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Abstract: Global climate change is likely to influence evapotranspiration (ET); as a result, many ET
calculation methods may not give accurate results under different climatic conditions. The main
objective of this study is to verify the suitability of machine learning (ML) models as calculation
methods for pan evaporation modeling on the macro-regional scale. The most significant PE changes
in the different agroclimatic zones of the Slovak Republic were compared, and their considerable
impacts were analyzed. On the basis of the agroclimatic zones, 35 meteorological stations distributed
across Slovakia were classified into six macro-regions. For each of the meteorological stations,
11 variables were applied during the vegetation period in the years from 2010 to 2020 with a daily
time step. The performance of eight different ML models—the neural network (NN) model, the
autoneural network (AN) model, the decision tree (DT) model, the Dmine regression (DR) model, the
DM neural network (DM NN) model, the gradient boosting (GB) model, the least angle regression
(LARS) model, and the ensemble model (EM)—was employed to predict PE. It was found that the
different models had diverse prediction accuracies in various geographical locations. In this study,
the results of the values predicted by the individual models are compared.

Keywords: pan evaporation; agroclimatic zone; macro-region; climatic characteristic; machine learning

1. Introduction

Changes in climatic factors, such as in temperature, wind speed, sunshine hours,
humidity, and solar radiation, can have a significant impact on the evapotranspiration (ET)
process [1]. ET is the combination of two separate water loss processes: water’s evaporation
from the soil and plant surfaces and plant transpiration, through which water escapes
from a plant’s body into the ambient air through its stomata in the form of steam [2,3].
Evaporation is an important component of the hydrological cycle [4]. Pan evaporation (PE)
is extensively used in developing irrigation projects and provincial water resources [5,6].
PE is an important climatic variable for developing efficient water resource management
strategies [7]. Generally, two approaches—(i) direct (i.e., pan evaporimeter) and (ii) indirect
(i.e., empirical or semi-empirical equations)—are used to measure evaporation [8,9]. The
direct estimation of PE using a class A pan evaporimeter has limited spatial coverage
because of practical and instrumental problems [9–11]. In contrast, the application of
the indirect PE estimation method based on the relationship of ET with various climatic
parameters is often restricted due to data availability and climate variability [9,12,13].
Considering the limitations of both the methods, machine learning (ML) techniques have
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been used in recent years as an alternative [9]. In the past, many ML models for PE modeling
using different combinations of available climatic variables have been reported in the
literature [13]. Owing to the rapid development of ML techniques, a series of powerful tools
has been proposed over the last two decades, allowing the scientific community to obtain
new insights into the patterns of ET on different spatial scales, ranging from ecosystem to
global. Elucidating the biophysical mechanisms governing the exchange of water vapor
between land and the atmosphere is particularly crucial for addressing water scarcity under
climate change [14]. Some applications of ML models for PE estimation are described
in [1,9,13,15,16]. In the last decade, advances in computation have led to the introduction of
ML methodologies for referencing evapotranspiration calculations, and the high accuracy
of their results has been proven by using different approaches [17]. In the last few decades,
ML techniques have been increasingly utilized to estimate hydrological variables [18–22],
ecological variables [23], and renewable energy variables [24], as described in [14]. Because
ML techniques solve the non-linear relationships between input and output variables [14],
many ML techniques have been proposed to estimate ET for hydrological applications [25],
such as k-nearest neighbors [26], support vector machines [27], random forests [26], and
artificial neural networks (ANNs) [28]. Previously, most studies applied ML approaches to
in situ measurements; however, many recent studies have also applied ML approaches to
remote sensing data [29–31], as shown in [32], as well as [33,34].

Potential evapotranspiration represents the upper limit of ET when this process is
not limited by water deficit in the soil [35]. Potential evapotranspiration in Slovakia is
estimated according to empirical or semi-empirical relationships based on measurements of
other meteorological elements, as described by the authors of [36], who compared the daily
reference crop’s (grass cover) potential evapotranspiration results which were calculated
with two modifications of the Penman–Monteith equation. The authors of [37] studied
drought occurrence using the Standardized Precipitation and Evapotranspiration Index
(SPEI) and the Standardized Precipitation Index (SPI). Maps were constructed based on data
calculated using the Budyko–Zubenokova method in 31 Slovak climatological stations [35].

Several local-scale studies have been conducted in the Slovak Republic, e.g., [35,38,39];
however, an overall PE estimation with ML techniques and by using all of the available
pan vapor data for the whole territory of the country is missing, and no similar works have
been carried out by using these kinds of methods. In order to obtain an overview about the
present state of research in this field, a review of related research articles was carried out,
and details of some recently published articles are listed in Table 1.

Table 1. Example of ML applications for PE estimation.

Author Country Recommended Model
for PE Estimation

Input Climatic Data
Variables * Statistical Indices **

Number of the
Meteorological
Stations

Majhi and Naidu
(2021) [13] India

functional link artificial
neural network
(FLANN)

PE, Tmax, Tmin, RH1,
RH11

RMSE = 0.85;
MAE = 0.63;
EF = 0.70

3

Kisi, O. (2015) [40] Mediterranean
Region of Turkey

multivariate adaptive
regression splines
(MARS), M5 Model
Tree (M5Tree)

PE, Taver SR, RH, Us RMSE = 0.189 2

Zounemat-Kermani
et al. (2021) [16] Turkey Levenberg–Marquardt

(MLP-LM)
PE, Tmax, Tmin, SR, S,
RH, Us

MAE = 0.492;
d = 0.981 2

Malik et al. (2021) [9] Northern India Slap Swarm Algorithm
(SVR-SSA)

PE, Tmax, Tmin,
RHmax, Rhmin,
SR, Us

MAE = 0.697;
RMSE = 1.1;
IOS = 0.250;
NSE = 0.861;
PCC = 0.929;
IOA = 0.960

3
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Table 1. Cont.

