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Abstract: Currently, how to deal with the massive garbage produced by various human activities
is a hot topic all around the world. In this paper, a preliminary and essential step is to classify the
garbage into different categories. However, the mainstream waste classification mode relies heavily
on manual work, which consumes a lot of labor and is very inefficient. With the rapid development
of deep learning, convolutional neural networks (CNN) have been successfully applied to various
application fields. Therefore, some researchers have directly adopted CNNs to classify garbage
through their images. However, compared with other images, the garbage images have their own
characteristics (such as inter-class similarity, intra-class variance and complex background). Thus,
neglecting these characteristics would impair the classification accuracy of CNN. To overcome the
limitations of existing garbage image classification methods, a Depth-wise Separable Convolution
Attention Module (DSCAM) is proposed in this paper. In DSCAM, the inherent relationships of
channels and spatial positions in garbage image features are captured by two attention modules with
depth-wise separable convolutions, so that our method could only focus on important information
and ignore the interference. Moreover, we also adopt a residual network as the backbone of DSCAM
to enhance its discriminative ability. We conduct the experiments on five garbage datasets. The
experimental results demonstrate that the proposed method could effectively classify the garbage
images and that it outperforms some classical methods.

Keywords: garbage classification; deep learning; attention mechanism; depth-wise separable
convolution

1. Introduction

Due to the population increase and economic development, the amount of garbage
produced every day is growing rapidly, especially in developing countries [1]. If such
a large amount of garbage is not treated effectively, it will cause severe environmental
pollution and a massive waste of resources. Efficient sorting, recycling, and regeneration
treatment are the key and effective means to solve this problem. In recent years, more
and more nations have started to explore recycling strategies to improve the environment
with the ultimate goal of having a cyclical economy and sustainable development [2].
Scholars have done much research on the garbage classification problem. However, most
of their proposed solutions focused on the terminal recycling method [3–8], which is
highly dependent on people’s cooperation. At present, the most widely used garbage
sorting method is based on manual classification. Although manual garbage classification
could obtain highly accurate results, it is always time-consuming and requires well-trained
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operators, which seriously limits the efficiency of garbage classification. Therefore, the
automated garbage sorting method is an effective way to solve this problem.

With the development of artificial intelligence (AI) technology, AI-related applications,
such as computer vision, speech recognition and natural language processing, have been
gaining more and more attention in many industries. Some researchers have also leveraged
the artificial intelligence methods for garbage classification and sorting. Wang et al. [9]
utilized support vector machine (SVM) [10] and boosting algorithm to classify garbage
images. Similarly, Liu et al. [11] also combined multi-class SVM classifier with a speeded
up robust feature (SURF) [12] to establish a smart waste sorting system. Though SVM can
effectively accomplish the garbage classification task, it belongs to the shallow classification
model. Thus, the classification result obtained by SVM may not be optimal. Recently,
with the rapid development of deep learning, some deep convolutional neural network-
(CNN) based methods were gradually incorporated into the garbage classification task
to improve its accuracy. Ozkaya et al. [13] attempted to train different CNNs on a small
garbage dataset with transfer learning, and then adopted an SVM to classify the feature
obtained by CNNs. Similarly, Fu et al. [14] employed a transfer learning strategy to train a
CNN model so that the classification accuracy of garbage images can be improved. Meng
et al. [15] designed a network that can reuse and fuse features obtained by different layers
of CNN, the multi-scale feature interaction in their method can significantly improve the
classification performance. Singh [16] used a modified CNN model called Xception to
accomplish the classification task for plastic bags. Besides, CNN has also been combined
with some hardware to form various garbage classification systems. Nowakowski and
Pamuła [17] proposed a region-based CNN algorithm to classify the garbage images so that
the users can recognize the category of garbage by smartphones. Chu et al. [18] deployed a
detection system for municipal solid waste recycling, which consists of a high-resolution
camera, a bridge sensor, an inductor and a PC. This system takes the pictures of garbage
and then utilizes a CNN for classification. In [19], Yu et al. proposed a deep CNN which
fuses multiple features in multiple scales for solid garbage detection and sorting. Although
Yu’s method can improve the detection accuracy by adding multi-view feature, it relies on
expensive 3D camera hardware to get the depth information of garbage images. Kokoulin
and Tur [20] integrated CNN with IoT hardware and a reverse vending machine (a device
that accepts used beverage containers and returns money to the user) to classify and recycle
beverage containers. Wang et al. [21] proposed a framework which first classifies the
garbage images by a CNN and then monitors the operating state of garbage containers
using smart sensors.

