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Abstract: New trends of Machine learning models are able to nowcast power generation overtaking
the formulation-based standards. In this work, the capabilities of deep learning to predict energy
generation over three different areas and deployments in the world are discussed. To this end, transfer
learning from deep learning models to nowcast output power generation in photovoltaic systems is
analyzed. First, data from three photovoltaic systems in different regions of Spain, Italy and India
are unified under a common segmentation stage. Next, pretrained and non-pretrained models are
evaluated in the same and different regions to analyze the transfer of knowledge between different
deployments and areas. The use of pretrained models provides encouraging results which can be
optimized with rearward learning of local data, providing more accurate models.

Keywords: photovoltaic systems; deep learning; transfer learning; energy generation; distributed
generation; smart-grids

1. Introduction

Solar photovoltaics or PV have continued to experience remarkable growth in 2020
and the first half of 2021 despite the overall negative impact of the COVID-19 pandemic
and several price increases affecting the processes and materials involved in the production
of PV modules. Thus, cumulative solar capacity surpassed three quarters of a terawatt
(TW) globally in 2020. Furthermore, during this year, solar was again the power generation
technology with the largest net installed capacity.

However, the most likely scenario is that we shall enter the solar terawatt age in 2022.
Finally, the Global Market Outlook for solar power 2021–2025 anticipates that total solar
capacity will reach almost 2 TW by the end of 2025 [1].

Nowadays PV technology has become a solid choice for electricity generation, not only
because of the advantages provided by green electricity, but even by producing electricity
more cheaply than conventional sources in many cases. A record low generation cost of
1.32 US cents per kWh was reached in the second Portuguese auction in 2020 [1].

All these features, among others, are leading to a very significant growth in the global
solar market, particularly in an aspect that is especially relevant to this work: distributed
power generation. Data engineering and deep-learning are key techniques to find open and
low-cost solutions, as powerful tools that are able to manage the smart grids that enable
distributed generation [2,3].

Predictive maintenance and efficient operation of PV plants is necessary [4]. To this
end, as a first step, accurate estimation of the available energy is required, especially in the
coming hours [5]. Thus, having a reliable tool available to nowcast the energy generated by
PV installations is the first essential step to achieving smart grids that allow distributed
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energy generation. Furthermore, this will allow customers -the so-called prosumers-, to be
active agents in energy generation and grid management.

Additionally, transfer learning is the improvement of learning in a new task through
the transfer of knowledge from a related task that has already been learned [6]. Un-
der data-driven approaches, supervised learning provides models where the training and
testing data are collected under the same conditions to compute feature representation
and data segmentation [7]. In many real contexts, learning conditions change between
domains, which is an obstacle for the use of standard machine learning models [8]. Transfer
learning responds to the challenge of evaluating the capabilities of pretrained models in
different contexts.

The use of deep learning in temporal series has become a prolific research field [9], in-
volving temporal or sequence networks, such as Long Short-Term Memory (LSTM) [10] and
spatial features in time series by means of Convolutional Neural Networks (CNNs) [11,12].
These deep learning models provide straightforward transfer capabilities due to neural
network plasticity [13] which can weight artificial synapses from previous learning stages
to other domains [8]. In this way, pretraining CNN and LSTM models is effective in
knowledge initialization, providing encouraging results and reducing the required learning
time [14].

Furthermore, developing methods for estimating the output power generation in
photovoltaic systems [15] is key to obtain models that predict energy generation in unseen
previously learned areas. It will enable computing standard models to evaluate the power
generation of photovoltaic systems from scratch [16].

The work presented here has consisted in the following steps:

• Data collected in Jaen (Spain) using the IoT module to gather ambient sensor informa-
tion and output power generated from the photovoltaic system deployed under the
Opera Project [15].

• Data from the SolarTech Lab at the Polytechnic University of Milan proposed to
compare the prediction in a different context.

• Data from the Kaggle database from India region, to compare the prediction in a
different weather region of the world (Dataset on PV system in India. Retrieved
1 March 2022, from https://www.kaggle.com/anikannal/solar-power-generation-
data).

• A homogeneous segmentation of data proposed to aggregate solar irradiance and
temperature of sensor data streams from different contexts.

• Two deep learning models based on CNN and LSTM proposed to nowcast the gener-
ated power. Energy estimation transfer capabilities between Spain and Italy evaluated
with different configurations for learning, comparing training from scratch and pre-
trained models.

In the remainder of this article, we provide further detailed descriptions of the pro-
posed approach. Section 1.1 reviews related works and the state of the art. Section 2
presents the proposed methodology for homogenizing source streams and translating
the knowledge from different PV system contexts. Section 3 introduces the evaluation of
the methodology analyzed in three real-world datasets. Finally, in Section 4, conclusions,
ongoing and future works are discussed.

The completion of this work has resulted into three major contributions in the field: (a)
a configuration of a deep learning model which provides good performance when reused
across different contexts with no reconfiguration, (b) a methodology to follow in order
to reuse deep learning models across different domains, and (c) a baseline for pretrained
models error and time metrics.

1.1. Related Works

Over the last twenty years, PV systems have been integrated as efficient sources of
energy generation and this technology has reached a significant maturity level in several

https://www.kaggle.com/anikannal/solar-power-generation-data
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regions, such as America [17,18], Australia [19], Asia [20] and Europe [21]. The role of
Machine Learning has enabled a relevant number of applications in PV installations [22].