Author Country Recommended Model
for PE Estimation

Input Climatic Data
Variables * Statistical Indices **

Number of the
Meteorological
Stations

Abed et al. (2021) [41] Malaysia
Long Short-Term
Memory Neural
Network (LSTM)

PE, Taver, Tmax, Tmin,
RH, SR, Us

R2 = 0.970;
MAE = 0.135;
MSE = 0.027;
RMSE = 0.166;
RAE = 0.173;
RSE = 0.029

2

Ferreira et al.
(2019) [42] Brazil

multivariate adaptive
regression splines
(MARS)

Etr, Taver, SR, Us, G,
es, ea, ∆, y

R2 (0.79–0.85);
RMSE (0.41–0.54);
MAE (0.34–0.46)

8

Al-Mukhtar (2021) [1] middle, south, and
north of Iraq

weighted K-nearest
neighbor (KKNN)

PE, Tmax, Tmin, T,
RH, Us

R2 = 0.98;
RMSE = 26.39;
MAE = 18.62;
NSE = 0.97;
PBIAS = 3.8

3

Wang et al.
(2017) [11] China

multiple linear
regression (MLR),
Stephens and Stewart
model (SS)

PE,Taver, SR, S,
RH, Us

R2 = 0.988;
RSME (0.314–0.405)

8

Sattari et al.
(2021) [43] Northwest Iran M5 tree model

(M5Tree) PE, Taver, RH, Us, P

RMSE
(0.0042–0.0058);
R2(0.9916–0.9952);
t-test (0.722–0.96);
NSE (0.989 to 0.994)

4

Adnan et al.
(2017) [44] Pakistan principal component

analysis (PCA)
PE, Tmax, Tmin, Taver
RH, SR, Us, P R = 0.83426 1

Simon-Gáspár et al.
(2021) [45] Hungary multiple stepwise

regression (MLR)
PE, Taver, Tmax, Tmin,
RH, Us, Rs

RMSE = 0.834;
MAE = 0.660;
S = 0.217

1

* Pan evaporation (PE); reference evapotranspiration (Etr); average, maximum, minimum, morning, and afternoon
relative humidity (RH, Rhmax, Rhmin, RH1, and RH11); average, maximum, and minimum air temperature (Taver,
Tmin, and Tmax); wind speed (Us); relative sunshine duration (S); solar radiation (SR); soil heat flux (G); saturation
vapor pressure (es); actual vapor pressure (ea); slope of the saturation vapor pressure function (∆); psychometric
constant (y); precipitation (P); global radiation (Rs). ** Root mean square error (RMSE); mean absolute error
(MAE); efficiency factor (EF); Willmott index (d); absolute error (MSE); determination coefficient (R2); regression
value (R); relative absolute error (RAE); relative squared error (RSE); percentage bias (PBias); unpaired two-sample
t-test (t-test); Nash–Sutcliffe efficiency index (NSE); scatter index (SI).

The North Atlantic Stream, as part of the Gulf Stream, has a favorable effect on the
climatic conditions of Western and Northwestern Europe. These effects are mainly reflected
in the reduction in temperature fluctuations throughout the year; this means that, for
example, during the winter period, the air temperatures do not decrease below the freezing
point [46]. However, the weather in Slovakia also affects the flows of air from the Atlantic
Ocean and from the Adriatic Sea. The individual weather forecasting models used in
Slovakia have also contradicted each other in certain time periods. An example is the
year 2021, when weather differed from most of the years of the second decade of the 20th
century. Frequent changes in weather were typical for most of the year 2021. This has
occurred since the end of summer and during autumn, and it was also characteristic for
the month of December. At the beginning of this month, it warmed up, then there was
a cooling period; however, this only occurred in some parts of Slovakia, for example in
the west and southwest, and it was accompanied by heavy snowfall. In the middle of the
month of December, it warmed noticeably, and it lasted until the end of the year [47]. The
climate of a particular area is also affected by microclimatic factors, especially the shape
of the relief (convex or concave), the orientation of the relief towards the world and the
prevailing flow, relative altitude fragmentation, vegetation, and anthropogenic influences.
The aim of this study is to obtain information about the areas that are the most affected by
PE changes, which is closely related to the manifestations of global climate change.
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For the purpose of this study, eight newly explored ML models for estimating PE
losses in six macro-regional scales were assessed. The macro-regions were classified
according to individual agroclimatic zones. Using available climatic data from 35 different
meteorological stations across the Slovak Republic, we performed the estimation of the PE
in the vegetation period applying the datasets selected for the years 2010 to 2020, including
their different elevations above sea level and geographical locations.

As a result of the above-mentioned literature resources, ML is an important tool for
the goal of leveraging technologies around artificial intelligence. ML is, in part, based on a
model of brain cell interaction. Although the model was created in 1949 by Donald Hebb
(1949) [48] in a book titled The Organization of Behavior (Keith, 2021) [49], the applications of
ML techniques to evapotranspiration estimation problems are currently limited and the
knowledge on the topic is still partial and fragmented [50].

The results of this study are unique because: (1) there is no comparative study for the
whole of the Slovak Republic, where all available climate data for the last climate decade for
PE estimation are applied; (2) the new progressive ML method was used for PE assessment;
and (3) besides the selection of the applicability and predictability of eight different ML
models, the macro-regions with the most pronounced manifestations of global climate
change are identified.

2. Materials and Methods
2.1. Study Location and Climatic Data Collection

In connection with global climate change, the gradual modification of the energy
balance globally, and especially locally, was observed. Therefore, the assessment of PE
changes and their trends in the Slovak Republic has its justification. The climatic data
from the climatological network of Slovak stations were provided by the Slovak Hydrom-
eteorological Institute (SHMI) in Bratislava. The available PE dataset for the vegetation
periods of the years from 2010 to 2020 was analyzed according to individual regions of the
Slovak Republic.

The daily data of PE during the main vegetation period (from April to October) from
35 meteorological stations distributed across Slovakia (see Figure 1) were used in this study.
There were evaluated data mostly from the ten consecutive years (2010–2020). All available
PE data measured in the Slovak Republic by SHMI during the observed periods were
applied in this study. The reason for this is not only the availability of the data, but also the
application of the same instrument for their measurement, i.e., a GGI—3000 evaporator
(see principle in [51]).

Slovak Republic Zoning Criteria

The zoning criteria are based on the agroclimatic division of Slovakia [52]. For the
agroclimatic division of Slovakia, three basic agroclimatic indicators were used, according
to the area divided into agroclimatic macro-areas, sub-areas, and districts.