From the aforementioned works, it can be seen that classifying the garbage into their
corresponding categories is a preliminary and important step in many garbage sorting
and recycling tasks. However, the CNN models in most of the existing work (such as
Alexnet, VGG and Xception used in [16,22,23]) were originally proposed for classifying
natural images rather than garbage images. Hence, the characteristics of garbage images
were neglected in them, which limits their performance. Actually, the garbage image
classification is much more complicated than some other image classification tasks. For
example, the accuracy of garbage image classification often suffers from the inter-class
similarity and intra-class variance problem. That is, the appearance of some garbage
belonging to different classes is more similar than those from the same class, as shown in
Figure 1. Moreover, the various backgrounds around the target garbage will also impair
the classification accuracy, as shown in Figure 2. To solve this problem, we introduce a
new deep network named Depth-wise Separable Convolution Attention Module (DSCAM)
in this paper. Compared with other studies [11–15], the proposed DSCAM is specially
designed for garbage image classification in the following aspects. Firstly, in order to
suppress the interference of other factors (such as the background) and make our model
focus on the target garbage in images, an attention-based module is introduced into the
proposed DSCAM. Secondly, unlike the existing work [13–16] which adopts the CNN
models with only a small number of convolution layers to extract the feature of garbage
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image, we employ Resnet [24] as the backbone of our DSCAM. Since Resnet contains
more convolution layers, the feature extraction ability of the proposed DSCAM can be
enhanced to capture the discriminative features of garbage from different classes. At last,
because the attention module and Resnet will bring more parameters into our model,
the depth-wise separable convolution technique is used to compensate for the increase
of computational burden. The effectiveness of the proposed method is demonstrated by
extensive experiments on five garbage image classification datasets.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 18 
 

CNN models with only a small number of convolution layers to extract the feature of 
garbage image, we employ Resnet [24] as the backbone of our DSCAM. Since Resnet con-
tains more convolution layers, the feature extraction ability of the proposed DSCAM can 
be enhanced to capture the discriminative features of garbage from different classes. At 
last, because the attention module and Resnet will bring more parameters into our model, 
the depth-wise separable convolution technique is used to compensate for the increase of 
computational burden. The effectiveness of the proposed method is demonstrated by ex-
tensive experiments on five garbage image classification datasets. 

 
Figure 1. Samples selected from the Baidu-214 dataset. (a) belongs to class “Hazardous /Battery” 
and (b) belongs to class “Recyclable/milk powder can”, which are from different categories but have 
similar appearances (inter-class similarity). (c,d) are from the same class “Cosmetic bottle” but have 
different appearances (intra-class variance). 

 
Figure 2. Samples selected from the same class with various backgrounds in the Baidu-214 dataset. 
(a–d) belong to the same class “Recyclable/Major Appliances”, all their backgrounds have 
changed significantly.  

The rest of this paper is organized as follows: Section 2 briefly reviews some work 
related to our method. Section 3 presents the proposed DSCAM method. The experi-
mental results on five datasets are shown and analyzed in Section 4. Finally, Section 5 
concludes the paper. 

2. Related Work 
Deep convolutional neural networks (CNNs) have been widely used in the computer 

vision community and achieved remarkable progress in various tasks, e.g., image classi-
fication, object detection and semantic segmentation. Starting from the groundbreaking 
AlexNet [25] which successfully won the championship of ImageNet image classification 
in 2012, researchers have realized the importance of CNN for image feature extraction and 
have committed to further improving its performance [26,27]. The VGG [26] model has 
proved the importance of network depth in enhancing the effectiveness of CNN model. 
GoogLeNet [27] designed an Inception module so that the network could capture image 
features of different scales. Resnet [24] proposed a residual block with skipped connec-
tions to construct a deeper network architecture with more layers. Moreover, some other 
models have also been proposed to improve the performance of CNN in various aspects. 
For example, DenseNet [28] constructs connections in the CNN network so that the output 
feature of a layer can be regarded as the input of all its subsequent layers, which can im-
prove the flow of information throughout the network to enhance the feature learning 
ability. 

Figure 1. Samples selected from the Baidu-214 dataset. (a) belongs to class “Hazardous /Battery”
and (b) belongs to class “Recyclable/milk powder can”, which are from different categories but have
similar appearances (inter-class similarity). (c,d) are from the same class “Cosmetic bottle” but have
different appearances (intra-class variance).

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 18 
 

CNN models with only a small number of convolution layers to extract the feature of 
garbage image, we employ Resnet [24] as the backbone of our DSCAM. Since Resnet con-
tains more convolution layers, the feature extraction ability of the proposed DSCAM can 
be enhanced to capture the discriminative features of garbage from different classes. At 
last, because the attention module and Resnet will bring more parameters into our model, 
the depth-wise separable convolution technique is used to compensate for the increase of 
computational burden. The effectiveness of the proposed method is demonstrated by ex-
tensive experiments on five garbage image classification datasets. 

 
Figure 1. Samples selected from the Baidu-214 dataset. (a) belongs to class “Hazardous /Battery” 
and (b) belongs to class “Recyclable/milk powder can”, which are from different categories but have 
similar appearances (inter-class similarity). (c,d) are from the same class “Cosmetic bottle” but have 
different appearances (intra-class variance). 

 
Figure 2. Samples selected from the same class with various backgrounds in the Baidu-214 dataset. 
(a–d) belong to the same class “Recyclable/Major Appliances”, all their backgrounds have 
changed significantly.  

The rest of this paper is organized as follows: Section 2 briefly reviews some work 
related to our method. Section 3 presents the proposed DSCAM method. The experi-
mental results on five datasets are shown and analyzed in Section 4. Finally, Section 5 
concludes the paper. 

