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Abstract: Artificial intelligence (AI) has become increasingly popular as a tool to model, identify,
optimize, forecast, and control renewable energy systems. This work aimed to evaluate the capability
of the artificial neural network (ANN) procedure to model and forecast solar power outputs of
photovoltaic power systems (PVPSs) by using meteorological data. For this purpose, based on the
literature review, important factors affecting energy generation in a PVPS were selected as inputs, and
a recurrent neural network (RNN) architecture was established. After completing the trained network,
the RNN capability was assessed to predict the energy output of the PVPS for days not included in
the training database. The performance evaluation of the trained RNN revealed a regression value of
0.97774 for test data, whereas the RMSE and the mean actual output power for a sample day were
0.0248 MJ and 0.538 MJ, respectively. In addition to RMSE, an error histogram and regression plots
obtained by MATLAB were employed to evaluate the network’s capability, and validation results
represented a sufficient prediction accuracy of the trained RNN.

Keywords: artificial intelligence; clean energy; historical data; short-term forecasting; recurrent
neural network

1. Introduction

In the last decades, the energy sector has encountered critical problems, such as
growing populations and developing industries, as well as a limited supply of fossil
energy sources and market deregulation [1,2]. In addition, electric power produced with
traditional methods poses serious threats to the global climate and public health [3]. Hence,
to overcome these concerns, the energy network has had to change and improve.

In recent years, different types of renewable energies such as tidal, wind, solar, wave,
geothermal, biomass, and hydropower have been put into operation due to their minimal
creation of carbon pollution as well as their ease of access in most places. Currently, these
sources support about 25% of global electricity generation.

Due to the complex relationships between parameters governing renewable energy
sources’ integration with the grid, in general, ensuring high energy conversion efficiency
and sufficient high-power extract is vital to the successful application of these sources.
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Artificial intelligence (AI) approaches, such as neural networks and fuzzy logic, are great of
interest to those who develop smart entities and produce precise estimations for complex
problems. The application of new AI-based techniques will be useful for enhancing the
performance of renewable energy systems. AI potentials have provided opportunities
in the electrical sector to develop and improve upon new technologies for estimating
and forecasting the important parameters of factors such as grid load, losses in the lines,
reliability of the net, energy efficiency, managing the integration of solar power to thegrid,
forecasting equipment failure, and providing the best decisions for grid operators.

Recently, as the piece of a computing system and the foundation of AI designed
to simulate the procedure of decision making in the human brain, ANN is increasingly
used to model solar energy systems. For example, Cortés et al. [4] used the multilayer
perceptron neural network for the characterization of a polycrystalline photovoltaic cell and
the estimation of cell parameters in its equivalent circuit of a single diode. The photovoltaic
size, tilt, and azimuth were estimated by using a deep neural network approach based
on only behind-the-meter data by Mason et al. [5]. By supplying a pulse AC load, an
adaptive controller was presented by Mohamed et al. [6] for a grid-tie DC-AC inverter
in a grid-connected PVPS, wherein a predictive neural network controller was used to
optimize and adaptively tune parameters. Mittal et al. [7] proposed an ANN to predict the
performance of photovoltaic modules by using feed-forward neural networks to calculate
I-V curve parameters as a function of input irradiance and temperature. Furthermore, a
comprehensive and detailed review on modeling solar energy systems by using the ANN
approach can be found in Elsheikh et al. [8].

There are several scientific studies that report on modeling and the prediction of the
output of solar energy systems by using different methods. For example, Rodríguez et al. [9]
proposed an ANN model to estimate the power generated by photovoltaic generators.
The work focused mainly on irradiation. By using publicly available numerical weather
prediction models, Larson et al. [10] presented an approach to forecast day-ahead power
output for two photovoltaic systems in the American Southwest. Saberian et al. [11]
presented a solar power modeling method by using two artificial neural network structures
to model a photovoltaic panel’s output power. An ANN was developed to predict solar
irradiation and cell temperature. The model was also able to optimize power generation and
optimally track the power of the PV [12]. However, to date and to best of our knowledge,
no work has been reported in the open literature on modeling and short-term forecasting
of photovoltaic power output by using meteorological data. Therefore, the main objective
of the present study was to develop an ANN to model and predict the solar power output
of photovoltaic power systems. Moreover, the network performance was evaluated in
a case study for the short-term prediction of the power output of a photovoltaic solar
system in Iran, based on local data for weather parameters affecting output quantity and
the efficiency of photovoltaic power-generation systems.