(a) The agroclimatic temperature indicator (TS10) is the sum of average daily air
temperatures during the period with an average daily temperature of ≥10.0 ◦C. According
to this indicator, the territory of Slovakia is divided into three agroclimatic macro-areas and
eight agroclimatic areas:

1. Warm agroclimatic macro-area with TS10 from 3100 to 2400 ◦C;
2. Slightly warm agroclimatic macro-region with TS10 from 2400 to 2000 ◦C; and
3. Cold agroclimatic macro-region with TS10 from 2000 to 1600 ◦C.

(b) The agroclimatic moisture indicator (KVI–VIII) is given by the difference of potential
evaporation (Eo) and precipitation (P) in the summer months (June–August (VI–VIII)):

KVI–VIII = Eo − P (mm) (1)

Eo values were calculated for the territory of Slovakia by [53]. The climatic indicator
“K” expresses the moisture balance of the area well (expressed in millimeters). Positive
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values Eo − P are characterized by the water deficiency and negative values by the mois-
ture excess.
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Figure 1. Geographical location of the used climatological stations in the Slovak Republic divided
into eight regions and their macro-regional classification: northwest (NW): Trenčín region; southwest
(SW): Trnava region, Bratislava region, Nitra region; north-central (NC): Žilina region; south-central
(SC): Banská Bystrica region; northeast (NE): Prešov region; southeastern (SE): Košice region.

According to the climatic indicator (KVI–VIII), there are seven sub-areas in Slovakia, in
which agricultural crops have differently ensured their moisture requirements:

1. Subarea with KVI–VIII ≥ 150 mm—very dry
2. Subarea with KVI–VIII 150 to 100 mm—mostly dry
3. Subarea with KVI–VIII 100 to 50 mm—slightly dry
4. Subarea with KVI–VIII 50 to 0 mm—slightly humid
5. Subarea with KVI–VIII 0 to −50 mm—mostly humid
6. Subarea with KVI–VIII −50 to −100 mm—humid
7. Subarea with KVI–VIII −100 mm—very humid

(c) The agroclimatic wintering indicator (Tmin) represents the average of the annual ab-
solute temperature minima. This characteristic effectively describes the climatic conditions
during the winter. Absolute temperature minima are important factors for the cultivation
of winter crops and fruit trees. They effectively express the critical freezing temperatures.
According to the conditions of wintering, there are five districts:

1. Agroclimatic district of mostly mild winter with Tmin ≥ −18 ◦C;
2. Agroclimatic district of relatively mild winters with Tmin from −18.0 ◦C to −20.0 ◦C;
3. Agroclimatic district of mildly cold winter with Tmin from −20.0 ◦C to −22.0 ◦C;
4. Agroclimatic district of mostly cold winter with Tmin from −22.0 to −24.0 ◦C;
5. Agroclimatic district of cold winter with Tmin ≤ −24.0 ◦C.

The average annual vertical temperature gradient in Slovakia is 0.61 ◦C per 100 m of
height. During the summer months, however, its value increases to 0.76 ◦C and, in the
winter months, it decreases to 0.33 ◦C. The territory of the Slovak Republic was divided
into eight regions (see Figure 1). The classification of the eight Slovak regions into six
macro-regions with 35 individual meteorological stations across Slovakia is shown in
Table 2.

According to Figure 1 and Table 2, the division of eight regions into six macro-regions
according to the different agroclimatic zones is as follows:

• Northwest (NW): Trenčín region;
• Southwest (SW): Trnava region, Bratislava region, and Nitra region;
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• North-central (NC): Žilina region;
• South-central (SC): Banská Bystrica region;
• Northeast (NE): Prešov region;
• Southeastern (SE): Košice region.

The characteristics of the agroclimatic zones were applied to classify eight regions into
six macro-regions, which are:

(1) Northwestern Slovakia (NW): Trenčín region—From an agroclimatic point of view,
the NW area is assigned to the macro-area of a mildly warm, agroclimatic area of a
lightly warm subarea that is moderately humid to mostly humid. Moreover, this area
is assigned to agroclimatic precincts with a mild/cold winter to a mostly cold winter.
This area also transitions north to the macro-area with a cold, agroclimatic area with a
moderately cold sub-area that is mostly humid to humid, and a precinct with mostly
cold winters.

(2) Southwestern Slovakia (SW): Bratislava region, Trnava region, and Nitra region—
From an agroclimatic point of view, the SW area is assigned to the macro-area of
a warm and agroclimatic area that is very warm, a sub-area that is very dry, and a
predominantly dry and agroclimatic precinct that has mainly mild winters.

(3) North-central Slovakia (NC): Žilina region—From an agroclimatic point of view, the
NC area is assigned to the macro-area of a slightly warm to cold agroclimatic area
from a slightly to moderate/mildly warm sub-area up to a slightly cold sub-area.
This area is also assigned to slightly dry, moderately humid, mostly humid, and
agroclimatic precincts that are mildly cold to mostly cold in the winter. This area
transitions north to a macro-area of a cold, agroclimatic area that is mostly cold, a
sub-area that is mostly humid to humid, and a precinct that is mostly cold/cold in
the winter.

(4) South-central Slovakia (SC): Banská Bystrica region—From an agroclimatic point
of view, the SC area at the southernmost part of the state border is assigned to a
warm macro-area, a very warm agroclimatic area, a very dry and predominantly
dry sub-area, and an agroclimatic precinct with a predominantly mild winter. This
area transitions to a macro-area with a moderately warm, an agroclimatic area that
is relatively mild/warm, a sub-area that is slightly humid to mostly humid, and a
precinct that is slightly cold in the winter.

(5) Northeastern Slovakia (NE): Prešov region—From an agroclimatic point of view, this
area is the most diverse. In the southern part, it is considered a warm macro-area,
with an agroclimatic area that is sufficiently warm to relatively/moderately warm,
sub-areas that are predominantly dry to moderately dry, and agroclimatic precincts
that have relatively mild winters to mild cold winters. This area transitions north to
a macro-area that is warm or moderately warm to cold, an agroclimatic area that is
relatively mild/warm to slightly cold, sub-areas that are moderately dry or slightly
humid, and a precinct that is slightly cold in the winter to mostly cold in the winter.

(6) Southeastern Slovakia (SE): Košice region—From an agroclimatic point of view, the SE
area is assigned as the macro-area of a warm and agroclimatic area that is very warm,
a sub-area that is very dry and a predominantly dry, and a agroclimatic precinct with a
predominantly mild winter. This area transitions to an agroclimatic area that is mostly
warm, a sub-area that is very dry, and a precinct that has a relatively mild winter.
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Table 2. Identification of the individual regions across the territory of the Slovak Republic and their integration according to macro-regions.