2. Related Work 
Deep convolutional neural networks (CNNs) have been widely used in the computer 

vision community and achieved remarkable progress in various tasks, e.g., image classi-
fication, object detection and semantic segmentation. Starting from the groundbreaking 
AlexNet [25] which successfully won the championship of ImageNet image classification 
in 2012, researchers have realized the importance of CNN for image feature extraction and 
have committed to further improving its performance [26,27]. The VGG [26] model has 
proved the importance of network depth in enhancing the effectiveness of CNN model. 
GoogLeNet [27] designed an Inception module so that the network could capture image 
features of different scales. Resnet [24] proposed a residual block with skipped connec-
tions to construct a deeper network architecture with more layers. Moreover, some other 
models have also been proposed to improve the performance of CNN in various aspects. 
For example, DenseNet [28] constructs connections in the CNN network so that the output 
feature of a layer can be regarded as the input of all its subsequent layers, which can im-
prove the flow of information throughout the network to enhance the feature learning 
ability. 

Figure 2. Samples selected from the same class with various backgrounds in the Baidu-214
dataset. (a–d) belong to the same class “Recyclable/Major Appliances”, all their backgrounds
have changed significantly.

The rest of this paper is organized as follows: Section 2 briefly reviews some work
related to our method. Section 3 presents the proposed DSCAM method. The experimental
results on five datasets are shown and analyzed in Section 4. Finally, Section 5 concludes
the paper.

2. Related Work

Deep convolutional neural networks (CNNs) have been widely used in the computer
vision community and achieved remarkable progress in various tasks, e.g., image classi-
fication, object detection and semantic segmentation. Starting from the groundbreaking
AlexNet [25] which successfully won the championship of ImageNet image classification
in 2012, researchers have realized the importance of CNN for image feature extraction and
have committed to further improving its performance [26,27]. The VGG [26] model has
proved the importance of network depth in enhancing the effectiveness of CNN model.
GoogLeNet [27] designed an Inception module so that the network could capture image
features of different scales. Resnet [24] proposed a residual block with skipped connections
to construct a deeper network architecture with more layers. Moreover, some other models
have also been proposed to improve the performance of CNN in various aspects. For exam-
ple, DenseNet [28] constructs connections in the CNN network so that the output feature
of a layer can be regarded as the input of all its subsequent layers, which can improve the
flow of information throughout the network to enhance the feature learning ability.

The attention mechanism has proved to be an effective way to promote the per-
formance of deep CNNs. Thus, the incorporation of attention module into CNN has
attracted a lot of interest [29,30]. One of the representative attention-based CNN methods
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is squeeze-and-excitation networks (SE-Net) [29], which learns channel attention for each
convolutional block and brings apparent performance gain for various problems. Subse-
quently, some other attention modules were developed to enhance the feature aggregation
or combine the channel and spatial attention. Specifically, CBAM [30] employed both
average and max pooling to aggregate feature and fused channel and spatial attentions into
one module, which achieves considerable performance improvements on many computer
vision tasks.

To reduce the number of parameters and the computational burden of CNN, some
efficient network models were proposed. Among these models, the most widely used
are group convolutions [31–33] and depth-wise separable convolutions [34,35]. A group
convolution can be viewed as a regular convolution with separable channel convolution
kernels, where each kernel corresponds to a partition of channels without connections to
other partitions. Xie et al. [32] and Zhang [33] used group convolutions to improve the
architecture of the CNN network, which achieves better results while ensuring the number
of parameters. Depth-wise separable convolution is an extension of the group convolution.
Firstly, depth-wise separable convolution performs group convolution independently over
each channel of the input feature, then a point-wise convolution, i.e., an 1× 1 convolu-
tion, is utilized to project the output of group convolution to a new channel space. The
original idea of separable convolution operation comes from the Inception [27] network.
Inspired by Inception, Chollet [34] proposed the Xception network, which uses depth-wise
separable convolutional to further optimize the module structure and achieves satisfactory
performance. The biggest benefit of depth-wise separable convolution is that it allows
for significantly increasing the number of convolution units in a deep network without
an uncontrolled blow-up in computational complexity. Thus, it has also been adopted in
MobileNet [35] and ShuffleNet [36], which are designed for mobile device or embedded
vision applications.

3. Proposed Network

The whole structure of the proposed DSCAM is shown Figure 3. As can be seen from
this figure, our DSCAM employs the Resnet-50 (i.e., Resnet with 50 layers) as its backbone.
Compared with other CNN models with a small number of layers, Resnet introduces the
“shortcut connections” that skip several network layers to avoid the vanishing gradient
during network training. Thus, it can construct a deeper network with more layers to better
extract discriminative features from the garbage images. In our network, the initial feature
of input garbage image is first obtained by a shallow convolutional layer with kernel size
of 7 × 7. Then, the shallow feature is inputted into four Resnet blocks for feature refining.
In our work, an attention module is embedded in each sub-block of Resnet. The attention
module has two sequential processes: channel attention and spatial attention. Each process
adopts the depth-wise separable convolution to obtain an attention map which consists of
weights to indicate the importance of each channel and spatial position. Through point-
wise multiplying the feature with attention maps, our network could adaptively emphasize
the informative objects in the garbage image and suppress irrelevant background. At last, a
global average pooling layer and cross-entropy loss are employed for image classification.
The details of a depth-wise separable convolution and attention module will be described
in Sections 3.1 and 3.2.
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Figure 3. The network architecture of DSCAM.

