
areas of dense croplands or grasslands, such as the plain areas near the Yangtze River and
the Pearl River and Inner Mongolia. In addition to the assessment of the marginal damage
to vegetation caused by the emission of VOCs as a precursor of ozone, future studies
may evaluate the marginal damage to health induced by the additional VOC emissions
to get a full view of marginal losses caused by the VOCs. Alongside the clustering spatial
regression, in this case, the geographically weighted regression could be used to discern the
more spatial variations and spatial patterns of the health damage and estimate the MELs
for health.
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