Moreover, the great growth in the contribution of energy from renewable sources,
in general, to the electricity grid has led to new challenges for distribution networks,
such as distributed generation and smart grids. In particular, as already mentioned,
PV energy—with a 39% share of all new installations—had the greatest growth in new
installed capacity over the past year [1]. Data engineering and artificial intelligence are
therefore essential to manage these resources and meet these challenges. Solar energy is
contributing greatly to achieving distributed generation [23–25]. But it will only be possible
with new management tools in the electricity grid—in other words: Smart Grids [26–28].
Furthermore, new applications that are geared towards individual customers are being
developed, enhancing trends such as self-consumption, off-grid generation taking account
of new advances in electricity storage, etc. [29–35]. In addition, the considerable increase
in the number of customers that, not only consume, but generate energy (prosumers) also
highlights the need for powerful but simple tools to enable these individual customers to
operate, control and maintain their installations [36–38].

New approaches are exploring Internet of Things architectures [15] together with new
information technologies such as big data or business intelligence [39]. Prior to data-driven
models, the common method to estimate the energy generated by the cells and by the PV
system was based on the physical process of the solar cell in order to define the analytical
equation to obtain its electrical parameter [40]. These models followed different approaches
with notable results [16,41]. However, the use of machine learning models developed
from supervised data under data-driven approaches have overtaken previous models’
performance in nowcasting output energy generation [42–44].

First, Deep learning (DL) has become a prolific research field on the basis of temporal
series [9]. Long Short-Term Memory (LSTM) [10] is a type of recurrent neural network
that includes a memory and is designed to learn from sequence data, such as sequences of
observations over time. The use of LSTM is suitable for predictions from sensor data [45]
obtaining encouraging results in several fields, such as activity recognition [46] or estimat-
ing building energy consumption [47]. In PV forecasting, LSTM has shown encouraging
results in the state of art in terms of performance [48]. Additionally, Convolutional Neural
Networks (CNNs) have been combined to extract spatial features in time series achieving
promising results together with LSTMs models [49], particularly in nowcasting the output
energy generation of PV systems [42]. The DL models for nowcasting PV output have pro-
vided highly accurate learning that includes recognition of the threshold of solar irradiance
which overcomes the non-zero energy generation in different weather circumstances.

Second, in a general sense, transfer learning is a methodology used to translate learning
models from previous patterns recognized in a given domain to another domain. In this
broad definition, homogeneous transfer learning refers to predictive modelling where
the domain and input feature space is the same [50]. On the other hand, heterogeneous
transfer learning aims to align the input data between different source and target domains
which are represented in different feature spaces [50]. This work falls in the middle of
these two approaches: it is homogeneous to the extent that the input feature space of
signals to estimate output energy generation is the same; however, the collection rate and
representation of data between PV systems differ. To address this, a common segmentation
method to process the sensor stream is proposed.

Third, the outcomes of transfer learning are broad. For example, instance-based
approaches separate samples from target and source domain samples in order to be used
in the target domain to improve training performance [51]. Parameter-based approaches
are focused on transferring knowledge by means of sharing structures from a latent space
from the source domain [52]. This kind of transfer learning is strongly related to DL
approaches, since the weights which configure the learned kernels from network layers
describe hypothetically common patterns from the target domain. So, in spite of using
initialized to zero or random weights, the learned network is used as a starting point for
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learning, proceeding with fine-tuned learning of the target domain [53]. These approaches
have provided encouraging results in reduction of learning time and increased performance,
above all, in computer vision problems [54].

Finally, in time-series forecasting, the use of DL and transfer learning [55] has been ap-
plied successfully in different scenarios, such as indoor temperature forecasting [56]. In the
context of PV systems, transfer learning capabilities have been newly evaluated [57] with
promising results. LSTM has been proposed to reduce prediction errors with pretrained
initialization of weights in a case study limited to the same region (China), with deployment
of the same plant and using the same data segmentation on different days for evaluation.
In other areas of photovoltaics, machine learning has been proposed to diagnose: (i) the
fault detection of PV systems [58], (ii) the grid connection of PV architectures [59] or (iii) the
module defects [60], for example, using aerial images [61], infrared images [62].

Based on the previous works described, in this work we aim to analyze the capabilities
of transfer learning to nowcast energy generation so as to reach general prediction models
which estimate the performance of PV systems. Our goal is to transfer knowledge from
different PV plants, in different areas and with different collection rates of sensors in two
dataset domains.

2. Methodology

In this section, we describe the proposed methodology for evaluating the capabilities
of transfer learning for the purpose of nowcasting the energy generation of photovoltaic
systems in three different datasets, from the Univer Project at the University of Jaen,
from SolarTech Lab at the Polytechnic University of Milan and from the India region at
the Kaggle database. Our approach is based on the following key points: (i) evaluating
two different datasets from different regions of the world using a segmentation method
to homogenize the input from both domains, (ii) proposing CNN and LSTM models to
nowcast the energy generation of the PV systems when learning from scratch versus
pretrained networks with fine-tuned learning from other domains.

2.1. Data Collection of PV Systems from Heterogeneous Sources

The data for this work has been collected from two different sources. The first one is
the Univer project of the University of Jaen. This dataset has been generated capturing the
signals below with a frequency of 30 s, from June to November 2019. The data collected
from Univer are:

• Time recordings expressed in Central European Time (CET).
• Global irradiance in plane of array (W/m2) measured by an IoT device installed on

the PV system.
• Ambient temperature (°C) measured by an IoT device installed on the PV system.
• Module temperature (°C) measured by an IoT device installed on the PV system.
• Output Power (W) from the PV module, measured at the inverter of the system.

A sample row of the Univer data file is shown in Figure 1.

Figure 1. Sample row from the Univer data file: time (timestamp), Global irradiance (G_I), Ambient
temperature (Tamb), Module temperature (Tmod), Output Power (PA).

The second dataset includes PV power production measured in the SolarTech Lab,
Polytechnic University of Milan, Italy. The dataset spans a whole year, from January
to December 2017, and is composed of the following variables and specifics, with a time
resolution of 1 min (“NaN” is reported when a value is missing in the original measurement
recording):
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• Time recordings expressed in Central European Time (CET).
• Output Power recordings from the PV module (W); module tilt: 30°.
• Ambient temperature (°C) measured by the weather station described on the SolarTech

Lab website (SolarTech Lab, Polytechnic University of Milan, Italy. Retrieved 1 March
2022, from http://www.solartech.polimi.it/instrumentation/).