Number Identification Station Name Pan
Evaporation Measurement Classification Region

Identification Classification Region
Identification

Macro-region
Classification

Setting date Ending date

1 665 ĎUBÁKOVO 1 May 2011 30 June 2016 BB
(Banskobystrický)

SC (south of
central Slovakia)

NW (north of
western
Slovakia)

TN
(Trenčiansky) NW NC NE

2 11800 HOLÍČ 1 April 2011 30 June 2015 TT (Trnavský)
SW (south of
western
Slovakia)

SW (south of
western
Slovakia)

TT (Trnavský) SW SC SE

3 11810 BRATISLAVA–M.
DOLINA 1 April 2011 31 October 2020 BA (Bratislavský)

SW (south of
western
Slovakia)

BA
(Bratislavský)

4 11813 BRATISLAVA-
KOLIBA 1 April 2011 31 October 2011 BA (Bratislavský)

SW (south of
western
Slovakia)

NR (Nitriansky)

5 11819 JASLOVSKÉ
BOHUNICE

1 April 2011 31 July 2011 TT (Trnavský)
SW (south of
western
Slovakia)

NC (north of
central Slovakia) ZA (Žilinský)

6 11820 ŽIHÁREC 1 April 2011 31 October 2020 NR (Nitriansky)
SW (south of
western
Slovakia)

SC (south of
central Slovakia)

BB (Ban-
skobystrický)

7 11835 MORAVSKÝ
SVÄTÝ JÁN

1 April 2011 31 May 2016 TT (Trnavský)
SW (south of
western
Slovakia)

NE (north of
eastern Slovakia) PO (Prešovský)

8 11841 DOLNÝ HRIČOV 1 April 2011 30 September 2011 ZA (Žilinský)
NC (north of
central Slovakia)

SE (south of
eastern Slovakia) KE (Košický)

9 11847 TOPOL’ČANY 1 April 2011 31 October 2020 NR (Nitriansky)
SW (south of
western
Slovakia)

10 11856 MOCHOVCE 1 April 2011 31 July 2011 NR (Nitriansky)
SW (south of
western
Slovakia)

11 11858 HURBANOVO 1 April 2011 31 October 2020 NR (Nitriansky)
SW (south of
western
Slovakia)
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Table 2. Cont.

Number Identification Station Name Pan
Evaporation Measurement Classification Region

Identification Classification Region
Identification

Macro-region
Classification

12 11862 BELUŠA 1 April 2011 31 August 2015 TN (Trenčiansky)
NW (north of
western
Slovakia)

13 11867 PRIEVIDZA 1 April 2011 31 October 2020 TN (Trenčiansky)
NW (north of
western
Slovakia)

14 11869 RABČA 1 May 2011 31 October 2020 ZA (Žilinský)
NC (north of
central Slovakia)

15 11878 LIPTOVSKÝ
MIKULÁŠ

1 May 2011 31 October 2020 ZA (Žilinský)
NC (north of
central Slovakia)

16 11880 DUDINCE 1 April 2011 31 October 2020 BB
(Banskobystrický)

SC (south of
central Slovakia)

17 11881 ŽELIEZOVCE 1 June 2011 31 October 2014 NR (Nitriansky)
SW (south of
western
Slovakia)

18 11898 BANSKÁ
BYSTRICA

1 May 2011 31 October 2020 BB
(Banskobystrický)

SC (south of
central Slovakia)

19 11903 SLIAČ 1 April 2011 31 October 2020 BB
(Banskobystrický)

SC (south of
central Slovakia)

20 11910 LOM NAD
RIMAVICOU 1 May 2011 31 October 2020 BB

(Banskobystrický)
SC (south of
central Slovakia)

21 11918 LIESEK 1 April 2011 31 October 2020 ZA (Žilinský)
NC (north of
central Slovakia)

22 11927 BOL’KOVCE 1 April 2011 31 October 2020 BB
(Banskobystrický)

SC (south of
central Slovakia)

23 11938 TELGÁRT 1 May 2011 12 October 2020 BB
(Banskobystrický)

SC (south of
central Slovakia)

24 11944 ROŽŇAVA 1 April 2011 30 October 2017 KE (Košický) SE (south of
eastern Slovakia)

25 11949 SPIŠSKÉ
VLACHY

1 May 2011 31 October 2020 KE (Košický) SE (south of
eastern Slovakia)

26 11952 GÁNOVCE 20 April 2011 30 October 2020 PO (Prešovský) NE (north of
eastern Slovakia)

27 11955 PREŠOV-VOJSKO 1 May 2011 31 October 2020 PO (Prešovský) NE (north of
eastern Slovakia)
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Table 2. Cont.

Number Identification Station Name Pan
Evaporation Measurement Classification Region

Identification Classification Region
Identification

Macro-region
Classification

28 11968 KOŠICE, LETISKO 1 April 2011 31 October 2020 KE (Košický) SE (south of
eastern Slovakia)

29 11976 TISINEC 1 April 2011 31 October 2020 PO (Prešovský) NE (north of
eastern Slovakia)

30 11978 TREBIŠOV,
MILHOSTOV

1 April 2011 30 October 2020 KE (Košický) SE (south of
eastern Slovakia)

31 11979 SOMOTOR 1 April 2011 31 October 2014 KE (Košický) SE (south of
eastern Slovakia)

32 11982 MICHALOVCE 1 April 2011 31 October 2020 KE (Košický) SE (south of
eastern Slovakia)

33 11984 ORECHOVÁ 1 April 2011 31 October 2020 KE (Košický) SE (south of
eastern Slovakia)

34 11993 KAMENICA N.
CIROCHOU 1 April 2011 31 October 2020 PO (Prešovský) NE (north of

eastern Slovakia)

35 11995 VYSOKÁ NAD
UHOM

1 April 2011 31 October 2012 KE (Košický) SE (south of
eastern Slovakia)
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Extreme temperatures are considered a limitation for the production process of field
and garden crops and often for all agricultural production. The absolute maximum temper-
ature in Slovakia was measured on 20 July 2017 in Hurbanovo at 40.3 ◦C and the absolute
minimum temperature was measured on 11 February 1929 in Vígl’aš-Pstruša at −41.0 ◦C.

