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Abstract: The arid Coquimbo region of Chile has experienced a significant economic growth in recent
decades, fueled in large part by water-intensive activities such as mining and agriculture. Under this
context, a monthly and annual trend analysis of precipitation, streamflow, and piezometric levels was
carried out. Thus, 43 pluviometric stations, 11 fluviometric stations, and 11 wells were selected. These
stations were evaluated for their temporal trends using the Mann–Kendall test. Results revealed a
significant decrease in river flows, with negative and significant trends concentrated in the mean and
maximum flows, both at annual and monthly levels. Likewise, positive trends were found in the
depth to water table on wells, with significant trends in 81.8% of the monthly cases, and in 72.7% of
the annual cases. While also decreasing over the same period, rainfall trends exhibit high variability
and lacked significance. Although the amounts of precipitation have decreased, this does not seem
to be the main factor responsible for the scarcity of water in the region, but rather an excessive
consumption of this resource. This is endorsed by the increase in GDP (Gross Domestic Product),
which is explained by activities that consume water (mining and agriculture). Similarly, an increase
in the granting of underground water rights was verified, which speaks of the high demands for the
resource. However, future modeling is advised to better understand the regional hydrology of the
area and quantify the anthropic effects on water resources more precisely.

Keywords: Chile; land use planning; water management; anthropogenic effects; sustainable water
resources management

1. Introduction

Water is a critical natural resource for social, economic, and environmental develop-
ment of Chile [1]. In the 1990–2017 period, Chile’s Gross Domestic Product (GDP) tripled, a
growth fueled by industries reliant on water resources such as mining and agriculture [2].
Chile has a high degree of geographical variability in water supply [3]. From Santiago
to the north, where arid and semi-arid zones are located, the availability is less than
1000 m3/inhabitant/year [4], which results in a situation of water stress [3,5] in territories
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dedicated mostly to mining, agriculture, and tourism [5]. Surface water rights in the Co-
quimbo Region were massively privatized and allocated between the 1980s and 2000s, in
such a way that as of 2004 the basins were declared closed to access this type of right, after
95% of those rights were granted in that same year. Consequently, new demands from
the private sector have been supplied with groundwater [6]. Resulting pressure on the
aquifers with excessive concession of groundwater rights between latitudes 17◦29′ S and
35◦ S [7] has led to conflicts among users [8]. The Region of Coquimbo is located within
this territory.

Recent studies have concluded that climate change has affected this area due to a
decrease in water supply [9–11]. This necessitates temporal understanding of regional
variables such as rainfall, average and minimum river flows, maximum flows (which are
the product of floods due to intense rains or thaws), and changes in water table (which
expresses the pressure of groundwater use). We hypothesized that precipitation changes
might affect water resources in the region, but the increase in the demand is most likely
the main factor explaining the decrease in water supply, especially when considering the
reduction in the volume of groundwater aquifers.

2. Materials and Methods
2.1. Study Domain

The Coquimbo Region is located between latitudes 29◦ S and 32◦ S (Figure 1) and has
an area of 40,579 km2 (5.4% of the Chilean territory). The local climate is semi-arid (Figure 1)
with a rainfall pattern defined by 2–3 wet months in the winter and a territorial gradient
where rainfall increases from north to south and from the coast towards the Andes [12].
Annual rainfall ranges from 60 mm in the north of the region to 300 mm in the south [13].

Figure 1. Location of the fluviometric, pluviometric, and piezometric stations, and climate classi-
fication of the Coquimbo Region in the Elqui, Limarí, and Choapa watersheds (layers available at:
www.ide.cl and www.dga.cl. Accessed on 5 January 2020).

www.ide.cl
www.dga.cl
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2.2. Data Synthesis and Trend Analysis

The study considered the 1984–2018 period based on public information gathered from
the General Water Directorate (DGA, the Government agency in charge of water resources
management) stations, with 43 rain gauges, 10 river flow stations, and 11 piezometers, as
shown in Figure 1. It is noteworthily to point out that the periodicity of the water table
level records is variable and can be between 6 and 12 measurements per year. For this
reason, only the months whose records were present in a given studied year were evaluated,
effectively reducing the annual number of months analyzed.

Temporal (monthly and annual) trend analyses were carried out using the Mann–
Kendall statistical test [14,15] (Equation (1)). This test verifies the existence of trends and
whether they are statistically significant for a given confidence level (5% significance).
Furthermore, it has the advantage of not requiring the data to come from a parametric
distribution [14,15].

