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5 Technical Institute, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
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Abstract: The aim of this paper is to develop neural models enabling the determination of biomechan-
ical parameters for giant miscanthus stems. The static three-point bending test is used to determine
the bending strength parameters of the miscanthus stem. In this study, we assume the modulus
of elasticity bending and maximum stress in bending as the dependent variables. As independent
variables (inputs of the neural network) we assume water content, internode number, maximum
bending force value and dimensions characterizing the cross-section of miscanthus stem: maximum
and minimum stem diameter and stem wall thickness. The four developed neural models, enabling
the determination of the value of the modulus of elasticity in bending and the maximum stress in
bending, demonstrate sufficient and even very high accuracy. The neural networks have an average
relative error of 2.18%, 2.21%, 3.24% and 0.18% for all data subsets, respectively. The results of the
sensitivity analysis confirmed that all input variables are important for the accuracy of the developed
neural models—correct semantic models.

Keywords: biomechanical parameters; miscanthus stem; modulus of elasticity; maximum stress;
bending test; multilayer perceptron

1. Introduction

At the UN Sustainable Development Summit in 2015, the 2030 Agenda for Sustainable
Development with the 17 Sustainable Development Goals was adopted. Goal number
7—“Clean and affordable energy” is related to activities for the development of sustainable
and modern energy—renewable energy sources.

One of the very important applications of plant (lignocellulosic) biomass is its use as a
renewable energy source. The percentage share of cellulose, hemicellulose and lignin in
a given type of biomass may vary, which significantly affects its energy parameters and
the possibility of using it for the production of biofuels [1]. Research is carried out on
woody [2–4] and herbaceous biomass [5], but also pomaces, fruit stones, kernel shells and
other residuals [6–9], and recently on so-called water biomass (algae) [10,11].

The giant miscanthus (miscanthus × giganteus) is one of the most productive plant
species, which, thanks to the fast and abundant biomass production, can provide the
required amounts of the raw material. It is characterized by a high biomass production
potential, which means that it is used to establish industrial biomass plantations throughout
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Europe and the USA [12–15]. Giant miscanthus can be successfully used in the production
of compact solid biofuels [16–19], biogas and bioethanol [20–22]. Miscanthus’ biomass is
used in the production of technical papers, cardboard, packaging plywood or fibers for
lining packaging. It can also be a substitute for plastics in the production of packaging [23].
Studies are carried out on miscanthus fibers to develop renewable construction materials—
lightweight concrete [24].

The necessity to determine the mechanical properties of materials of plant origin is
crucial in the process of designing specific machines for their processing, as well as in the
selection of optimal conditions for their operation. It is difficult because the mechanical
properties of these types of materials change depending on the environmental conditions
(e.g., water content). The results of research on the biomechanical properties of industrial
plant stems are used in designing better and more efficient biomass processing equipment
(e.g., harvesting and grinding machines) [25–32]. Biomechanical properties can also be
used as a selection criterion in a plant breeding program—assessing and adjusting stem
mechanical traits may improve stem lodging resistance [33].

Typical laboratory tests aimed at determining the biomechanical properties of plant
stems include: bending tests [27–29,33–36], compression tests along or across the
stem [36,37], tensile tests [27,32,36], shearing tests [27,29,36] and cutting tests [26–28].

In the case of bending, the typical strength parameters determined in the studies
of stems of various plants are the modulus of elasticity for bending [27,29,34,35,38] and
maximum stress in bending [29,36,38], while the results of the studies conducted so far
clearly confirm the influence of the water content and the internode on the values of these
strength parameters [27,29,34,35].

Artificial neural network (ANN) is a robust data-modeling tool that is widely used
in many applications, such as regression, classification and approximation-based learning
processes. Implementation of artificial neural networks for different research proved to be
very efficient and accurate. ANNs are characterized by very high accuracy in comparison
with other models in certain applications [39–45].

ANNs are used in various scientific fields, including bioinformatics, biochemistry,
medicine, meteorology, economic sciences, robotics, aquaculture, food security and cli-
matology. An example of that is the use of ANNs to approximate the gas volumetric
percentage in a gas-oil two phase flow [46]. Multilayer perceptron type ANNs have been
used as well to enhance the spatial resolution in detector modules constituting the PET
(positron emission tomography) scanner [47]. Artificial neural networks are also used in
agriculture, agrophysics or agricultural engineering [16,40,41,43–45,48–56].

Many ANN applications are related to renewable energy sources (different uses of
ANN models for better energy production predictions). Research addresses, for exam-
ple, the use of ANNs to forecast solar radiation (the main problem for the best use of
photovoltaic systems) and wind power forecasting [57–61].