• Measured global horizontal irradiance (W/m2).
• Global irradiance measured on the plane of array (30°).
• Measured wind speed (m/s).
• Measured wind direction (°), assuming 0° east, positive south.

A sample row of the SolarTech data file is shown in Figure 2.

Figure 2. Sample row from the SolarTech data file: time, Output Power (PV_Power), Ambient
temperature (T_air), global horizontal irradiance (G_h), Global irradiance measured (G_tilt), wind
speed (W_s), wind direction (W_d).

The datasets from both systems present some commonalities that enable us to carry
out the experiment by using the same signals in the deep learning model. However,
to make sure we can extract significant conclusions from the results, the datasets need to be
homogeneous. The following actions have been taken to achieve this:

• Selecting the same signals as input to the model: Ambient Temperature and Global
Irradiance in the datasets.

• Nowcasting the same signal: Output Generated Power.
• Selecting the same period of the year to avoid seasonality issues, in this case the

overlap is from June to November 2019 in the Univer dataset and June to November
2017 in the SolarTech dataset.

• Aggregating the data to a 10 min average and defining a segmentation as described in
Section 2.2.

2.2. Segmentation to Nowcast Power Generation

Following a formal definition, a sensor s collects data in real time in the form of a
pair si = {si, ti}, where si represents a given measurement and ti the timestamp. Thus,
the data stream of the sensor source s is defined by Ss = {s0, . . . , si} and a given value
in a timestamp ti by Ss(ti) = si. In this work, irradiance on the PV surface GI , ambient
temperature Tam and PV output power generation PA provide three data streams which
describe the behavior and energy production of the PV system.

In order to homogenize the data collected by the different sensors, we define several
simetric temporal sliding windows. They are defined by the window size of a time interval
Ww = [W−w , W+

w ], segment the samples of a given sensor stream Ss and aggregate the values
si by means of an aggregation function Tt(Ss, Ww, t∗):

Tt(Ss, Ww, t∗) =
si⋃
si

si, ti ∈ [t∗ −W−w , t∗ −W+
w ]

So, the aggregation
⋃

si
from the sensor data si applied over a short time interval

Ww = [W−w , W+
w ] represents the relevant value in a given point of time t∗.

Using the aggregation of data, the signal segmentation is defined by several sliding
temporal windows of short size, which are defined by the temporal granularity ∆. The data
in the temporal window are aggregated by the aggregation function. In concrete, the data
within each temporal window are averaged

⋃
= µ for each short-term temporal window

within the segment defined in the time interval. The average provides a strong aggrega-

http://www.solartech.polimi.it/instrumentation/
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tion function in order to homogenize heterogeneous raw sensor sources in case they are
provided by different collection rates.

So, we obtain a sequence of data for each sensor source, whose sequence size is the
same for all sources Ss:

S∗(t∗)→


S1(t∗) = Tt(S1, [0, ∆], t∗)→ Tt(S1, [∆, 2∆], t∗), . . . ,→ Tt(S1, [∆|W| − ∆, ∆|W|], t∗)

. . .

S|S|(t∗) = Tt(S|S|, [0, ∆], t∗)→ Tt(S|S|, [∆, 2∆], t∗), . . . ,→ Tt(S|S|, [∆|W − 1|, ∆|W|], t∗)

We note the different sensor streams S1, . . . , S|S|, are: (i) aligned in the same point of
time t∗, (ii) segmented in homogeneous sliding temporal windows Ww = [W−w , W+

w ] =
{[0, ∆], . . . , [∆, 2∆]}, and (iii) represented by a feature vector of unique size which aggre-
gates previous values for each sensor stream S1(t∗).

In Figure 3, we describe a visual representation of the segmentation of a sensor stream
defined by sliding temporal windows to homogenize different frequencies of data collection
from heterogeneous sources.

Figure 3. Segmentation of a sensor stream defined by sliding temporal windows.

In this work, the segmentation of input and output signals from the PV system is
developed for: Ambient Temperature and Global Irradiance as the input signals and Output
Power as the output. This process of aggregating and segmenting the data is key in the
transfer learning approach, since the sample rates are generally different between the
domains. In the two contexts of this work, the input data is configured as follows:

• Univer Dataset. The signals are aggregated from the original 30 s sample to a 10 min
average and then segmented in a 90 min sliding window.

• SolarTech Dataset. The signals are aggregated from the original 1 min sample to a
10 min average and then segmented in a 90 min sliding window.

At the end of this stage, the heterogeneous data from both domains have a homoge-
neous representation of input and output signals.

2.3. Transferring Knowledge by Weight Initialization and Fine-Tuned Learning between Domains

As we detailed previously, the aim of this work is to evaluate the capabilities of transfer
learning for the purpose of nowcasting the energy consumption of PV systems between
domains. This leads to the following questions:

• How accurate are the learning models which are trained in their own domain (climate)
in estimating the energy generation of PV systems?

• What is the difference in performance when nowcasting energy generation with an
unseen domain which has been trained in another plant, climate or deployment?

• Is the structure of DL models (CNN and LSTM) effective for transferring and optimiz-
ing the weights in estimating the energy generation of PV systems from one climate
to another?
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In order to address these questions, after providing the unified representation of data
from the previous section, we have evaluated three learning combinations for models,
consisting of:

• (A) Bare learning between domains, where isolated learning and evaluation is per-
formed between domains. This standard learning provides baseline performance data
from the same domain.

• (B) External learning between domains, where the learning occurs in one given domain
but the evaluation is carried out in a different one. The performance of this complex
learning describes the transferability of DL structures when dealing with different
unknown domains.