2.2. Case Study and Data Description

In this study, the following measured meteorological data were applied on a daily
basis: (1) daily pan evaporation in millimeters (PE); (2) minimum temperature in degrees
Celsius (Tmin); (3) maximum temperature in degrees Celsius (Tmax); (4) average tempera-
ture in degrees Celsius (Taver); (5) relative humidity as a percentage (RH); (6) average wind
speed in meters per second (Us) with (7) wind speed measured at 7, 14, and 21 h, as well as
(8) prevailing wind directions measured at 7, 14, and 21 h; (9) the sum of precipitation in
millimeters (P); and (10) vapor pressure in hectopascals (E). For each station, the (11) ele-
vation above sea level in meters (elevation) and (12) geographical location (coordinates)
were applied.

2.3. ML Models and Evaluation Criteria

The data collected daily from 35 meteorological stations were processed into an
extensive database (including about 176,000 observation records) in the form of panel data.
Each observation was labelled by time and cross-sectional characteristics. The database was
divided into a ratio of 40:30:30 into data for model estimation (train), for model validation
(Validate) and for model testing (Test). The analysis was performed in SAS Enterprise
Miner 15.1. As part of the workflow, the most used modeling techniques for large-scale
data analysis were applied. As the target variable, pan evaporation was selected. All the
other variables were used as the input variables, including geographical location. Based on
the input data, the following models were estimated, validated, and tested.

2.3.1. Neural Network (NN)

The neural network with multilayer perception (MLP) model architecture was tested.
Artificial neurons are similar to biological neurons in terms of learning based on experience
and generalizations of previous experiences and applying acquired experience to new data.
MLP is a neural network inspired by the structure of the real brain [54]. It consists of layers
that contain neurons as processing units. Each unit in a layer is associated with all units in
the previous layer. The knowledge of the whole network is encoded in the weights of these
connections. Such a neural network can accurately predict the outputs of any unknown
function. The network uses three nodes (input layer, hidden layer, and output layer), which
are neurons with a nonlinear activation function [55] (see Figure 2).
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Figure 2. Architecture of a convolutional neural network according to [56].

2.3.2. AutoNeural Network (AN)

An autoneural network is a modeling tool in which the neural network architecture is
automatically configured by the software to achieve the best result. The main advantage of
a neural network is its ability to detect complex nonlinear relationship between dependent
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and independent variables and all possible interactions between them [57]. Another
advantage of neural networks is the availability of multiple training algorithms which may
be applied without deeper statistical knowledge. As disadvantages could be considered a
higher computational burden, it has the empirical nature of model development and the
tendency towards overfitting. Another disadvantage is the “black box” nature of neural
networks, which complicates the further modification and deeper interpretation of model
results compared to other types of models.

2.3.3. Decision Tree (DT)

An empirical decision tree represents a segmentation of data that is created based on
a series of simple decision rules. The tree is created based on an algorithm that identifies
different ways of dividing the dataset into individual segments similar to branches. They
can be used for the analysis of categorical as well as quantitative variables. The rule
for forming the branches of the decision tree is based on the method of extracting the
relationship between the analysis object and one or more inputs to create the segments [58].

2.3.4. Dmine Regression (DR)

Dmine regression is an estimation method using a sequentially applied least squares
method. In each step, an independent variable is selected that contributes most to the
explained model’s variability. In the estimation, bidirectional interactions between clas-
sification variables are considered, a possible non-linear relationship between the input
variables and the target variable is identified, and group variables are used to reduce the
number of the classification variable levels.

2.3.5. DM Neural Network (DM NN)

A DM neural network is the method used to estimate the additive nonlinear model,
whereby the main components are used to predict the target variable. In contrast to the
neural network, it overcomes the problem of nonlinear estimation and the identification of
the global optimal solution with a significantly shorter computational time. In the first step,
the method of the main components is applied to the training data, from which a smaller
number of components is subsequently selected for use in the next modeling process. At
each stage of the modeling process, eight training functions are estimated separately in the
training dataset, from which the variant that achieves the best results is selected.

2.3.6. Gradient Boosting (GB)

Gradient boosting is the application of the algorithm published by [59]. The algorithm
searches for the optimal partition of data defined in terms of the values of one variable.
The optimality of the criterion depends on how the target variable is divided into the
individually defined partitions. The more similar the values of the target variable within
a segment, the higher the value of the partition. The majority of the similar algorithms
work through a process called recursive partitioning. The partitions are then combined to
create a predictive model. The accuracy of the model is evaluated by standard indicators
based on a comparison with the values of the target variable. As with decision trees, there
is no assumption about the distribution of variables that need to comply with the gradient
boosting. For interval input variables, the model only works with variable sequences. For
analyzed data, where decision trees have achieved good results, gradient boosting can
often further improve this result.

2.3.7. Least Angle Regression (LARS)

This type of regression was first published by Efron et al. (2004) [60]. Similar to the
forward selection that is often used in regression models, the algorithm produces a sequence
of regression models. One additional parameter is added at each step. The sequential
procedure is completed after all parameters have entered the model. The algorithm begins
by centering the input and output variables. The input variable scales are adjusted to the
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same number of corrected squares. The initial level of the coefficients is zero, as is the
predicted effect on the output variable. Subsequently, the predictor that is most correlated
with the residues is identified and a step in the direction of this predictor follows. The
step length determines the predictor coefficient. The step length is determined so that any
of the other predictors and the current predicted effect have the same correlation with
the residues. At this point, the predicted effect moves in a direction that is rectangular
between the two predictors. This will ensure that already mentioned predictors have the
same correlation with residues. The predicted effect moves in the same direction until the
third predictor also has the same correlation with residues as the previous two predictors
previously in the model. The new direction is designed to be rectangular between the three
predictors. The predicted effect moves again in this direction until a fourth predictor that
has the same correlation with residues enters the model. In this way, the process continues
until all predictors enter the model.

2.3.8. Least Ensemble Model (EM)

This type of model is one of the methods that combines posterior probabilities and
two or more predictive models to create a potentially more accurate model [61]. In the
case of the analysis performed, the ensemble model was based on the results of all the
above models.