3.1. Depth-Wise Separable Convolution

Here we briefly introduce how depth-wise separable convolution factorizes a standard
convolution (as shown in Figure 4) into a depth convolution and a point-wise convolution
(1× 1 convolution). Given the input feature F ∈ RW×H×C, where W and H denote the
spatial dimensions and C is the number of channels, through a standard convolution with
kernel size k× k× C× C′, we can get the output F′ ∈ RW ′×H′×C′ , where W ′ and H′ denote
the spatial dimensions of F′ and C′ is the number of output channels.
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In order to reduce the computational burden and parameters in standard convolu-
tion, depth-wise separable convolution first uses a depth-wise convolution (one filter per
input channel) to convolve with the input feature, as shown in Figure 5a, which can be
formularized as:

F̂ = F⊗ K (1)

where F ∈ RW×H×C is the input, K = Rk×k×C is the depth-wise convolution kernel, is the
convolution operation. Note that the output F̂ has the same number of channels as the
input feature. Then, an additional point-wise convolution with a 1× 1 convolution kernel
is applied to the output of the depth-wise convolution as shown in Figure 5b, which can be
formularized as:

F′ = F̂⊗ K (2)

where F̂ ∈ RW×H×C is the outputs of depth convolution, K = R1×1×C×C′ is an 1 × 1
convolution and F′ ∈ RW ′×H′×C′ is the output of whole depth-wise separable convolution.
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For standard convolution with the kernel size of k× k× C× C′, the number of param-
eters which needs to be optimized is Pstd = k2 × C × C′. On the contrary, a depth-wise
separable convolution can reduce the number of parameters to Pds = k× k× C + C× C′ =(
k2 + C′

)
× C. Thus, the ratio between them is Pds

Pstd
= 1

C′ +
1
k2 . In real-world applications,

the number of output channels and kernel size are usually much larger than 1 (i.e., 1 << C′,
1 << k2). Thus, the depth-wise separable convolution can effectively compress the number
of parameters and computational burden in a convolutional network. Moreover, some
studies have also shown that depth-wise separable convolution could improve the clas-
sification performance of a network due to the cross-channel and spatial features being
sufficiently decoupled and separately handled in it [34,35].

3.2. Depth-Wise Separable Convolution Attention Module

In this section, we mainly describe how to extract channel and spatial attention weights
using depth-wise separable convolution.

First, our purpose is to extract the channel attention weights which model interde-
pendencies between channels. For arbitrary input features, a point-wise convolution is
employed to fuse the information of different channels and reduce the dimension of chan-
nels to 1/r. After that, multiple depth convolution layers are used to extract local spatial
information, and a max-pooling operation is utilized to squeeze the spatial dimension to 1.
Next, a 1× 1 convolution kernel is adopted to recover the channel dimension to the input
feature dimension and obtain the specific channel attention weights MC(F). Finally, the
input feature is multiplied by the channel attention weights in each channel to generate the
weighted feature. The entire process is demonstrated in Figure 6.
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The procedure of obtaining channel attention weights can be formularized as follows:

MC(F) = W
(

f s
pooling

(
Wg

(
Wp(F)

)))
(3)

where F ∈ RW×H×Cin is the input feature. Wp is point-wise convolution operation which
reduces the input dimension from W × H× Cin to W×H×Cin

r , where (in Figure 6) represents
the reduction ratio. Wg is N times depth convolution. f s

pooling is a spatial max-pooling

operation and W denotes an 1× 1 convolution followed by a Sigmoid activation function,
which ensures the channel dimension of the output feature is the same as the input. All
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convolution operations mentioned above are followed by the ReLU activation function
(except the specific one mentioned).

Second, we describe the process for spatial attention weights extraction. To calculate
the internal relationship of features in space, multiple depth convolution operations are
first performed on the input feature. Then, we utilize a point-wise convolution operation
to reduce the channel dimension so that the channel information can be fused. After the
pooling operation along the channel axis, we can obtain the spatial attention weights MS(F).
Lastly, the input feature is multiplied by spatial attention weights in a point-wise manner
to obtain the weighted feature. These operations are shown in Figure 7.
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The procedure of spatial attention weights computation can be formularized as follows:

MS(F) = f c
pooling

((
Wp

(
Wg(F)

)))
(4)

where Wg denotes N times depth convolution operations, WP is a 1× 1 point-wise convo-
lution, r is the reduction ratio, f c

pooling is the pooling operation along the channel axis. All
convolution operations mentioned above are followed by the ReLU activation function,
and we use max-pooling for all pooling operations.

3.3. DSCAM Block in Resnet

In this study, we integrate DSCAM into Resnet-50, thus each block in Resnet-50
can be formularized by Equations (5)–(8). In the notation that follows, we take fconv in
Equation (5) to be a standard convolution operation, which convolves the input feature
Fin to F′in. Equations (6) and (7) are used to sequentially compute the weighted channel
attention feature FC and weighted spatial attention feature FS. In order to avoid the loss
of information and make the network converge rapidly, we employ a skip connection to
fuse the input Fin with the feature FS by an element-wise summation (denoted by ⊕) in
Equation (8), so that the final output FBlock of the current Resnet block can be obtained.