• (C) Fine-tuned learning in the target domain from a pretrained network from another
climate. Under this learning configuration, performance can improve or deteriorate
with regards to the baseline (bare learning). If there is improvement, the patterns and
kernels computed in DL layers provide general information on energy generation
which can be optimized with local data to generate a sturdier model.

In Figure 4, we detail the configuration of data and model training in the bare, external
and fine-tuned learning scenarios.

Figure 4. (A) Bare learning, (B) external learning and (C) fine-tuned learning approaches.

In Table 1, we describe the configuration of the learning model. Three layers of CNN
are firstly integrated as spatial feature extractors. Next, two layers of LSTM model the tem-
poral dependencies from the CNN. This combination of CNN-LSTM hybrid networks has
been selected as it has provided encouraging results in modeling output power generation
as described in [15].



Sustainability 2022, 14, 3092 8 of 15

Table 1. Configurations of Convolutional Neural Networks.

3CNN + 2LSTM

2 kernels × 16 filters

Re-Lu

2 kernels × 32 filters

Re-Lu

2 kernels × 64 filters

Re-Lu

dropout (0.25)

LSTM (32 units)

dropout (0.25)

LSTM (32 units)

dropout (0.25)

connected (1 unit)

activation function: Re-Lu

loss function: MSE

3. Results

In this section, we describe the results from the implementation of transfer learn-
ing capabilities of DL models for the purpose of nowcasting and fine-tuning the energy
generation of PV systems in different contexts.

The transfer learning capabilities were studied first in the SolarTech Lab context follow-
ing the different domain combinations defined in the previous Section 2.3. The CNN+LSTM
model also described in Section 2.3 was first trained and validated on the SolarTech dataset
in a bare learning scenario. Then, it was trained on the Univer dataset and validated
on the SolarTech dataset, to evaluate the performance of the external learning scenario.
Finally, the model trained on the Univer dataset was optimised by training again on the
SolarTech dataset and later validated on SolarTech. The results of these three scenarios
were compared using the NMSE (Normalised Mean Square Error) and NMAE (Normalised
Mean Absolute Error) error metrics. These results are shown in Table 2.

Table 2. Domain combinations and error metrics in the SolarTech context.

Context Domain Combination Pre-Training Training Validation NMSE (%) NMAE (%)

SolarTech
(A1) Bare learning N/A SolarTech SolarTech 0.09 1.50
(B1) External learning N/A Univer SolarTech 0.34 3.22
(C1) Fine-tuned learning Univer SolarTech SolarTech 0.06 0.94

Afterwards, the same model and scenarios were tested in the Univer context. The bare
learning model was implemented with training and validation on the Univer dataset.
For the external learning scenario, the model was trained on SolarTech and validated on
Univer. And finally, for the fine-tuned scenario, the model previously trained on SolarTech
was optimised and validated on the Univer dataset. Table 3 shows the results of the
experiment in this context using the same error metrics as in the previous context (NMSE
and NMAE).
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Table 3. Domain combinations and error metrics in the Univer context.

Context Domain Combination Pre-Training Training Validation NMSE (%) NMAE (%)

Univer
(A2) Bare learning N/A Univer Univer 0.15 1.93
(B2) External learning N/A SolarTech Univer 5.81 3.56
(C2) Fine-tuned learning SolarTech Univer Univer 0.10 1.63

To have a sense of the performance of the model in the different scenarios when trying
to nowcast the output power generation for each of the systems, the denormalized RMSE
(Root Mean Square Error) and MAE (Mean Average Error) error metrics are shown in
Table 4 together with the maximum value of the Output Power seen in the datasets for
each domain.

Table 4. Domain combinations and total error.

Context Domain Combination Pre-Training Training Validation P Max (W) RMSE (W) MAE (W)

SolarTech
(A1) Bare learning N/A SolarTech SolarTech

242.68
7.28 3.64

(B1) External learning N/A Univer SolarTech 14.15 7.81
(C1) Fine-tuned learning Univer SolarTech SolarTech 5.94 2.28

Univer
(A2) Bare learning N/A Univer Univer

28,472.30
1102.73 549.52

(B2) External learning N/A SolarTech Univer 6862.95 1013.61
(C2) Fine-tuned learning SolarTech Univer Univer 900.37 464.10

Along with the error metrics described so far in this section, time metrics were captured
as well for all the combinations to assess the performance of the model in a transfer learning
from a time complexity perspective. First, in order to evaluate the improvement in the
learning rate of a fine-tuned model, we have used the loss function during the training
and validation of the model to compare the number of epochs needed to achieve the same
performance in different scenarios. The comparison has been done for the bare learning and
fine-tuned scenarios on SolarTech, setting two thresholds of different orders of magnitude
of the loss function NMSE < 1% and NMSE < 0.1%, and comparing the learning time in
number of epochs (number of passes of the model over the data) for the two scenarios.
In Table 5 we present the results of this experiment.

Table 5. Domain combinations and learning rate in the SolarTech context.

Context Domain Combination Pre-Training Training Validation NMSE < 1 (Epoch) NMSE < 0.1 (Epoch)

SolarTech (A1) Bare learning N/A SolarTech SolarTech 7 39
(C1) Fine-tuned learning Univer SolarTech SolarTech 1 7

In order to provide a visual representation of the differences in learning rates, Figure 5
shows the improvement of the error metric NMSE over the number of epochs, during train-
ing and validation of the model for both bare learning and fine-tuned learning combinations
in the SolarTech context.

Also from a time complexity perspective, the decrease in the learning time of the
model was measured, comparing the total training time in seconds for the bare learning
and fine-tuned learning scenarios in the SolarTech context. Table 6 shows the results of
this comparison.
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Figure 5. Model training and validation history showing the loss function (MSE) for bare learning
and fine-tuned scenarios in the SolarTech context.