S = ∑n−1
k=1 ∑n

j=k+1 sign
(

xj − xk
)

(1)

where S is the Mann–Kendall statistic; the sign function (xj − xk) will have the value “1” if
xj − xk > 0; value “0” if xj − xk = 0; and value “−1” if xj − xk < 0. Similarly, xj and xk are
consecutive values of the variable under study; n is the sample size; j and k represent two
consecutive years; tp represents the frequency of ties in a group; and q is the number of
groups with ties (p). Then, the variance VAR(S) is described in Equation (2).

VAR(S) =
1
18

[
n(n− 1)(2n + 5)−∑q

p=1 tp
(
tp − 1

)(
2tp + 5

)]
(2)

Finally, with both values, Z (the standardized test statistic) is calculated with one of
the following expressions (Equation (3)), depending on the result from Equations (1) and
(2) (see more details in Cabral and Lucena [16]):

Z =


S−1√
VAR(S)

; i f S > 0

0 ; i f S = 0
S+1√
VAR(S)

; i f S < 0
(3)

In addition to the above, the region’s economic evolution was evaluated (and graphi-
cally correlated to groundwater rights given in the same period) based on activities that
normally demand large amounts of water.

On the other hand, the Coquimbo Region is made up of three large basins that group
other smaller ones. These are Elqui, Limarí, and Choapa (Figure 1). In this context, it was
possible to evaluate the consumption of water for productive purposes (annual agricultural
crops) and the origin of the water used for irrigation. In addition, the volume stored in
two aquifers inside the Elqui River basin was evaluated, derived from the fact that the
minimum necessary information was available for these. These analyses were carried out
through the use of the WEAP (Water Evaluation and Planning) [17,18] model, adjusted for
the Elqui river basin within the framework of the FIA PYT 2017–0215 Project [19]. This
model is composed of the integration of demand nodes and their interaction with surface
and groundwater, with data from the MAGIC model (Integrated Generic Analytical Model
of Basins)—Elqui, from a study called “Diagnostic Master Plan for the water resources man-
agement, Coquimbo Region” [20]. Likewise, the model allows us to estimate the volume of
aquifers, through the interaction between the demand and its recharge from inefficiencies.
The water demand is supplied by two sources: surface and groundwater rights.

3. Results

Monthly rainfall trends (Mann–Kendall test) were mainly negative (53.1%) over the
34-year study period, but with little statistical significance (0.8%). Annual rainfall exhibited
similar downward trends (72.1%), but none of these were significant (Table 1). Therefore,
rainfall does not show significant temporal changes (Table 1 and Figure 2).
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Table 1. Monthly and annual trends in rainfall, flows, and depth to water table in the Coquimbo
Region (1984–2018). Significant values for an α < 0.05.

Variable Component Negative Positive Positive and
Significant

Negative and
Significant No Trends

Rainfall
Monthly 274 (53.1%) 193 (37.4%) 4 (0.8%) 4 (0.8%) 41 (7.9%)
Annual 31 (72.1%) 10 (23.3%) 0 (0%) 0 (0%) 2 (4.7%)

Streamflow

Monthly
Min 102 (85.0%) 4 (3.3%) 0 (0%) 13 (10.8%) 1 (0.8%)

Mean 80 (66.6%) 0 (0%) 0 (0%) 40 (33.3%) 0 (0%)
Max 85 (70.8%) 0 (0%) 0 (0%) 35 (29.2%) 0 (0%)

Annual
Min 7 (70.0%) 1 (10.0%) 0 (0%) 1 (10.0%) 1 (10.0%)

Mean 2 (20.0%) 0 (0%) 0 (0%) 8 (80.0%) 0 (0%)
Max 5 (50.0%) 0 (0%) 0 (0%) 5 (50.0%) 0 (0%)

Depth to water
Table

Monthly 0 (0%) 12 (18.2%) 54 (81.8%) 0 (0%) 0 (0%)
Annual 0 (0%) 3 (27.3%) 8 (72.7%) 0 (0%) 0 (0%)

Figure 2. Annual trends on (a) distance to water tables; (b) average flow rate; and (c) accumulated
rainfall (Source: own work).