F′in = fconv(Fin) (5)

FC = MC
(

F′in
)
⊗ F′in (6)

FS = MS(FC)⊗ FC (7)

FBlock = Fin ⊕ FS (8)

3.4. Classification

To classify the feature of input garbage image, we use cross-entropy as the final loss
function, which can be defined as:

Z = So f tmax( fAvgpool(F′Block)) (9)

L = − 1
T

T

∑
i=1

yi ln Zi (10)
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In Equation (9), F′Block denotes the output feature of the last convolution layer in
Resnet-50 with attention modules, fAvgpool represents global average pooling operation,

and the softmax function is defined as So f tmax(x) = exp(xk)/
M
∑

k=1
exp(xk), where M is the

number of classes and xk is the k-th element of the output after average pooling. Through
Equation (9), the classification result of the feature F′Block can be obtained. For cross-entropy
loss in Equation (10), T denotes the total number of samples in training set, Zi represents
the classification result of the i-th sample obtained by Equation (9) and yi is the true label
(i.e., ground truth) of the i-th sample.

4. Experiments

In this section, we evaluate the effectiveness of our proposed method on garbage
image datasets and compare its performance with other methods.

4.1. Garbage Datasets

In this study, three publicly available garbage image datasets constructed by Huawei
Cloud and Baidu AI Studio are employed to evaluate the performance of our proposed DSCAM.

The Huawei Garbage Classification Challenge Cup dataset (Huawei-40 for short)
contains 18,112 images with 40 classes in total (eight types of food waste, 23 types of
recyclables, six types of other garbage and three types of hazardous garbage, respectively),
which are all common garbage in daily life. The image sizes vary from 113 × 76 to
4000 × 3000 in the Huawei-40 dataset, and the distribution of samples in each category is
uneven, ranging from 50 images to 800 images per category.

Baidu’s garbage dataset (Baidu-214 for short) has 58,063 images belonging to 214 classes
(106 types of recyclables, 53 types of food waste, 36 types of other garbage and 19 types
of hazardous garbage, respectively). The minimum and maximum sizes of images in this
dataset are 78× 78 and 6720× 4480. The number of images in each class ranges from 13
to 1654.

The Baidu recyclable garbage dataset (Baidu-RC for short) has 16,847 images from
21 recyclable garbage classes. The resolution of images in this dataset varies from 78× 78
to 8150× 5315, and the distribution of samples in Baidu-RC ranges from 250 images to
1000 images per category.

Some samples of the three datasets mentioned above are shown in Figure 8 (a), (b) and
(c), respectively.
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Because recyclable garbage is the most valuable among domestic garbage, we combine
the recyclable garbage images from Huawei-40, Baidu-214, and Baidu-RC datasets to
generate a new dataset named as BR-124 to further comprehensively evaluate our method’s
performance. Specifically, we first select the images containing recyclable garbage from
Huawei-40 and Baidu-214 datasets. Then, for the selected images whose categories exist in
Baidu-RC dataset, we merge them with samples from the same category in Baidu-RC to
form their corresponding categories in a new dataset. On the contrary, if the categories of
some selected images are not included in Baidu-RC, they are directly put into the new BR-
124 dataset. As a result, the BR-124 dataset contains 55,513 images distributed in 124 classes.
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The procedure of BR-124 dataset construction is shown in Figure 9. Table 1 summarizes the
information of datasets used in this experiment.
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Table 1. Dataset Attributes.

Dataset Number of Samples Number of Categories

Huawei-40 dataset 19,735 40
Baidu-214 dataset 58,063 214
Baidu-RC dataset 16,847 21

BR-124 dataset 55,513 124

For all the above datasets, we convert the class label of each image into a one-hot
vector (a vector has the same length as the number of categories, in which the i-th element
is set to 1 if the garbage image belongs to the i-th class and the rest are all set to 0). All
images are resized to 224× 224× 3, where 224 is the image size, 3 is the number of RGB
color channels.

4.2. Experimental Setup

In the experiment, all networks were implemented using the Pytorch framework and
performed on two NVIDIA GeForce RTX 2080 Ti GPUs. We randomly selected 90% samples
from each garbage dataset as the training set and the remaining 10% as the test set. The
random selecting process is repeated five times, and then the average classification accuracy
is reported. In addition, we use stochastic gradient descent (SGD) as the optimization
method during the network training. The learning rate was initially set to 0.01 with a
weight decay 0.0005 and Momentum 0.9. Then, we set the learning rate drops to 10% and
5% of its initial value at the 75th and 150th training iterations. Each drop in the learning
rate can make the network fine-tuned locally.

4.3. Experimental Results

First, we compared our proposed network with some other widely used CNN archi-
tectures in garbage classification, including VGG-19 [23], Xception [34], X-DenseNet [15],
MobileNet-V3 [37] and GNet [14]. From the classification accuracy of different methods in
Table 2, the following points can be found. The VGG-19 network has the lowest accuracy in
all compared methods since it has a simple architecture and shallow layers. Xception adopts
depth-wise separable convolution to construct a complex network with more layers. Thus,
it achieves higher accuracy than VGG-19. X-DenseNet is an extension of Xception, which
uses a dense block to realize feature reuse and fusion. Due to this advantage, X-DenseNet
outperforms Xception on all datasets. Nevertheless, the network architecture of Xception
and X-DenseNet do not contain any attention module, which leads them to ignore the
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different importance of extracted feature. For MobileNet-V3 and GNet, since they embed
the SE attention module [19] into some layers of their network, we can find that their
performance is better than Xception and X-DenseNet. However, SE attention only takes
the channel information into account. Hence, the classification results of MobileNet-V3
and GNet are still inferior to the proposed DSCAM, in which both the channel and spatial
attention are considered.