Table 6. Domain combinations and learning time in the SolarTech context.

Context Domain Combination Pre-Training Training Validation Training Time (s)

SolarTech (A1) Bare learning N/A SolarTech SolarTech 81.82
(C1) Fine-tuned learning Univer SolarTech SolarTech 40.43

Finally, to broaden the understanding of the transfer learning capability of the deep
learning model, and in order to assess to what extent the knowledge can be transferred
to more disparate contexts, a third dataset was also evaluated as part of this work, which
presented very different conditions to the two homogeneous datasets used for the previous
experiments:

• It is a dataset generated by a PV plant in India, a different climate region from the two
previous PV systems (Spain and Italy).

• The dataset spans 31 days across May and June, as opposed to the six month length of
the Univer and SolarTech datasets.

• The data collection for the PV input and output signals has a frequency of 15 min, so
the segmentation 135 min window

The results of the experiment in this third context are presented in Table 7, which
shows the normalised error metrics, and Table 8, which shows the denormalized RMSE
(Root Mean Square Error) and MAE (Mean Average Error) error metrics together with the
maximum value of the Output Power.

Table 7. Domain combinations and error metrics in the India context.

Context Domain Combination Pre-Training Training Validation NMSE (%) NMAE (%)

India
(A3) Bare learning N/A India India 0.34 3.08
(B3) External learning N/A Univer India 0.45 3.67
(C3) Fine-tuned learning Univer India India 0.11 1.68

Table 8. Error metrics for different contexts.

Context Domain Combination Pre-Training Training Validation P Max (W) RMSE (W) MAE (W)

India
(A3) Bare learning N/A India India

14,312.71
843.50 440.41

(B3) External learning N/A Univer India 910.23 483.28
(C3) Fine-tuned learning Univer India India 484.06 241.00

3.1. Discussion

In this work we describe the reuse of deep learning models through transfer learning.
In order to evaluate the nowcasting capabilities of a neural network model in unseen
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domains, we have tested the model on a combination of datasets from two different power
plants (Univer PV System in the University of Jaen, Spain, and SolarTech Lab PV system in
the Polytechnic University of Milan).

It is relevant to highlight that the deep learning model was reused across domains
without having to change any configuration or parameters of the model itself specific for
each of the domains. This can be considered one of the main advantages of this approach
compared to the traditional monitoring models, which typically rely on the configuration
of the model with the physical parameters of the PV system.

The results of the experiment show that the CNN+LSTM model performs well in
the external learning scenario, with the ability to nowcast the output power generation of
the SolarTech Lab system with a small margin of error after being trained on the Univer
dataset. This margin of error was only 0.25 percentage points larger than the baseline error
calculated with the model trained on the SolarTech system. The best results were obtained
when applying the fine-tuned learning. The model was pretrained on the Univer dataset
and then optimized on local data, resulting in nowcasting the output power generation of
the SolarTech system with the smallest margin of error of all the combinations included
in the experiment. This margin of error was 0.03 percentage points smaller than the
baseline error.

In the Univer context, we obtained a larger margin of error for the model in the external
learning scenario (model trained on the SolarTech dataset and validated on Univer), with a
5.66 percentage point increase in normalised mean square error. In the fine-tuned learning
scenario, the margin of error was smaller than the margin calculated in the bare learning
scenario, with a normalised mean square error 0.05 percentage points smaller than the
baseline error.

We observed an improvement in the learning rate and learning time as well in this
fine-tuned learning scenario. It required only one epoch with the pretrained model but
7 epochs with the bare model to achieve the same performance of NMAE < 1%. To get to a
smaller error metric NMAE < 0.1%, the fine-tuned model only needed 7 epochs compared
to the 39 in the bare learning scenario. In terms of total learning time, it took only 40.43 s
to train the model in the fine-tuned learning scenario compared to 81.82 s in the bare
learning scenario.

3.2. Limitations of the Work

The results described in this work have shown an improvement in the use of transfer
learning in nowcasting output energy generation of PV systems. However, some limitations,
which could be faced in ongoing works, are noted:

• The potential optimization between extreme different climates could worsen by trans-
fer learning. Learning from the Mediterranean (Spain) and optimizing with India
has provided an improvement of the performance, but deeper data and evaluation is
required to evaluate the impact of regions.

• Aggregating and segmenting the raw data in 10 min granularity is key to homogeniz-
ing the data. Datasets with a higher collection rate could not be evaluated.

• Sensoring of ambient PV plants in three datasets have been developed with high
quality architectures and devices, so the results and patterns seems stable between
them. Differences in precision from data collected by low resolution devices are hard
to be optimized by transfer learning.

4. Conclusions and Future Works

In this work we have evaluated the transfer learning of a deep learning model, built
with convolutional and long short-term memory layers, for the purpose of nowcasting
photovoltaic power generation in two different domains: the Univer PV system in the
University of Jaen and the SolarTech Lab in the Polytechnic University of Milan. The results
highlight the strength of this approach when working with heterogeneous sources. Using
the bare learning scenario from each of the domains as the baseline, a larger error margin
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is measured in the external learning scenario, i.e., training the model on one domain and
validating the model on the other one. However, the model showed better performance in
the fine-tuned learning scenario than the baseline, obtaining a smaller error margin when a
pretrained model from a different context is used to run the training and validation in the
local context. Finally, an improvement is also observed when measuring the learning time
of the fine-tuned learning model compared to the bare learning model.

In ongoing works, we will create a new architecture to include transfer learning in real
time systems on demand [63]. To this end, we will include a clustering method to estimate
seasonality for long time periods and select clusters of patterns, where the nowcasting
models are uploaded based on the the weather context for each day.

Modern information and communication technologies, such as deep learning, are
playing a key role in policy design, decision-making, implementation and final productive
services, i.e., policy aimed at boosting self-consumption, smart cities, cybersecurity, etc.
This may be another task for future work.