Monthly flows, on the other hand, showed negative and significant trends (10.8%,
33.3%, and 29.2% for the minimum, average, and maximum flows, respectively (see
Table 1)). Similarly, annual flows showed negative and significant trends (10.0%, 80.0%,
and 50.0% for minimum, mean, and maximum values, respectively (see Table 1)). This is a
concern for water resource sustainability because maximum flows are fed by floods (which
are sporadic in semi-arid areas such as Coquimbo), and mean flows are fed mainly from
waters previously stored in the basin as groundwater.

Groundwater tables in the study area also exhibited a temporal decrease in static
levels. On a monthly basis, all trends showed a decrease in groundwater levels, and 81.8%
of those were statistically significant, agreeing with Valois et al. [21], who found that 80%
of the wells in the region show a significant decrease in their levels.
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In addition to the above, the Coquimbo Region has seen a strong increase in GDP and
water consumption, mostly from agriculture and mining industries (Figure 3, top).

Figure 3. (Top): Evolution of GDP and groundwater rights for the Coquimbo Region, Chile. Source:
Water Rights Granted in the Coquimbo Region (DGA, 2021) and Central Bank of Chile. (Bottom):
Regional mean precipitation, surface flows, and depth to water tables in the Coquimbo Region, and
their respective trends (Sen Slopes).

Figure 4 shows the water sources used for irrigation of annual crops in the coastal part
of the Elqui river basin, revealing a sustained increase in the use of groundwater for this
purpose. Similarly, when evaluating the stored volume of two aquifers inside the Elqui
river basin, a sustained decrease in its volume is appreciated (Figure 5).
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Figure 4. Water supply for annual crops in the coastal zone of the Elqui river basin.

Figure 5. Temporal variation of the Culebrón and Elqui aquifers’s volume (Elqui basin).
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4. Discussion

Based on the above, it can be seen that rainfall does not show significant changes in the
last 34 years, according to the Mann–Kendall test and the Sen slopes, which agree with the
conclusions by Souvignet et al. [22] and Favier et al. [23], who found that rainfall in recent
decades has not presented clear trends for the Coquimbo Region. However, although the
trends do not show a significant decrease, lower amounts of accumulated precipitation
have been documented during the last decade due to the presence of a megadrought that
lasted for more than 5 years [24]. Another factor to consider is presented in the interannual
variability of rainfall, which fluctuates depending on the ENSO phases and can explain
up to 32% of the variations in average rainfall for the region [25]. These variations are
cyclical with durations between 3 and 5 years [26] and by oscillating between high and low
periods can affect the detection of climatic trends; however, if the length of the data is at
least 3 times the size of the cycle, trend detection should not be affected [27].

Groundwater demand for crop irrigation has increased steadily, reaching parity be-
tween the use of surface and groundwater resources as of 2010 (Figure 4). In addition, when
verifying the volume stored in two aquifers of the Elqui basin, a sustained decrease in the
accumulated volume was found, a decrease that has accelerated since 2010 (Figure 5). The
above results coincide with what was found by Valois et al. [21], who identified a significant
decrease in the piezometric levels of 80% of regional wells. Moreover, the authors found a
0.5-to-1 m per year decrease water table levels at the Culebrón aquifer, explained by the
increase in water consumption for agricultural purposes.

It is noteworthily to mention that water table decreases coincide with the beginning of
the megadrought in Chile [24]. Based on the foregoing, it is possible to point out that despite
the presence of a sustained megadrought in the last decade, the amounts of precipitation
in the area do not show a significant decrease, so precipitation is most likely not the main
factor responsible for the decrease in the flows and the increase in the depth to water tables.
Above all, considering that the reduction of water in the region occurs in conjunction with
an increase in productive activities (mainly mining and agriculture), sectors that require
thousands of cubic hectometers per year and that are expected to change by −2.5% and
71.2%, respectively, by the year 2040 [28].

Considering that the main economic activities of the region require water for their
execution, it is verified that this natural resource acts as a limiting factor of production [29],
and therefore, by reducing surface water sources in the case of agriculture to maintain
and increase cultivated areas, underground water tables have been exploited and this
would explain in part the increase in the depth to water tables. Notwithstanding the
foregoing, Gu et al. [30] and Hemati et al. [31] point out that economic development
and water consumption can be modeled as an inverted “U”, where economic growth
increases together with water consumption, to later stabilize and decrease, depending on
the optimization of production processes and the implementation of new technologies [30].
However, Duarte et al. [32] concluded that despite greater efficiency in the use of water,
this model of growth and water consumption is not sustainable over time. The foregoing
becomes relevant when considering that groundwater is slow to recover and, therefore, its
exploitation must be done under a sustainable model.