2. Methodology
2.1. Modeling Approach

As a form of artificial intelligence, artificial neural networks (ANNs) are one of the
main tools widely used in machine learning. An ANN is the piece of a computing system
designed to simulate the manner the human brain analyzes and processes information,
solving problems that are not easily solved by human or statistical standards. The networks
produce better results as more data become available due to their self-learning abilities [13].
For predictions of future samples, ANNs gain information from given examples by con-
structing an input–output mapping. As a distinct advantage, by conducting proper training,
ANNs can produce reasonable outputs from previously unseen inputs [14]. Therefore,
artificial neural network methodology was selected as the modeling approach to forecast
photovoltaic power output based on meteorological data.
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2.2. Design and Implementation of ANN
2.2.1. Inputs and Output

To develop and construct an artificial neural network, the variable (inputs) that will
characterize the process and affect the output(s) must first be clearly determined. In terms
of a photovoltaic power system (PVPS), in addition to the module itself, some of the
factors related to the location and environment may have major impacts on a system’s
performance [15]. For example, as a common misconception, it is believed that cold
environments result in less power production by modules although the opposite is true;
cold environments could prevent the solar system from overheating and losing efficiency.

By conducting a comprehensive experimental work, the power output and efficiency
of a PVPS were studied by Zakzouk et al. [16]. The researchers studied the influence of
environmental factors including direct normal (DN) isolation, ambient temperature, and
wind speed and stated that the efficiency and power output increased with DN insolation
and wind speed whereas increasing ambient temperatures reduced both of them [16].
The wind only increases solar efficiency and does not have any impact on the sun’s light
rays. The hotter panel escalates more electrons in the excited state. This factor diminishes
the voltage generated by the panel and reduces its efficiency. In addition, the electrical
resistance of the electrical circuits for converting the photons’ energy into electricity is
amplified at higher temperatures. In short, cooler panels allow more electric current to pass
through in comparison with hot panels. Here is where the wind comes in; the wind cools
solar panels.

In addition, some researchers such as Park et al. [17], Chaichan and Kazem [18],
and Hamdi et al. [19] clarified that humidity accelerates the PV modules’ degradation.
Humidity reduces cell efficiency due to the fact that it reflects and refracts sunlight away
by water droplets and vapor collected on solar panels. The phenomenon prevents solar
panels from receiving maximum sunlight and subsequently reduces electricity generation.

The influence of air pressure on the output of photovoltaic panel and solar illumi-
nance/intensity was assessed by Amajama [20], who found that increasing air pressure
enhanced solar illuminance/intensity, output current, and voltage. The pressure is repre-
sented by the atmosphere air weight proportional to the gravitational force. Decreasing
altitude enhances the force and downward pull on radiation particles from the sun as they
fall. Therefore, higher air pressure increases solar illuminance/intensity, therefore resulting
in lower output current and voltage.

Consequently, time of day, irradiation, temperature, relative humidity, air pressure,
and wind speed were selected as inputs for the network in the present work. The output of
the network was the power generation of the solar plant.

As demonstrated by some researchers such as Kalogirou [1] and Mellit et al. [21], in
order to obtain faster learning and better results, all prepared inputs and output(s) must be
normalized before applying the training algorithm. Therefore, all data were normalized to
(−1,1) by using the following equation proposed by Mellit et al. [21].

y = ymin +
x− xmin

xmax − xmin
(ymax − ymin) (1)

In Equation (1), x and y are the original data and the corresponding normalized
variable, respectively. In the present work, the minimum and maximum normalized
variables have been assumed to be −1 and 1, respectively.

It is worth noting that the output needs to be denormalized before comparing it with
actual measurements.