Author Contributions: Conceptualization, G.A.-O., G.A. and J.M.-Q.; machine learning model, G.A.-O.
and J.M.-Q.; validation, formal analysis, investigation, supervision, all authors. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset of Univer and SolarTech, with the samples collected,
segmentation and models developed in this work are available in the following repository https:
//github.com/galmonacid/opera-tl (last accessed on 20 December 2021), which includes the imple-
mentation of the proposed methods with Python and Keras.

Acknowledgments: This contribution has been supported by the Cátedra ELAND for Renewable
Energies of the University of Jaén, by the Spanish government by means of the project RTI2018-
098979-A-I00. This work has been partially funded by “La Conselleria de Innovación, Universidades,
Ciencia y Sociedad Digital”, under the project “Development of an architecture based on machine
learning and data mining techniques for the prediction of indicators in the diagnosis and intervention
of autism spectrum disorder. AICO/2020/117”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PV Photovoltaic
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
DL Deep Learning
NMSE Normalised Mean Square Error
NMAE Normalised Mean Absolute Error

References
1. Europe, S.P. Global Market Outlook For Solar Power/2021–2025; Technology Report; SolarPower Europe: Brussels, Belgium, 2021.
2. Feng, C.; Liu, Y.; Zhang, J. A taxonomical review on recent artificial intelligence applications to PV integration into power grids.

Int. J. Electr. Power Energy Syst. 2021, 132, 107176. [CrossRef]
3. Sundararajan, A.; Hernandez, A.S.; Sarwat, A.I. Adapting big data standards, maturity models to smart grid distributed

generation: Critical review. IET Smart Grid 2020, 3, 508–519. [CrossRef]
4. Mansouri, M.; Trabelsi, M.; Nounou, H.; Nounou, M. Deep learning based fault diagnosis of photovoltaic systems: A comprehen-

sive review and enhancement prospects. IEEE Access 2021. [CrossRef]
5. Mellit, A.; Massi Pavan, A.; Ogliari, E.; Leva, S.; Lughi, V. Advanced methods for photovoltaic output power forecasting: A

review. Appl. Sci. 2020, 10, 487. [CrossRef]
6. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,

and Techniques; IGI Global: Pennsylvania, PA, USA, 2010; pp. 242–264.
7. Pan, S.J. Transfer learning. Learning 2020, 21, 1–2.

https://github.com/galmonacid/opera-tl
https://github.com/galmonacid/opera-tl
http://doi.org/10.1016/j.ijepes.2021.107176
http://dx.doi.org/10.1049/iet-stg.2019.0298
http://dx.doi.org/10.1109/ACCESS.2021.3110947
http://dx.doi.org/10.3390/app10020487


Sustainability 2022, 14, 3092 13 of 15

8. Polo-Rodriguez, A.; Cruciani, F.; Nugent, C.D.; Medina, J. Domain Adaptation of Binary Sensors in Smart Environments Through
Activity Alignment. IEEE Access 2020, 8, 228804–228817. [CrossRef]

9. Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887.
10. Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. Adv. Neural Inf. Process. Syst. 1997, 9, 473–479.
11. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.

2019, 119, 3–11. [CrossRef]
12. Qiu, Z.; Yao, T.; Mei, T. Learning spatio-temporal representation with pseudo-3d residual networks. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5533–5541.
13. Andina, D.; Alvarez-Vellisco, A.; Aleksandar, J.; Fombellida, J. Artificial metaplasticity can improve artificial neural networks

learning. Intell. Autom. Soft Comput. 2009, 15, 683–696.
14. Erhan, D.; Courville, A.; Bengio, Y.; Vincent, P. Why does unsupervised pre-training help deep learning? In Proceedings of

the Thirteenth International Conference on Artificial Intelligence and Statistics—JMLR Workshop and Conference Proceedings,
Sardinia, Italy, 13–15 May 2010; pp. 201–208.

15. Almonacid-Olleros, G.; Almonacid, G.; Fernandez-Carrasco, J.I.; Espinilla Estevez, M.; Medina Quero, J. A new architecture based
on IoT and machine learning paradigms in photovoltaic systems to nowcast output energy. Sensors 2020, 20, 4224. [CrossRef]
[PubMed]

16. Fuentes, M.; Nofuentes, G.; Aguilera, J.; Talavera, D.; Castro, M. Application and validation of algebraic methods to predict the
behaviour of crystalline silicon PV modules in Mediterranean climates. Sol. Energy 2007, 81, 1396–1408. [CrossRef]

17. Rosas-Flores, J.A.; Zenón-Olvera, E.; Gálvez, D.M. Potential energy saving in urban and rural households of Mexico with solar
photovoltaic systems using geographical information system. Renew. Sustain. Energy Rev. 2019, 116, 109412. [CrossRef]

18. Pearce, J.M.; Sommerfeldt, N. Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern
Climates of the US and Canada. Energies 2021, 14, 834. [CrossRef]

19. Ellabban, O.; Alassi, A. Integrated Economic Adoption Model for residential grid-connected photovoltaic systems: An Australian
case study. Energy Rep. 2019, 5, 310–326. [CrossRef]

20. Ahmad Ludin, N.; Ahmad Affandi, N.A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M.A.; Sopian, K.; Jusoh, S. Environmental
impact and levelised cost of energy analysis of solar photovoltaic systems in selected Asia Pacific region: A cradle-to-grave
approach. Sustainability 2021, 13, 396. [CrossRef]

21. Thebault, M.; Gaillard, L. Optimization of the integration of photovoltaic systems on buildings for self-consumption—Case study
in France. City Environ. Interact. 2021, 10, 100057. [CrossRef]

22. Mellit, A.; Kalogirou, S.A. A survey on the application of artificial intelligence techniques for photovoltaic systems. In McEvoy’s
Handbook of Photovoltaics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 735–761.