In the field of engineering, ANN was used, among others, to detect accidental damage
to the support bearings on the assembly conveyor [62] and to predict tool wear and surface
roughness during turning [63]. Several papers have used ANNs to predict paper properties
in order to achieve a high-performance process [64].

There are many uses of artificial neural networks in agriculture [49]. The multilayer
perceptron neural network was developed to predict the normalized shear strength of
organic soils without drainage [65]. ANNs are also employed to control and predict vari-
ables in agricultural drying processes, e.g., to identify the dynamics of said processes for
tomato, tobacco and willow woodchips [45,66]. Feed-forward artificial neural networks
were used to predict energy consumption in closed production plant systems [67]. One
very important application area of artificial neural networks in agriculture is the modeling
of the greenhouse environment (the greenhouse system is non-linear and variable with
time) [68]. Many greenhouse environment predictive models [49,69–73], as well as green-
house environment and greenhouse energy consumption control systems [74–76], have
been developed.
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The diversification of artificial neural networks applications is large, demonstrating the
importance of this tool. They achieve high accuracy, are computationally efficient, and require
no knowledge of the physical relationships between inputs and outputs [16,42–45,49,77–81].

The aim of the paper was to develop neural models enabling the determination of
biomechanical parameters for giant miscanthus stems.

In the literature no information has been found on the creation of neural models for
determining biomechanical parameters of plant stems, so our approach is innovative.

2. Materials and Methods
2.1. Gathering Experimental Data

The plant material used for the research (miscanthus stalks) was harvested in February
and March. Samples were taken from individual internodes of miscanthus stalks (Figure 1a),
then, the dimensions of the cross-section for each sample were determined (Figure 1b)
and subjected to three-point bending strength tests (Figure 1c). Three-point bending tests
were carried out in the laboratory of the Department of Mechanical Engineering and
Agrophysics. The water content of miscanthus stalks was determined with the drying
method, independently for each internode.

The static three-point bending test was used to determine the bending strength param-
eters of the miscanthus stem. The elliptical shape of the miscanthus stalk cross-section was
adopted.

The modulus of elasticity for bending (MOEbend) and maximum stress in bending
(σbend) for miscanthus stem was calculated from the equations:

MOEbend =
∆Fbend·L3

48·Imajor·∆f
=

(Fbend2 − Fbend1)·L3

12·π·(f2 − f1)·
(
a3·b − a3

1·b1
) (1)

σbend max =
Mbendmax·a

Imajor
=

Fbend·L·a
π·
(
a3·b − a3

1·b1
) (2)

where:

MOEbend—modulus of elasticity bending (MPa),
∆Fbend—change in the value of the bending force in the range of the linear characteristic
(N),
L—distance between supports (mm),
Imajor—moment of inertia around neutral axis (ellipse major axis) (mm4),
∆f—the deflection of the stem in the range of the linear characteristic (mm),
Fbend1—value of the initial bending force (N),
Fbend2—value of the main bending force (N),
f1—initial deflection of the stem (mm),
f2—stem deflection for Fbend2 (mm),
a—the length of the semi-minor axis of the ellipse (mm),
b—the length of the semi-major axis of the ellipse (mm),
a1—the semi-minor axis of the ellipse a minus the stalk wall thickness g (mm),
b1—the semi-major axis of the ellipse b minus the stalk wall thickness g (mm).
σbend max—maximum stress in bending (MPa),
Mbendmax—maximum bending moment about neutral axis (N·mm),
Imajor—moment of inertia around neutral axis (ellipse major axis), (mm4),
Fbend—maximum bending force value (N).

The static three-point bending tests of the stalks were performed in replicates of 15 for
each of the five internodes and for each of the two humidities.
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Figure 1. Diagram of the performed research: (a) Scheme of miscanthus stem and internodes from 
which the samples were taken; (b) stand for determining the characteristic dimensions of samples: 
Dmin—minimum stalk diameter, Dmax—maximum stalk diameter and g—stalk wall thickness; (c) a 
scheme of a three-point bending test; (d) development of artificial neural networks. 
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Figure 1. Diagram of the performed research: (a) Scheme of miscanthus stem and internodes from
which the samples were taken; (b) stand for determining the characteristic dimensions of samples:
Dmin—minimum stalk diameter, Dmax—maximum stalk diameter and g—stalk wall thickness; (c) a
scheme of a three-point bending test; (d) development of artificial neural networks.
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2.2. Semantic Models Formulation

The creation of an ANN model begins with adopting a semantic–conceptual model.
Such a model should be logically resemble to the theory describing modeled phenomenon
in the form of a system of objects and relations between them.