Table 2. Classification accuracy (%) ± Standard deviation (%) obtained by different methods.

Methods Huawei-40 Baidu-214 Baidu-RC BR-124

VGG-19 84.96 ± 0.63 72.98 ± 0.61 86. 38 ± 0.47 79.13 ± 0.47
Xception 88.45 ± 0.65 79.09 ± 0.55 90.12 ± 0.52 82.88 ± 0.56

X-DenseNet 89.31 ± 0.59 80.38 ± 0.57 91.74 ± 0.46 83.53 ± 0.41
MobileNet-V3 90.83 ± 0.47 82.01 ± 0.63 92.48 ± 0.41 84.70 ± 0.51

GNet 90.99 ± 0.33 82.57 ± 0.43 92.63 ± 0.35 84.89 ± 0.46
DSCAM 91.20 ± 0.43 83.01 ± 0.48 92.77 ± 0.45 85.35 ± 0.43

Then, to justify the effectiveness of each component in our DSCAM, we compare
the proposed method with three other networks, including Resnet (the original Resnet-
50 without attention), SE network and CBAM network. In SE network, we embed SE
module in the last convolution layer of each Resnet-50 block. Similarly, the CBAM network
sequentially integrates channels and spatial attention modules of CBAM into the same
position of Resnet-50 as SE network. Table 3 shows the classification accuracy of these
networks in each dataset. First, we can see that Resnet-50 achieves better classification
accuracy than some of the networks in Table 2, which indicates more convolution layers
could help to enhance the discriminative ability of extracted features. Second, since SE
network introduces the squeeze-and-excitation based attention mechanism into Resnet,
its performance is superior to Resnet-50. However, since SE network can only learn the
channel attention, its classification result is lower than the CBAM network. Third, although
the CBAM network takes both the channel and spatial attention into consideration, it merely
uses a pooling operation to calculate maximal or average activations along channels or
spatial, which may lose some important information. In our proposed DSCAM, the depth-
wise separable convolution is adopted to refine the feature before pooling operations, which
can improve the capacity of channel and spatial attention maps obtained by our method.
Therefore, as can be seen in Table 3, our DSCAM achieves the best classification accuracy.

To further demonstrate the effectiveness of attention in our DSCAM, we visualize the
attention maps obtained by our network. From Figure 10, it can be seen that the proposed
attention modules can effectively make our method focus on the target object in the image
and ignore the interference of background.
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Table 3. Classification accuracy (%) ± Standard deviation (%) obtained by each method.

Dataset Methods Accuracy

Huawei-40

Resnet 89.47 ± 0.51

CBAM 90.82 ± 0.48

SE 90.79 ± 0.41

DSCAM 91.20 ± 0.43

Baidu-214

Resnet 81.67 ± 0.46

CBAM 82.17 ± 0.57

SE 82.00 ± 0.48

DSCAM 83.01 ± 0.43

Baidu-RC

Resnet 91.50 ± 0.42

CBAM 92.25 ± 0.46

SE 92.26 ± 0.49

DSCAM 92.77 ± 0.45

BR-124

Resnet 83.61 ± 0.51

CBAM 84.19 ± 0.48

SE 84.17 ± 0.46

DSCAM 85.35 ± 0.43

Figure 11 shows the accuracy curve of each method from Table 3. In the early stage of
iterations, since the parameters in all networks are randomly initialized, their classification
results are all very bad. Thus, we only show the accuracy curves between the 25th to 225th
training iterations of different methods in this figure. It can be found that the accuracy of
our method is lower than other methods when the number of training iterations is small,
which may be due to our DSCAM containing more convolution operations. Moreover,
since we initially set a larger learning rate to ensure that the networks can quickly achieve
a high accuracy at the beginning, the fluctuant phenomena can be clearly seen from the
accuracy curves of different methods at the early training stage. Nevertheless, after the
learning rate is reduced at the 75th and 150th training iterations, the fluctuation of accuracy
curves obtained by all methods become small and the performance of our method improves
rapidly and gradually surpasses other approaches with the increasing of training iterations.
At last, we can also observe that the average accuracy of all methods becomes nearly stable
after 200 iterations, so the classification accuracy at the 200th training iteration is taken as
the final experimental result in Table 3.

Next, the confusion matrices of accuracy obtained by various methods on the Baidu-
RC dataset are provided for comparison. The confusion matrix can reflect the classification
accuracy of each class. The diagonal of the confusion matrix represents the accuracy of
each class, and the off-diagonal elements indicate the degree of misclassification. From
Figure 12, it can be seen that the confusion matrix obtained by our method is sparser than
other methods, which means that our method can extract more discriminative features and
classify fewer garbage images into incorrect categories.
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To test the statistical significance between different models, the McNemar–Bowker
test [38], which can analyze the classification outcome of more than two classes is employed.
In our experiment, the significant level is set as 0.05. Table 4 demonstrates the results
(p-value) of the McNemar–Bowker test between our DSCAM and compared methods.
From these results, we can find that the p-values are all smaller than the significant level.
Therefore, through comprehensively considering the results in Table 4, Figures 11 and 12,
we can see that the performance of our DSCAM is significantly superior to other methods.

Table 4. McNemar–Bowker test between DSCAM and compared methods.