23. Da Silva, P.P.; Dantas, G.; Pereira, G.I.; Câmara, L.; De Castro, N.J. Photovoltaic distributed generation–An international review on
diffusion, support policies, and electricity sector regulatory adaptation. Renew. Sustain. Energy Rev. 2019, 103, 30–39. [CrossRef]

24. Obi, M.; Bass, R. Trends and challenges of grid-connected photovoltaic systems–A review. Renew. Sustain. Energy Rev. 2016,
58, 1082–1094. [CrossRef]

25. Arfeen, Z.A.; Khairuddin, A.B.; Larik, R.M.; Saeed, M.S. Control of distributed generation systems for microgrid applications: A
technological review. Int. Trans. Electr. Energy Syst. 2019, 29, e12072. [CrossRef]

26. Emmanuel, M.; Rayudu, R. Evolution of dispatchable photovoltaic system integration with the electric power network for smart
grid applications: A review. Renew. Sustain. Energy Rev. 2017, 67, 207–224. [CrossRef]

27. Aleem, S.A.; Hussain, S.; Ustun, T.S. A review of strategies to increase PV penetration level in smart grids. Energies 2020, 13, 636.
[CrossRef]

28. Koohi-Kamali, S.; Rahim, N.A.; Mokhlis, H.; Tyagi, V.V. Photovoltaic electricity generator dynamic modeling methods for smart
grid applications: A review. Renew. Sustain. Energy Rev. 2016, 57, 131–172. [CrossRef]

29. Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94.
[CrossRef]

30. Castillo-Cagigal, M.; Caamaño-Martín, E.; Matallanas, E.; Masa-Bote, D.; Gutiérrez, Á.; Monasterio-Huelin, F.; Jiménez-Leube,
J. PV self-consumption optimization with storage and Active DSM for the residential sector. Sol. Energy 2011, 85, 2338–2348.
[CrossRef]

31. Fernández, J.M.R.; Payán, M.B.; Santos, J.M.R. Profitability of household photovoltaic self-consumption in Spain. J. Clean. Prod.
2021, 279, 123439. [CrossRef]

32. Hassan, Q. Evaluate the adequacy of self-consumption for sizing photovoltaic system. Energy Rep. 2022, 8, 239–254. [CrossRef]
33. Fernandez-Fuentes, M.H.; Eras-Almeida, A.A.; Egido-Aguilera, M.A. Characterization of technological innovations in photo-

voltaic rural electrification, based on the experiences of Bolivia, Peru, and Argentina: Third generation solar home systems.
Sustainability 2021, 13, 3032. [CrossRef]

34. Ridha, H.M.; Gomes, C.; Hizam, H.; Ahmadipour, M.; Heidari, A.A.; Chen, H. Multi-objective optimization and multi-criteria
decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renew. Sustain. Energy
Rev. 2021, 135, 110202. [CrossRef]

35. Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer
load profiles. Appl. Energy 2017, 185, 2019–2025. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3046181
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.3390/s20154224
http://www.ncbi.nlm.nih.gov/pubmed/32751293
http://dx.doi.org/10.1016/j.solener.2006.12.008
http://dx.doi.org/10.1016/j.rser.2019.109412
http://dx.doi.org/10.3390/en14040834
http://dx.doi.org/10.1016/j.egyr.2019.02.004
http://dx.doi.org/10.3390/su13010396
http://dx.doi.org/10.1016/j.cacint.2021.100057
http://dx.doi.org/10.1016/j.rser.2018.12.028
http://dx.doi.org/10.1016/j.rser.2015.12.289
http://dx.doi.org/10.1002/2050-7038.12072
http://dx.doi.org/10.1016/j.rser.2016.09.010
http://dx.doi.org/10.3390/en13030636
http://dx.doi.org/10.1016/j.rser.2015.12.137
http://dx.doi.org/10.1016/j.apenergy.2014.12.028
http://dx.doi.org/10.1016/j.solener.2011.06.028
http://dx.doi.org/10.1016/j.jclepro.2020.123439
http://dx.doi.org/10.1016/j.egyr.2021.11.205
http://dx.doi.org/10.3390/su13063032
http://dx.doi.org/10.1016/j.rser.2020.110202
http://dx.doi.org/10.1016/j.apenergy.2015.11.088


Sustainability 2022, 14, 3092 14 of 15

36. Li, Y.; Zhang, X.; Gao, W.; Xu, W.; Wang, Z. Operational performance and grid-support assessment of distributed flexibility
practices among residential prosumers under high PV penetration. Energy 2022, 238, 121824. [CrossRef]

37. Kästel, P.; Gilroy-Scott, B. Economics of pooling small local electricity prosumers—LCOE & self-consumption. Renew. Sustain.
Energy Rev. 2015, 51, 718–729.

38. Seo, H.; Suh, J. A review of smartphone applications for solar photovoltaic use: Current status, limitations, and future perspectives.
Appl. Sci. 2021, 11, 2178. [CrossRef]

39. Bermejo, J.F.; Fernández, J.F.G.; Polo, F.O.; Márquez, A.C. A Review of the Use of Artificial Neural Networks Models for Energy
and Reliability Prediction. A Study for the Solar PV, Hydraulic and Wind Energy Sources. Appl. Sci. 2019, 9, 1844. [CrossRef]

40. Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011.
41. De la Parra, I.; Muñoz, M.; Lorenzo, E.; García, M.; Marcos, J.; Martínez-Moreno, F. PV performance modelling: A review in the

light of quality assurance for large PV plants. Renew. Sustain. Energy Rev. 2017, 78, 780–797. [CrossRef]
42. Almonacid-Olleros, G.; Almonacid, G.; Fernández-Carrasco, J.; Quero, J.M. Opera. DL: Deep Learning Modelling for Photovoltaic

System Monitoring. In Proceedings of the Multidisciplinary Digital Publishing Institute Proceedings, Toledo, Spain, 2–5 December
2019; Volume 31, p. 50.