The modeling process is shown in Figure 3. In the initial step, data were collected
and processed into the input database. The database was divided into train, validate,
and test datasets. In the next step, all the modeling techniques described above in the
methodology were applied in the train dataset. Estimated models were validated and
tested using validate and test datasets. In the final step, the best model was selected based
on the smallest value of average squared error achieved in validation and testing.
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Figure 3. Workflow of the modeling process.

3. Results
3.1. PE Changes at the Macro-Regional Level

Table 3 shows the basic characteristics of PE for individual regions. On average, the
lowest PE values were recorded in the NC area, and the highest were recorded in the SE
and SW regions. As for the largest change over the period, it could be expressed using the
variation range in the last column. It follows that the largest change in terms of PE occurred
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in the SE region, followed by SC and SW. The smallest change in terms of evaporation was
in the NC and NW regions. Similar conclusions can be taken from Figure 4.

Table 3. Overview of the individually analyzed regions of the Slovak Republic with the statistic
assessment of their evaluated elements.

Analysis Variable: Pan Evaporation (PE) (mm)

Region
Orientation

Observation
Numbers Mean Median Standard

Deviation
Coefficient
of Variation Range

SW 23,723 2.55 2.40 1.43 56.27 14.00
SC 18,557 2.28 2.20 1.20 52.76 15.20
NC 11,128 1.96 1.90 1.10 56.18 7.00
SE 22,256 2.55 2.40 1.51 59.35 18.50
NE 11,128 2.32 2.20 1.23 53.02 12.60
NW 5381 2.30 2.20 1.37 59.60 8.50
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Figure 4. This figure shows the comparison of the individual analyzed regions of the Slovak Republic
with the minimum and maximum values of the PE (mm). The box is bounded by the lower and
upper quartile, the line in the middle is the median, and the diamond means the average value.

Figure 4 compares the measured PE values in the individual regions. For each region,
Figure 4 shows the minimum and maximum values, the box is bounded by the lower and
upper quartile, the line in the middle is the median, and the diamond means the average
value. Values that are displayed as points above the graph are considered extreme values.
The values are in accordance with Table 4, where the lowest value on average is in NC, and
the highest values are in SW and SE. The displayed values represent the measurements
taken during the vegetation season. In terms of the graphical range of values, similar
results were also achieved, either with or without the consideration of extreme values. The
highest margin is in SE and SW, or SC, where the highest PE changes were found. If we
assess the differences from a statistical point of view, Table 4 shows the differences between
areas that can be considered statistically significant.
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Table 4. Overview of the statistically significant differences in PE according to six macro-regions:
northwest (NW), southwest (SW), north-central (NC), south-central (SC), northeast (NE), and south-
east (SE).

Region Comparison Difference between Means Simultaneous 95% Confidence Limits

SE—SW 0.00009 −0.04029 0.04047
SE—NE 0.22104 0.17463 0.26744 ***
SE—NW 0.24533 0.18232 0.30834 ***
SE—SC 0.26869 0.22804 0.30933 ***
SE—NC 0.58997 0.54258 0.63735 ***
SW—SE −0.00009 −0.04047 0.04029
SW—NE 0.22094 0.17405 0.26783 ***
SW—NW 0.24523 0.18186 0.30860 ***
SW—SC 0.26859 0.22739 0.30980 ***
SW—NC 0.58987 0.54201 0.63773 ***
NE—SE −0.22104 −0.26744 −0.17463 ***
NE—SW −0.22094 −0.26783 −0.17405 ***
NE—NW 0.02429 −0.04308 0.09166
NE—SC 0.04765 0.00053 0.09477 ***
NE—NC 0.36893 0.31589 0.42197 ***
NW—SE −0.24533 −0.30834 −0.18232 ***
NW—SW −0.24523 −0.30860 −0.18186 ***
NW—NE −0.02429 −0.09166 0.04308
NW—SC 0.02336 −0.04018 0.08690
NW—NC 0.34464 0.27659 0.41269 ***
SC—SE −0.26869 −0.30933 −0.22804 ***
SC—SW −0.26859 −0.30980 −0.22739 ***
SC—NE −0.04765 −0.09477 −0.00053 ***
SC—NW −0.02336 −0.08690 0.04018
SC—NC 0.32128 0.27319 0.36936 ***
NC—SE −0.58997 −0.63735 −0.54258 ***
NC—SW −0.58987 −0.63773 −0.54201 ***
NC—NE −0.36893 −0.42197 −0.31589 ***
NC—NW −0.34464 −0.41269 −0.27659 ***
NC—NC −0.32128 −0.36936 −0.27319 ***

Comparisons that are Significant at the 0.05 Level Are Indicated by ***.

3.2. ML Models’ Accuracy Evaluation

The indicator for comparing the accuracy of forecasts of individual models was the
average squared error (ASE) indicator. The model with the lowest value of this indicator
was evaluated as the most suitable model for prediction.

Table 5 compares the prediction accuracy results of all estimated models, according
to which the ASE chooses the model with the smallest average squared error value. The
comparison is made using the average squared error of the estimate, which is calculated as
the square of the difference between the actual and predicted value of the target variable.
The lowest value of the criterion is considered as the best one, because it is the most accurate
estimation. The second column shows the accuracy that was achieved when estimating the
model (Train). In this case, higher accuracy is usually always achieved in the case of model
validation and training. The first column shows the value of the average squared error
achieved when predicting the validation sample, and the last column of Table 5 shows
the error values achieved when training the model on another data sample as large as the
validation sample. These values are slightly higher than in the model estimate. The model
that achieved the lowest average square error in PE prediction was Dmine regression. Both
models of the neural network were evaluated as the least suitable models for the prediction
of PE values.
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Table 5. Comparison and evaluation of the individual machine learning models ranking from best
fit to least suitable. The average squared error (ASE) chooses the model with the smallest average
squared error value.