Dataset DSCAM & Resnet DSCAM & CBAM DSCAM & SE

Huawei-40 p = 0.0205 p = 0.0362 p = 0.0275

Baidu-214 p = 0.0136 p = 0.0188 p = 0.0166

Baidu-RC p = 0.0435 p = 0.0491 p = 0.0494

BR-124 p = 0.0065 p = 0.0183 p = 0.0155

To illustrate that DSCAM can effectively deal with the inter-class similarity and intra-
class variance problem, we demonstrate some images in Figure 13, which misclassified by
comparison methods (i.e., Resnet, SE, CBAM) but correctly classified by our method. In this
figure, the garbage images in columns (a) and (b) are from different classes. Nevertheless,
since the two images in the same column exhibit similar appearances, it is difficult to
distinguish them. Contrarily, the garbage images in columns (c) and (d) come from the
same class but have quite different appearances. Thus, they are also easily misclassified.
However, with the help of the Resnet architecture, the attention module and depth separable
convolution, the proposed DSCAM can capture more discriminative deep features and
neglect the irrelevant information in the image. Thus, the images in Figure 13 are correctly
classified to their corresponding categories by our method. This means that our DSCAM
can address the limitations of other methods to some extent.
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Figure 13. Samples of misclassification by the comparison methods in the Baidu-214 dataset. (a) sam-
ples selected from different classes “Recyclables_Mobile phone” and “Recyclables_Portable charger”;
(b) samples selected from different classes “Recyclables_Plastic toys” and “Recyelables_Plush toys”;
(c) samples selected from the same class ”Recyclables_Shapoo bottle”; (d) samples selected from the
same class ”Kitchen waste_Biscuits”.

4.4. Parameter Sensitivity

There exist some parameters whose values may influence the performance of our
proposed DSCAM. Thus, we conducted some experiments to test the sensitivity of our
method with these parameters.

First, the impact of the parameters (i.e., kernel size and reduction ratio) in depth-wise
separable convolution on our DSCAM is evaluated. The performances of our method
under various parameter values can be seen in Table 5. From this table, it can be found
that DSCAM achieves its best classification accuracy when the kernel size and reduction
ratio are set as 3× 3 and r = 16. The reason may be that a large kernel size will enlarge the
receptive field, which overlooks the detailed fine feature in the image. Besides, the purpose
of the reduction ratio is to control the degree of information compression along channels.
Thus, a larger reduction ratio will lose some useful information, and a smaller reduction
ratio will cause information redundancy.

Table 5. Classification accuracy (%) with different parameter values in depth-wise separable convolution.

Depth Convolution Size and
Reduction Ratio Huawei-40 Baidu-214 Baidu-RC BR-124

3 × 3 (r = 8) 91.02 82.66 92.53 84.78

3 × 3 (r = 16) 91.20 83.01 92.77 85.35

3 × 3 (r = 32) 89.90 81.87 91.65 83.86

5 × 5 (r = 8) 90.35 82.47 92.03 83.87

5 × 5 (r = 16) 90.76 82.70 92.36 84.21

5 × 5 (r = 32) 89.63 81.25 91.42 83.01

7 × 7 (r = 8) 89.92 81.86 91.76 83.43

7 × 7 (r = 16) 90.25 82.01 91.95 83.89

7 × 7 (r = 32) 89.03 80.57 91.06 82.62

Since spatial and channel attention have different processes and functions, the or-
der of them may affect the overall performance of our method. Therefore, we compare
three different ways of arranging the channel and spatial attention modules: sequential
channel+spatial (C + S), sequential spatial+channel (S + C), and parallel use both attention
modules (S&C). From the comparison result in Table 6, we can see that sequentially gener-
ating the attention maps outperforms the parallel manner. Furthermore, the channel-first
order performs slightly better than the spatial-first order. This result justifies the design of
our network architecture in Figure 3.
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Table 6. Classification accuracy (%) in different architecture combinations of our methods.

Architecture Huawei-40 Baidu-214 Baidu-RC BR-124

C + S 91.20 83.01 92.77 85.35
S + C 90.17 81.84 92.30 84.21
S&C 89.92 80.24 91.75 83.60

4.5. Ablation Study

The depth of a network (i.e., the number of layers in a network) is an important
factor to affect its performance. Generally, more layers will make the network obtain high
accuracy. But more layers are also accompanied by more parameters, which would bring
longer training and test time. Here, we conduct some experiments to justify the rationality
of Resnet-50 as the backbone of our network.

First, we replace the backbone of our network with deeper Resnet-101 and Resnet-152.
From the experimental results in Table 7, it can be seen that the backbone network with
more layers can slightly improve the performance of our method from 91.20% to 91.27%
(Resnet-101) and 91.32% (Resnet-152). However, Resnet-101 and Resnet-152 also greatly
increase the number of parameters, training/test time and GPU memory size. Then, we also
employ Densenet-121 and Densenet-169 [28] as the backbone of our network. From Table 7,
it can also be found that the Densenets with more layers achieve better performance than
Resnet-50. Nevertheless, although Densenet-121 and Densenet-169 outperform Resnet-101
and Resnet-152 with fewer parameters, they require larger GPU memory sizes due to the
massive concatenation operations in them. Besides, Densenet also needs more training/test
time due to it uses many small convolutions in the network, which runs slower on a
GPU than large compact convolutions with the same number of GFLOPS [39]. At last,
through taking all factors (such as accuracy, time, number of parameters and memory size)
into consideration, we choose Resnet-50 as the backbone of our network since it could
obtain comparable garbage classification accuracy without very large computation and
memory consumption.