43. Rajagukguk, R.A.; Ramadhan, R.A.; Lee, H.J. A review on deep learning models for forecasting time series data of solar irradiance
and photovoltaic power. Energies 2020, 13, 6623. [CrossRef]

44. Massaoudi, M.; Chihi, I.; Abu-Rub, H.; Refaat, S.S.; Oueslati, F.S. Convergence of photovoltaic power forecasting and deep
learning: State-of-art review. IEEE Access 2021. [CrossRef]

45. Medina-Quero, J.M.; Medina, M.Á.L.; Hidalgo, A.S.; Espinilla, M. Predicting the urgency demand of copd patients from
environmental sensors within smart cities with high-environmental sensitivity. IEEE Access 2018, 6, 25081–25089. [CrossRef]

46. Medina-Quero, J.; Zhang, S.; Nugent, C.; Espinilla, M. Ensemble classifier of long short-term memory with fuzzy temporal
windows on binary sensors for activity recognition. Expert Syst. Appl. 2018, 114, 441–453. [CrossRef]

47. Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy
Grids Netw. 2016, 6, 91–99. [CrossRef]

48. Wang, Y.; Chen, Y.; Liu, H.; Ma, X.; Su, X.; Liu, Q. Day-Ahead Photovoltaic Power Forcasting Using Convolutional-LSTM
Networks. In Proceedings of the 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 26–29
March 2021; pp. 917–921.

49. Huang, C.J.; Kuo, P.H. A deep cnn-lstm model for particulate matter (PM2. 5) forecasting in smart cities. Sensors 2018, 18, 2220.
[CrossRef] [PubMed]

50. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
51. Asgarian, A.; Sobhani, P.; Zhang, J.C.; Mihailescu, M.; Sibilia, A.; Ashraf, A.B.; Taati, B. A hybrid instance-based transfer learning

method. arXiv 2018, arXiv:1812.01063.
52. Yao, Y.; Doretto, G. Boosting for transfer learning with multiple sources. In Proceedings of the 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1855–1862.
53. Meir, B.E.; Michaeli, T. Joint auto-encoders: A flexible multi-task learning framework. arXiv 2017, arXiv:1705.10494.
54. Kieffer, B.; Babaie, M.; Kalra, S.; Tizhoosh, H.R. Convolutional neural networks for histopathology image classification: Training

vs. using pre-trained networks. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools
and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6.

55. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Transfer learning for time series classification. In Proceedings of
the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1367–1376.

56. Romeu, P.; Zamora-Martínez, F.; Botella-Rocamora, P.; Pardo, J. Time-series forecasting of indoor temperature using pre-trained
deep neural networks. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2013,
pp. 451–458.

57. Zhou, S.; Zhou, L.; Mao, M.; Xi, X. Transfer learning for photovoltaic power forecasting with long short-term memory neural
network. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea,
19–22 February 2020; pp. 125–132.

58. Mellit, A.; Tina, G.M.; Kalogirou, S.A. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain.
Energy Rev. 2018, 91, 1–17. [CrossRef]

59. Kazem, H.A.; Yousif, J.; Chaichan, M.T.; Al-Waeli, A.H. Experimental and deep learning artificial neural network approach for
evaluating grid-connected photovoltaic systems. Int. J. Energy Res. 2019, 43, 8572–8591. [CrossRef]

60. Mellit, A.; Kalogirou, S. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of
solar photovoltaic systems: Challenges, recommendations and future directions. Renew. Sustain. Energy Rev. 2021, 143, 110889.
[CrossRef]

61. Ding, S.; Yang, Q.; Li, X.; Yan, W.; Ruan, W. Transfer learning based photovoltaic module defect diagnosis using aerial images.
In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8
November 2018; pp. 4245–4250.

http://dx.doi.org/10.1016/j.energy.2021.121824
http://dx.doi.org/10.3390/app11052178
http://dx.doi.org/10.3390/app9091844
http://dx.doi.org/10.1016/j.rser.2017.04.080
http://dx.doi.org/10.3390/en13246623
http://dx.doi.org/10.1109/ACCESS.2021.3117004
http://dx.doi.org/10.1109/ACCESS.2018.2828652
http://dx.doi.org/10.1016/j.eswa.2018.07.068
http://dx.doi.org/10.1016/j.segan.2016.02.005
http://dx.doi.org/10.3390/s18072220
http://www.ncbi.nlm.nih.gov/pubmed/29996546
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1016/j.rser.2018.03.062
http://dx.doi.org/10.1002/er.4855
http://dx.doi.org/10.1016/j.rser.2021.110889


Sustainability 2022, 14, 3092 15 of 15

62. Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Ahmad, A. Automatic detection of photovoltaic module defects in infrared images
with isolated and develop-model transfer deep learning. Sol. Energy 2020, 198, 175–186. [CrossRef]

63. Peirelinck, T.; Kazmi, H.; Mbuwir, B.V.; Hermans, C.; Spiessens, F.; Suykens, J.; Deconinck, G. Transfer learning in demand
response: A review of algorithms for data-efficient modelling and control. Energy AI 2022, 7, 100126. [CrossRef]

http://dx.doi.org/10.1016/j.solener.2020.01.055
http://dx.doi.org/10.1016/j.egyai.2021.100126

	Introduction
	Related Works

	Methodology
	Data Collection of PV Systems from Heterogeneous Sources
	Segmentation to Nowcast Power Generation
	Transferring Knowledge by Weight Initialization and Fine-Tuned Learning between Domains

	Results
	Discussion
	Limitations of the Work

	Conclusions and Future Works
	References