2.2.2. Model Implementation

There are many types of ANNs, each with strengths that are unique because they use
different principles in determining their own rules. According to Haykin [14], single-layer
feed-forward networks, multilayer networks, and recurrent networks (RNNs) are the main
categories of ANNs. A comparative study was conducted by Šestanović et al. [22] to assess
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the capability of the Jordan neural network (JNN), a specific type of RNN and feed-forward
network, to predict inflation in the Euro zone. The researchers reported that JNN showed a
better ability to predict inflation, and the prospects given by JNN were consistent with the
survey of professional forecasters. Furthermore, they concluded that their results could
support the statement that, for forecasting time series, RNNs should be considered as
serious alternatives. Therefore, in the present work, in order to develop the tool, a recurrent
neural network (RNN) architecture was chosen. A typical schematic for RNNs is presented
in Figure 1. In the figure, for each time step (t), the activation (a<t>) and the output (y<t>)
are expressed in the following forms:

a<t> = g1

(
Waaa<t−1> + Waxx<t> + ba

)
(2)

y<t> = g2
(
Wyaa<t> + by

)
(3)

where Wax, Waa, Wya, ba, and by are the coefficients shared temporally. Moreover, g1 and g2
are activation functions.
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Figure 1. A typical schematic for recurrent neural networks (RNNs).

RNN is a form of neural network in which the output of a particular layer is saved
and fed back to the input. This procedure improves the outcome of the layer. However, the
first layer is configured similarly to the feed-forward network structure.

It is worth noting that, before implementing the final network, many changes such
as the adjustment of the number of neurons in hidden layers and/or the time delay of
the network must be completed because the trial-and-error process occurs throughout the
network designed to fix its parameters.

2.3. Importance of the Dataset

The case study was conducted on a 1.5 MW photovoltaic power system located in
Sefiddasht, a city in the central district of Borujen county, Chaharmahal va Bakhtiari
province, Iran. For detailed information on the climatic indices of the province, refer to
Torki-Harchegani et al. [3].

The performance of an artificial neural network is arguably dependent on its database.
It has been declared that the acceptability of the data is mainly determined by validity
and proximity to the site of data [23]. On the other hand, several researchers such as
Mohammed et al. [24] and Larson et al. [10] have demonstrated that using historical data
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across an extended period could be more desirable for recurrent neural networks (RNNs).
For example, Husein and Chung [25] forecasted day-ahead solar irradiance by using a
dataset size of 7–12 years by applying a long-short-term memory-recurrent neural network
and a deep learning approach. Taghadomi-Saberi and Razavi [26] evaluated the potential
of ANN to predict global solar radiation by using daily measured data for an eleven-year
period. Saberian et al. [11] used artificial neural networks to model and predict solar power
by using five years of meteorological data. Mohammed et al. [24] predicted hourly solar
radiation by using an ANN and a three-year period of data. Data measured for two years
were used to predict solar energy generation by using an artificial neural network [9]. In
the present work, due to focusing on short-term forecasting of solar energy and taking into
account the precedents reported by Mellit et al. [21] and Rodrígues et al. [9], a two-year
period covering 1 January 2018 until 31 December 2019 was chosen for study.

In this research, to provide the required data, meteorological data were obtained from
the governmental department for weather stations of the surveyed region. The dataset
included irradiation, relative air humidity, air temperature, atmospheric pressure, and
wind speed data recorded in 10 min intervals. Moreover, the historical data for power
generation by the station recorded in 1 min intervals were obtained from the photovoltaic
solar power plant.

2.4. Evaluation of the Model Performance

To measure the difference between actual and predicted data by the model, as common
criteria to evaluate the efficiency and accuracy of a network, the root mean square error
(RMSE) was used.

RMSE =

√
1
n

n

∑
i=1

(predictedi − reali)
2 (4)

3. Results and Discussion
3.1. Power Output of the System

The variations of power generated by the PVPS versus the time for randomly selected
days in different seasons are represented in Figure 2.
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Moreover, the details for irradiation (as the main factor impacting PVPS output) and
the generated power at the days are shown in Table 1.
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Table 1. Details for sunrise and sunset times, irradiation, and the output power at the randomly
selected days.