Under a similar context, Valdés-Pineda et al. [33] studied the causes leading to the
disappearance of the Aculeo lagoon (central Chile), finding that, although the effects of
less precipitation on the amount of available water are manifested, this ecological disaster
occurred mainly as a consequence of overconsumption of the resource, used mainly for
agricultural purposes. A similar situation is described by Muñoz et al. [34] in the Petorca
basin (Valparaíso Region), where the reduction of the Petorca river is not fully explained by
climatic variability, but mostly water withdrawals for agricultural purposes, whose high
evapotranspiration rates play an important role in the water scarcity of the basin. Similarly,
Duran-Llacer et al. [35] analyzed groundwater withdrawals in the La Ligua and Petorca
basins (Valparaíso Region), finding that the decrease in piezometric levels is mainly due to
the use of groundwater to maintain and increase the area planted with avocado trees in the
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region (agricultural uses). Finally, Aitken et al. [3] analyzed the scarcity of water in Chile,
concluding that the main consumer of water in the Antofagasta Region (north of Chile)
is mining, in addition to being the main factor contributing to the region’s water scarcity.
In the other regions of the country, it was found that agriculture is the main consumer of
water and, therefore, an increase in irrigation efficiency would be beneficial in terms of
water availability.

When considering the results altogether, it is possible to point out that the Coquimbo
Region has been affected by the effects of climate change, reducing the amount of available
surface water. However, agricultural and mining production in the area are activities that
require tremendous amounts of water, and in the case of agriculture, its demand is projected
to increase (as previously mentioned), a situation that is not sustainable with current water
availability in the region (Figure 5). Similar conclusions were obtained by Alam et al. [36],
who analyzed groundwater consumption in the central valley of California, finding that
the decrease in piezometric levels can be explained by an increase in agricultural areas,
a greater need for irrigation due to high temperatures, and the implementation of crops
with higher water demands. In the case of the Coquimbo Region, temperatures have
risen [19], together with an increase in the area occupied by fruit trees (e.g., lemon, cherry,
and clementine trees, among others) [37] and a megadrought has been present in the last
decade, a situation that has required increasing pressure on groundwater resources to
meet agricultural needs and whose water demands exceed the natural recharge rate of the
aquifers of the northern and central macrozones of the country [38].

Despite the above, one limitation of this study is not having enough information to
model water consumption and economic development in the Coquimbo Region. However,
the increase in water rights requested from DGA, together with the rise in GDP (Figure 3),
seem to indicate that the study area has not yet reached the point of stabilization in water
consumption, derived from the fact that both still show increasing trends. Additionally,
only the modeled Elqui river basin is available, and for this reason, it was the only one
used to evaluate the relationship between water consumption and its origin (surface or
underground). However, it is expected that the behavior in the Choapa and Limarí basins
(the other two large basins of the Coquimbo Region) will be similar to that of the Elqui
River basin, derived from the fact that the three basins have similar climates and land uses,
in terms of mining and agriculture.

5. Conclusions

The results achieved and the analysis carried out allow us to conclude that, although
rainfall shows a decline in the studied period for the Coquimbo Region in Chile, these falls
are not significant. It follows that the lower supply in mean and maximum flows could
not be directly attributed to climatic factors, but to other variables. It was verified and
concluded that the economic activities have grown strongly in the period studied and, since
they are highly demanding of water, these are most likely the main causes of the decrease
in water supply. This fact is corroborated by the increase in the use of groundwater and
the depth between the surface and the piezometric level of the various analyzed wells.
Moreover, human activities and overuse are rapidly depleting water resources (especially
groundwater) in the region, and the problem is further complicated by a changing climate
and decreasing precipitation. However, the overall trend is stronger for overconsumption
compared to climate variability, affecting the long-term productivity and water resource
sustainability of this area of the country.

Results show that the main cause of this concerning situation is excessive consumption,
and there is an urgent need to know (model) how to adequately quantify water availability,
as well as current uses, before authorizing new water withdrawals. This is also applicable
to current productive activities that, apparently, might not have enough water in the future
for them to function. Therefore, if this is not considered properly, the region could be
facing a critical situation that will condition its productive future and, most importantly, its
environmental future, which is the basis of all human sustainability.
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Considering the above, future modeling is advised to better understand the regional
hydrology of the area and quantify the anthropic effects on water resources more precisely.
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