Table 7. Comparison of different backbone networks on the Huawei-40 dataset.

Backbone Accuracy Training/Test
Time Per Image

Params Size
(MB)

Memory Size
(MB)

DSCAM +
Resnet-101 91.27 0.150/0.060 198.90 835.35

DSCAM +
Resnet-152 91.32 0.220/0.075 272.71 1183.20

DSCAM +
Densenet-121 91.30 0.242/0.088 31.91 5589.45

DSCAM +
Densenet-169 91.35 0.278/0.102 53.25 6847.50

DSCAM +
Resnet-50 91.20 0.081/0.048 109.30 523.79

4.6. Real Scene Application

In order to test the classification result of the proposed DSCAM in real scenes, we
construct a simple real garbage dataset. As mentioned before, recyclable garbage is very
valuable in real life. Therefore, 400 recyclable garbage images with 20 categories (20 images
per category) in real scenes are collected through taking pictures and an online search.
Some samples of this dataset are shown in Figure 14. At the same time, to enrich the
amount of data, the images in the dataset are randomly clipped, rotated and filled with
background for data augmentation. As a result, a total of 2000 recyclable garbage images
(100 images per category) were obtained.



Sustainability 2022, 14, 3099 16 of 18Sustainability 2022, 14, x FOR PEER REVIEW 16 of 18 
 

 
Figure 14. Samples of the collected real scene garbage dataset. 

In this experiment, we directly inputted the collected garbage images to different 
networks pre-trained on the BR-124 dataset. Table 8 shows the classification result ob-
tained by each network. First, it can be seen that VGG-19 and Xception obtain the worst 
accuracy among all methods. Second, the performances of X-DenseNet and Resnet are 
inferior to other models with an attention mechanism, such as SE, MobileNet-V3, GNet 
and CBAM. At last, the proposed DSCAM achieved the best results. The observations in 
Table 8 are consistent with those in the previous experiments, which shows our method 
has good generalization and can effectively deal with the garbage images in real scenes. 

Table 8. Classification accuracy (%) obtained by different methods on the Real Scene dataset. 

Methods Real Scene Dataset 
VGG-19 91.0 
Xception 92.5 

X-DenseNet 95.6 
MobileNet-V3 98.5 

GNet 98.2 
Resnet 97.6 

SE 98.0 
CBAM 98.7 

DSCAM 98.9 

5. Conclusions 
In this paper, we focus on developing a specific deep CNN for garbage image classi-

fication problems. To this end, we proposed the attention module DSCAM, which pro-
vides a novel mechanism to construct attention weights. Unlike the original attention 
mechanism, which only uses a pooling layer to infer correlations in channels and spatial, 
DSCAM utilizes depth-wise separable convolutions to construct the inherent relationship 
of channel and spatial, which can make the network obtain more discriminative features. 
Moreover, a Resnet-50 with more convolutional layers is also adopted as the backbone of 
our method, so that its classification ability can be further improved. Several experiments 
were conducted to evaluate our method on five garbage datasets. The experimental results 
illustrate that our method achieves better performance than the compared methods. 

In the future, we will embed our attention modules into more recent proposed back-
bone networks (such as visual transformer [40]) to test their performance on garbage im-
age classification. Furthermore, combining the proposed DSCAM with some hardware 

Figure 14. Samples of the collected real scene garbage dataset.

In this experiment, we directly inputted the collected garbage images to different
networks pre-trained on the BR-124 dataset. Table 8 shows the classification result obtained
by each network. First, it can be seen that VGG-19 and Xception obtain the worst accuracy
among all methods. Second, the performances of X-DenseNet and Resnet are inferior to
other models with an attention mechanism, such as SE, MobileNet-V3, GNet and CBAM.
At last, the proposed DSCAM achieved the best results. The observations in Table 8 are
consistent with those in the previous experiments, which shows our method has good
generalization and can effectively deal with the garbage images in real scenes.

Table 8. Classification accuracy (%) obtained by different methods on the Real Scene dataset.

Methods Real Scene Dataset

VGG-19 91.0
Xception 92.5

X-DenseNet 95.6
MobileNet-V3 98.5

GNet 98.2
Resnet 97.6

SE 98.0
CBAM 98.7

DSCAM 98.9

5. Conclusions

In this paper, we focus on developing a specific deep CNN for garbage image classifi-
cation problems. To this end, we proposed the attention module DSCAM, which provides a
novel mechanism to construct attention weights. Unlike the original attention mechanism,
which only uses a pooling layer to infer correlations in channels and spatial, DSCAM
utilizes depth-wise separable convolutions to construct the inherent relationship of channel
and spatial, which can make the network obtain more discriminative features. Moreover, a
Resnet-50 with more convolutional layers is also adopted as the backbone of our method, so
that its classification ability can be further improved. Several experiments were conducted
to evaluate our method on five garbage datasets. The experimental results illustrate that
our method achieves better performance than the compared methods.

In the future, we will embed our attention modules into more recent proposed back-
bone networks (such as visual transformer [40]) to test their performance on garbage image
classification. Furthermore, combining the proposed DSCAM with some hardware and
devices (such as a robot chassis, a robotic arm and a camera) to create an automatic garbage
sorting system is another interesting topic for future study.
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