Date Sunrise Sunset Maximum Irradiation
(W/m2)

Maximum Power Output
(MW)

Average Power Output
(MW)

21 March 2018 6:10 18:20 1118 1.377 0.425
4 August 2019 6:20 20:00 1294 1.207 0.381
1 October 2018 6:00 17:50 1077 1.112 0.301

10 February 2019 6:50 17:50 776 1.272 0.349

As shown in the table and from the statistical analysis, in the studied region, the
maximum irradiation in the day was significantly (p < 0.05) related to the season where
the highest and lowest values belonged to summer and winter, respectively. The analysis
revealed that the output of the system is mainly dependent on the season; therefore, in
addition to the parameters previously described, the season must be considered as an input
for the neural network. In the present work, the data for the neural network were divided
into seasons (1: winter, 2: spring, 3: summer, and 4: autumn), and the season for each day
was considered as one of the network inputs.

As observed from Table 1, the highest values for maximum power output (1.377 MW)
of the studied PVPS were obtained on a day in spring where the maximum irradiation
(118 W/m2) was meaningfully lower than the value (1294 W/m2) for the day in summer.
Furthermore, the average power outputs of the system for the days in spring and summer
were 0.425 MW and 0.381 MW, respectively, whereas irradiation duration (from sunrise to
sunset) for the day in summer was about 90 minutes longer. These phenomena are due to
the fact that the output power of a photovoltaic power system not only relies on irradiation
but is also influenced by some meteorological parameters such as temperature, relative
humidity, wind speed, etc.

3.2. Optimal Design of the Network

The optimal design of the network architecture was determined by evaluating the
performance and accuracy of the estimations calculated for all RNNs examined by using
various hidden neurons and delays. To fix the delay, incremental changes were caused in
the value of the delay, whereas the number of neurons in the hidden layer held constant.
Similarly, the number of neurons in the hidden layer was determined where the delay
time was held constant. It is worth noting that, although a neural network with a specific
architecture will make similar predictions when trained for different times, the results
will not be exactly the same [9]. Therefore, to obtain the best network, each structure
represented in Table 2 was replicated four times. The final optimal network diagram is
represented in Figure 3, and a summary of the configuration about the final RNN model
was shown in Table 3. It should be noted that, in Figure 3, W is referred to as the weights
between neurons. Moreover, the net input of the activation could be changed (increased or
decreased) via b as the bias.

Table 2. Design tests and error evaluation of RNN architecture for test and non-test data.

Test No Neurons Delays Iterations RMSEtrain RMSEtest

1 5 1:2 20 0.0314 0.0318
2 12 1:2 20 0.0288 0.0296
3 12 1:3 20 0.0354 0.0362
4 12 1:4 20 0.0355 0.0363
5 12 1:5 20 0.0408 0.0418
6 12 1:6 20 0.0411 0.0416
7 15 1:2 20 0.0425 0.0436
8 20 1:2 20 0.0433 0.0442



Sustainability 2022, 14, 3104 7 of 12

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 12 
 

Table 3. Summary of the optimal RNN to model the solar power generation. 

Network Type Recurrent Neural Network 

Inputs 
Season, time, irradiation, temperature, relative humidity, air 

pressure, and wind speed 
Output Power 

Number of layers  3 layers (input, hidden, output) 
Number of hidden neu-

rons 12 

Number of delay 1:2 
Activation functions Log-sigmoid and linear 
Learning algorithm Levenberg–Marquardt 

 
Figure 3. Diagram of the optimally designed RNN to model solar energy generation. 

3.3. RNN Capability in Predicting Output Power of PVPS 
The performance of the trained RNN was evaluated. From Figure 4, the regression 

value obtained for test data was 0.97774, which demonstrates a strong relationship be-
tween the target values and the network outputs. As observed, there are a few outliers, 
the results produced by most training arrays generally banded around the continuous 
straight line shown in the figure. 

Figure 3. Diagram of the optimally designed RNN to model solar energy generation.

Table 3. Summary of the optimal RNN to model the solar power generation.