ML Model Valid Average
Squared Error

Train Average
Squared Error

Test Average
Squared Error

Dmine Regression 0.78819 0.77826 0.78094

Gradient Boosting 0.79695 0.78867 0.79537

Decision Tree 0.84862 0.81904 0.84500

Ensemble model 0.93492 0.93011 0.93512

DM Neural 1.13691 1.14073 1.14558

LARS 1.38220 1.37880 1.38476

AutoNeural 1.62204 1.61178 1.63309

Neural Network 1.62526 1.61762 1.63568

Figure 5 compares the results of the average predicted values according to the individ-
ual models. With the three best models (Dmine regression, gradient boosting, and decision
tree), a very similar development of predicted values can be observed. The most significant
differences in the predicted values were recorded at higher values; on the contrary, at low
predicted values, the resulting predictions of all models were very similar.
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Figure 5. Comparison of the individual machine learning models: (1) neural network, (2) autoneural
network, (3) decision tree, (4) Dmine regression, (5) DM neural network, (6) gradient boosting,
(7) least angle regression, and (8) ensemble model.

Figure 6 indicates the importance of the individual input variables for the PE value
according to the most accurate model (Dmine regression). The results show that humidity
and temperature have the highest effect on the PE results. All other factors are considered
to be far less important. The term OOV16 means that there are variables through which
some numeric variables, such as binned variables, are expressed, i.e., categorical variables
are created according to numerical variable values, for example. The RH shows a significant
difference in the impact of the different expressions.

For comparison, the results according to the second best model are also presented
(gradient boosting). The order of the importance of the variables in this case was almost
identical to the results obtained with the decision tree. Even in this case, humidity and
temperature have the greatest influence (although there is a difference in the importance of
the individual variables related to temperature, compared to the first model). In the third
case, the elevation above sea level is in third place. Significant variables selected in the
Dmine regression model, which was considered superior, are shown in Table 6. The table
includes information about the explanatory ability of each variable, the sum of squares,
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and its significance expressed by the F-value and p-value. Variables denoted as AOV16
represent the categorical expression of quantitative variables. They were used in cases in
which this kind of variable achieved better results than the original one. According to the
results in Table 6, it can be concluded that the most significant variables influencing pan
evaporation were average humidity and minimum temperature. Other variables were also
significant, but with much smaller influence on the target variable.
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Figure 6. Overview of the individual input variables’ importance for the PE value assessment
according to the most accurate model, Dmine regression.

Table 6. The results according to the best model, Dmine regression.

Effect DF R-Square F Value p-Value Sum of Squares

AOV16: Average Humidity 15 0.367893 1290.510136 <0.0001 22095

Var: Temperature Min 1 0.142492 9679.358776 <0.0001 8557.782572

AOV16: Temperature Max 10 0.015878 111.436181 <0.0001 953.574047

AOV16: WindSpeed14 15 0.012232 58.721617 <0.0001 734.603369

AOV16: WindDirection14 15 0.006584 32.049942 <0.0001 395.401311

AOV16: Windspeed21 14 0.003448 18.115361 <0.0001 207.096720

AOV16: Temperature Average 9 0.002904 23.875931 <0.0001 174.387981

AOV16: Water Vapor
Pressure—Average 14 0.002906 15.453458 <0.0001 174.513166

Var: Average Humidity 1 0.002524 189.014114 <0.0001 151.605476

AOV16: WindDirection21 15 0.002285 11.461461 <0.0001 137.246991

AOV16: Elevation Above
Sea Level 10 0.001970 14.880498 <0.0001 118.297418

Var: Temperature Max 1 0.001751 132.805014 <0.0001 105.159677

AOV16: Wind Direction7 15 0.001362 6.905653 <0.0001 81.803511

AOV16: Temperature Min 9 0.001215 10.295476 <0.0001 72.991107

AOV16: Wind Speed7 15 0.000957 4.873271 <0.0001 57.482001

AOV16: Precipitation 15 0.000854 4.355927 <0.0001 51.301760

Var: Wind Speed14 1 0.000800 61.284456 <0.0001 48.030878

Var: Temperature—Average 1 0.000740 56.825843 <0.0001 44.461511

This study’s results are in accordance with other studies, e.g., [39,62–64], which con-
cluded that ML may be a powerful tool for the prediction of actual evapotranspiration
when a time series of a few years is available. Starting from the measurements of a sufficient
number of climatic parameters, it is possible to obtain forecasting models characterized by
very high accuracy and precision.

The final model was selected as the best one, from all common data mining techniques
usually used in the modeling of large-scale data. The dataset was, in this case, compiled
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from measurements in different places and included a large number of observations. The
overall explanatory ability of this model measured by R-squared analysis is slightly smaller
than the value presented by other authors; however, this could be explained by a very large
number of observations used in the presented analysis, which was unique especially due
to the extent of the data (both in time and space). The presented model can be used as the
universal model for the prediction of pan evaporation in the Slovak Republic.

3.3. Relationship between PE and Variables

Concerning the relationship between PE, temperature and elevation above sea level,
the correlation analysis was simplified; only Tmin and Tmax were included instead of Taver.
Table 7 shows that there is a significant yet weak relationship between PE and elevation
above sea level. On the other hand, there is a moderately strong relationship between PE
and Taver, which is a moderate relationship. Comparing Tmin and Tmax clearly shows that
Tmax is a slightly more important factor.

Table 7. Comparison of the strongest relationship variables and PE on the basis of the Pearson
correlation coefficient.

Pearson Correlation Coefficients

Prob > |r| under H0: Rho = 0

Number of Observations

PE

Tmax (◦C) 0.60209
T_max (◦C) <0.0001

77,531
Tmin (◦C) 0.43345
T_min (◦C) <0.0001

77,531
Taver 0.58680

Taver (◦C) <0.0001
77,525

Elevation −0.11332
above <0.0001

sea level (m) 77,534

4. Discussion

The results of this study are built on existing evidence of ML models and statistical
techniques as useful frameworks for making predictions of complex climatological indices,
such as the hydrological PE, as concluded by numerous authors (see Table 1). Investigating
outcomes indicate that the ML models perform well in predicting PE at different climatical
regions [1,9,13,16,40–42], which is also consistent with this case study. The results according
to [11] showed that the ML models have different accuracies in different climates.

ML models based on multiple regression, such as DR in this study, have the best accu-
racy of results, which is in line with the hypotheses of the previous studies [11,40,42,45].
However, the results do not fit with the theory according to Zounemat-Kermani (2021) [40],
where the kriging model, as well as the support vector regression (SVR), radial basis func-
tion neural network (RBFNN), and = Levenberg–Marquardt (MLP-ML) models, performed
better compared to the RSM (the modified response surface method) and M5Tree (M5
model tree).