In the case of models using artificial neural networks, the development of a semantic
model requires the selection of independent variables (network inputs) and dependent
variable or variables (network outputs). If the goal is to determine the value of several
dependent variables, better results are obtained by developing several neural models (one
ANN for each variable) than one model with several outputs.

In this study, we assumed the modulus of elasticity bending and maximum stress in
bending as the dependent variables (biomechanical parameters characterizing the strength
of the miscanthus stem).

As independent variables (inputs of the neural network), we assumed water content
Wcont, internode number NrNod, maximum bending force value Fbend and dimensions
characterizing the cross-section of miscanthus stem: maximum stem diameter Dstem Max,
minimum stem diameter Dstem min and stem wall thickness Thstem wall.

Four semantic models were formulated:

Model A: MOEbend = f (Wcont, NrNod, Dstem Max, Dstem min, Thstem wall), (3)

Model B: σbend = f (Wcont, NrNod, Dstem Max, Dstem min, Thstem wall), (4)

Model C: MOEbend = f (Wcont, NrNod, Dstem Max, Dstem min, Thstem wall, Fbend), (5)

Model D: σbend = f (Wcont, NrNod, Dstem Max, Dstem min, Thstem wall, Fbend), (6)

where:

MOEbend—modulus of elasticity bending (MPa),
σbend—maximum stress in bending (MPa),
Wcont—water content (kgwater·kgdry mass

−1),
NrNod—internode number (-),
Dstem Max—maximum stem diameter (mm),
Dstem min—minimum stem diameter (mm),
Thstem wall—stem wall thickness (mm),
Fbend—maximum bending force value (N).

Semantic models A and B allow one to determine the values of the modulus of elasticity
bending and maximum stress in bending without performing a three-point bending test.
However, an additional variable introduced in models C and D (Fbend—maximum bending
force value) requires an endurance test.

2.3. Selecting Neural Network’s Type and Carrying Out the Process of Learning

In preliminary studies, the accuracy of models using two different types of feed-
forward ANNs—multilayer radial basis function networks and multilayer perceptron
neural networks (MLP) networks were checked. As MLP networks demonstrated much
greater accuracy in further research, only this type of network was used.

The number of neurons in the input and output layers is determined by the number of
inputs and outputs from the neural network. In our research, the number of neurons in
the input layer was 5 (for models A and B) and 6 (for models C and D), while there was
1 neuron in the output layer. The number of neurons in the hidden layer was changed from
3 to 11 in the course of a repeated process of network learning.

The development of neural models was performed using the specialized software
Statistica Neural Networks (Dell Inc. (2016). Dell Statistica (data analysis software system),
version 13, StatSoft, Inc., Tulsa, OK, USA). To obtain as accurate models as possible, we
applied the procedure of multiple repeats using the function “Automatic Designer”. Such



Sustainability 2022, 14, 3062 6 of 26

a procedure allows for obtaining accurate neural models, as the ANN learning process is
stochastic.

For each of the four semantic models (Equations (3)–(6)), 100 ANNs with different
architectures were developed, with the 10 most accurate networks for each of the four
semantic models retained for further analysis.

The entire data set obtained from the measurements, consisting of 1050 patterns
(7 water content, 10 internodes and 15 repetitions for each Wcont value and each internode)
was randomly divided into learning, testing and validation subsets.

The learning subset is used to create neural models in the ANNs’ learning process.
The other two subsets are not used in the learning process. The test subset is used to
select the best ANNs, while the validation subset is used to assess the ability to generalize
the acquired knowledge by the ANN—it allows one to assess the accuracy of the neural
network for completely new data.

The division was carried out for groups of measurements—for the individual values
of Wcont and NrNod (Figure 2), assuming that 70% are learning subset, 15% testing subset
and 15% validation subset:

• learning subset: Wcont = 0.219 (NrNod = 1, 2, 4, 7, 9); Wcont = 0.226 (NrNod = 1, 2, 4,
5, 6, 8, 9); Wcont= 0.298 (NrNod = 1, 4, 5, 6, 7, 8, 10); Wcont = 0.388 (NrNod = 1, 2, 3, 4,
5, 7, 8, 9, 10); Wcont = 0.412 (NrNod = 1, 2, 3, 6, 8, 9); Wcont = 0.470 (NrNod = 1, 2, 3, 5,
6, 8, 9, 10); Wcont = 0.481 (NrNod = 1, 2, 3, 5, 6, 8, 9, 10);

• testing subset: Wcont = 0.219 (NrNod = 3, 6, 8); Wcont = 0.226 (NrNod = 3); Wcont = 0.388
(NrNod = 6); Wcont = 0.412 (NrNod = 4, 5, 7); Wcont = 0.470 (NrNod = 4, 7);

• validation subset: Wcont = 0.219 (NrNod = 5); Wcont = 0.226 (NrNod = 7, 10); Wcont
= 0.298 (NrNod = 2, 3, 9); Wcont = 0.412 (NrNod = 10); Wcont = 0.481 (NrNod = 4, 7).
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validation subset.