Network Type Recurrent Neural Network

Inputs Season, time, irradiation, temperature, relative
humidity, air pressure, and wind speed

Output Power
Number of layers 3 layers (input, hidden, output)

Number of hidden neurons 12
Number of delay 1:2

Activation functions Log-sigmoid and linear
Learning algorithm Levenberg–Marquardt

3.3. RNN Capability in Predicting Output Power of PVPS

The performance of the trained RNN was evaluated. From Figure 4, the regression
value obtained for test data was 0.97774, which demonstrates a strong relationship between
the target values and the network outputs. As observed, there are a few outliers, the results
produced by most training arrays generally banded around the continuous straight line
shown in the figure.

Furthermore, to assess the success of the trained RNN, the network performance was
verified by comparing the data provided by the network and the actual measured values
for power output of the PVPS on a day within the training database. The obtained results
for this evaluation are represented in Figure 5.

The RMSE and the mean actual output power of the solar system for this sample
day were 0.0248 MJ and 0.538 MJ, respectively, indicating that training was successfully
completed. It is worth noting that the smaller the value of RMSE, the more accurate the
prediction is.

Before implementing a final network, due to a trial-and-error approach through
network design to fix the variables, many modifications must be made. However, the
RMSE could not signify the ANN model error because of the overall result distortion by
punctual large errors. Therefore, in this study, an error histogram and regression curves
obtained from MATLAB were employed to analyze the results achieved by using this
process. Figure 6 represents an error histogram with a normal distribution of the error
shown in Figure 5. As observed, the actual and estimated values match closely, and both
the prediction and actual lines are synchronized. Additionally, evaluating Figure 6 reveals
that the greater part of the errors is located inside the bell of the normal distribution.
Furthermore, in Figure 6, the values distorting RMSE are located outside of the normal
distribution bell. Fluctuations of the power generation of the system are one of the main
reasons for why these errors result in a higher error.

The training process of the developed RNN was concluded by completing the evalua-
tion and verifying the results produced by the network, because some other sample days
are similar to the results represented in Figure 5.
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After completing and concluding the training process, the capability of the network
was evaluated to forecast the power output of the PVPS outside of the dataset employed
for training. For this aim, some days were selected in different seasons, and the ability of
the developed neural network to predict the power output in different weather conditions
was determined. The predicting results for the two different days outside the database
are represented in Figures 7a and 8a. The histogram and normal distributions of error in
the predictions are shown in Figures 7b and 8b. Figure 7 represents the performance of
the RNN in predicting the power output of the PVPS on 25 December 2019. The RMSE
that the network calculated on the day (represented in Figure 7a) is 0.0375, which is higher
than the RMSE determined for the previous case used for training (0.0248). However,
Figure 7b illustrates that the most errors are near zero and inside the bell. Figure 8a shows
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the ANN prediction results made on 12 July 2019 where, compared to the prediction made
for 25 December 2019, the number of sunshine hours has grown. The RMSE value for the
curves shown in Figure 8a was determined to be 0.0429, indicating that the neural network
works correctly. The higher RMSE could be due to the greater number of sunny hours
where it increased the error. Furthermore, the analysis in Figure 8b demonstrates that most
of the errors are close to the zero error. However, in Figures 7b and 8b, some cases are
located out of the center of the curve, and they affected the RMSE value.
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the final RNN accurately predicted the power output of the studied PVPS. Accordingly, 
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the management of microgrids integrated with solar electrical generators with their in-
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4. Conclusions

Currently, different types of solar-powered electrical generation systems are increas-
ingly developed and used. Despite their individual advantages, the energy efficiency and
output of these systems are drastically affected by weather parameters. Consequently,
accurate energy output forecasting has become increasingly important in these systems in
order to better control the microgrid. In the present study, artificial intelligence was used
to predict energy generation of photovoltaic power systems by using meteorological data.
The tool was an RNN with seven inputs (season, time of day, irradiation, temperature,
relative humidity, wind speed, and air pressure) and one output (generated solar power)
that was able to predict and forecast the power in the short term. The results show that
the final RNN accurately predicted the power output of the studied PVPS. Accordingly,
it could be generally concluded that artificial intelligence is a sufficient tool for improv-
ing the management of microgrids integrated with solar electrical generators with their
instantaneous control.
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