Contrary to this study’s hypothesized association, in which AN and NN were evalu-
ated as the least suitable models for the prediction of PE, the study of Sudheer (2002) [50]
proved that PE values could be reasonably estimated using temperature data only through
the ANN technique. The results of this study also contradict the claims of the research [13],
in which the estimation results obtained with the functional link artificial neural network
(FLANN) model are compared with those obtained by multi-layer artificial neural net-
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works (MLANN) and two empirical methods using the same raw data and corresponding
features. In summary, the proposed FLANN models provide improved estimates, and they
are able to model the daily evaporation process more accurately compared to MLANN.
Out of MLANN and FLANN, the FLANN is less complex and better in terms of accuracy.
However, among the three agroclimatic zones, the improvement in the plains zone (Raipur)
is more visible, as compared to the plateau (Jagdalpur) and hill (Ambikapur) zones of the
study area [13].

The study [13] concludes that appropriate FLANN models can also be selected de-
pending upon the availability of climatic parameters. A comparison according to [40]
indicates that the models, without local climatic data, provide more scattered estimates.
The studies that used more input climate data variables [9,40,44] have low predicted values;
on the contrary, the most significant relationships in the predicted values were recorded
in studies with less input climatic data variables [11,40,43]. As confirmed by [11], there is
a slight difference between RH and Taver, as they were much more effective at modeling
PE than the other variables in their study. A different study [42] concluded that besides
Taver, SR had the best performance, followed by models that used RH and, finally, Us.
However, the temperature-based models showed the worst performance in their study.
From a study conducted by Al-Mukhtar et al. [1], it is evident that the temperatures (Tmax,
Tmin, and Taver), RH and Us were all significantly associated at the 0.05 level with the PE,
justifying that the PE rates at these stations can be nicely modelled by these elements. The
results of this study are consistent with the above-mentioned studies and proved the strong
relationship between PE and Taver.

The results of this study match with the study of Majhi and Naidu (2021) [13], where
they stated that the evaporation rate increases with an increase in the radiation and temper-
ature of the evaporating zone. Similarly, wind speed also helps to remove the water from
water bodies to some extent and triggers the evaporation process. Bright sunshine and
low humidity and atmospheric pressure are the other climatic variables that significantly
contribute to the evaporation process [13]. The study used the long-term climatic data on
Tmax (◦C), Tmin (◦C), and RH for morning and afternoon hours (RH1 and RH11 (%)), and
Up, SR, and PE were collected from the certified observatories located in selected stations
in India [13].

The different studies used different numbers of meteorological stations for their calcu-
lations, from one [44,45] or two [9,16,40] up to eight [11,42]. However, in this case study,
35 meteorological stations were used to improve the calculation accuracy, which provides
new insight and is an advantage of this study.

In a study from the same country as this case study (Košice, Slovak Republic) [35], the
soft computing techniques for estimating daily PE were investigated, using daily SR, RH, T,
and Us as the meteorological variables for modeling. These model results show that the
ML model performs better than another study that used soft computing techniques [35];
this was the main motivation of this study. However, in this case study, the applicability
of the newly explored ML models was investigated, with the best accuracy obtained by
DR. For future research, it can be compared with the best performing models of ML from
Table 1. The macro-regions with the greatest change in PE will be used for further research
applying PE with other variables (SE and SW regions of the Slovak Republic) with the
uniform climatic characteristics.

In general terms, no one ML algorithm is the best for all problems [50]. The perfor-
mance of different machine learning algorithms strongly depends on the size and structure
of the available data. As concluded in the study by Granata (2019) [50], this study also
infers that the individual ML models have been chosen because they usually achieve high
performance and they are very good at learning complex, highly non-linear relationships.
However, due to the large dispersion of climatic, geographical, and local conditions, it is
necessary to test individual ML models independently for each site.
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5. Conclusions

This study explored the abilities of eight different ML models—NN, AN, DT, DR, DM
NN, GB, LARS, and EM—in modeling PE, utilizing the meteorological dataset combinations
of the variables Tmin, Tmax, Taver, RH, and Us with wind speed in the directions at 7, 14,
and 21 degrees; prevailing wind directions at 7, 14, and 21 degrees; PE; elevation above
sea level; and geographical location. The climatic datasets obtained from 35 stations in
different geographical locations were used as inputs for training and testing. The datasets
were taken from eight regions in the Slovak Republic during the vegetation periods of the
years from 2010 to 2020.

The eight regions were classified into six macro-regions—NW, SW, NC, SC, NE, and
SE—according to the agroclimatic zones of the Slovak Republic. The results of this study
could be applied practically in the field of regional PE estimation. According to results
of the performed analysis, the best method for the modeling of pan evaporation was
Dmine regression. Both neural network models were the worst performing models from
all applied methods. This suggests that the character of the modelled relationships could
be explained better by other methods, despite the ability of neural networks to explain
complex relationships. On the other hand, Dmine regression allows us to use a standard
modeling approach and offers better insight into the modelled relationships, which is not
the case of the “black box” neural network.

From this study, we conclude the following:

(a) The lowest PE values were recorded in the NC area, and the highest were recorded in
the SE and SW regions. The largest PE change over the observed period (expressed
by using the variation range) occurred in the SE region, followed by SC and SW. The
smallest PE change was in the NC and NW regions.

(b) The best accuracy of the ML models was obtained by DR (TASE = 0.78819), followed
by GB (TASE = 0.77826) and DT (TASE = 0.78094), though it is possible to see very
similar results of the predicted values. Both neural network models, AN and NN,
were evaluated as the least suitable models for the prediction of PE.

(c) There is a significant but weak relationship between PE and elevation above sea level.
However, there is a moderately strong relationship between PE and Taver. A compari-
son between Tmin and Tmax shows that Tmax is a slightly more important factor.

Because ET is one of the main parts of the hydrology cycle, it is crucial for estimating
PE, especially when there are limited data available. Based on the results, the use of the
best three evaluated ML models is recommended (DR, GB, and DT) in the region with the
largest PE change and with uniform climatic characteristics. The previous studies that used
more input climate data variables have low predicted values; on the contrary, the most
significant relationships in the predicted values were recorded in studies with less input
climatic data variables.

The results of this study can be used in water resources management to make sustain-
able irrigation plans, design sustainable water supply systems, or carry out sustainable
reservoir management.
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