In the learning process, four different activation functions were used: linear, logistic,
hyperbolic tangent and exponential. The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algo-
rithm was used in the learning process. The BFGS algotithm is a quasi-Newton optimization
method, which provides good convergence and is the most recommended technique for
training neural networks [82–84].

2.4. Choosing and Assessing the Best Neural Models

As the criterion for selecting the best ANN, the value of root mean-square error (RMSE)
was selected for testing the data subset, independently for the four adopted semantic
models, calculated according to the formula:

RMSE =

√
1
n

n

∑
i=1

(YME,i − YANN,i)
2 (7)
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where:

RMSE—root mean-square error (MPa),
YME,i—measured value of output (MPa),
YANN,i—calculated by ANN value of output (MPa),
n—number of observations (-).

RSME is a commonly used statistical error to evaluate the model’s
performance [54,73,75,85].

For the analysis of selected neural models, the mean absolute percentage error (MAPE)
was used:

MAPE =
1
n

n

∑
i=1

∣∣∣∣YME,i − YANN,i

YME,i

∣∣∣∣·100% (8)

where:

MAPE—mean absolute percentage error (%),
| . . . |—absolute value (-).
YME,i—measured value of output (MPa),
YANN,i—calculated by ANN value of output (MPa),
n—number of observations (-).

In order to evaluate the assumed independent variables in the semantic models, a
sensitivity analysis was performed for selected neural models. Sensitivity analysis, based
on the value of the error quotient, allows one to determine which variables in the model
are important for its accuracy. The greater the value of this quotient, the more important
the input field is for the accuracy of the model.

3. Results

Figures 3–6 summarize the RMSE values for all developed neural networks for the
testing subsets. Based on these values, the best neural networks were selected. RMSE
values for all subsets of data (learning, testing and validation) are provided in Appendix A
(Figures A1–A4).
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with 6 inputs) for the testing data subset.

For the MOEbend variable, for the testing subset, the smallest RMSE error
value = 78 MPa was calculated for the annA05 MLP 5-11-1 neural network (Figure 3).
For σbend, the smallest error for the testing subset (RMSE = 3.9 MPa) was calculated for the
annB01 MLP 5-11-1 network (Figure 4). For the neural networks developed in accordance
with the C semantic model, the lowest RMSE value = 77 MPa for the testing subset was
obtained for annC09 MLP 6-7-1 (Figure 5). The developed neural networks in accordance
with the semantic model D, which allow for the determination of σbend, achieved very high
accuracy. The minimum RMSE error value = 0.20 MPa (for the testing subset) had annD03
MLP 6-10-1 (Figure 6). The above neural networks were selected as the best and subjected
to further analysis.
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The sensitivity analysis results for selected neural networks annA05, annB01, annC09
and annD03 are presented in Tables 1 and 2 (for validation subset). Error ratio values
(greater than 1) indicate that all adopted semantic models A, B, C and D are correct.
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Table 1. Sensitivity analysis for selected neural models annA05 and annB051 for validation data
subset.

Dependent Variable
ANN Model

Independent Variables (ANN Inputs)

Wcont * NrNod * Dstem Max * Dstem min * Thstem wall *

MOEbend
annA05

(MLP 5-11-1)

Error quotient 4.3 1.8 2.6 8.3 6.5
rank 3 5 4 1 2

σbend
annB01

(MLP 5-11-1)

Error quotient 8.7 4.7 6.0 8.9 19.7
rank 3 5 4 2 1

* Wcont—water content (kgwater·kgdry mass
−1), NrNod—internode numer (-), Dstem Max—maximum stem diameter

(mm), Dstem min—minimum stem diameter (mm) and Thstem wall—stem wall thickness (mm).

Table 2. Sensitivity analysis for selected neural models, annC09 and annD03, for the validation data
subset.

Dependent
Variable

ANN Model

Independent Variables (ANN Inputs)

Wcont * NrNod * Dstem Max * Dstem min * Thstem wall * Fbend Max *

MOEbend
annC09

(MLP 6-7-1)

Error
quotient 2.4 3.1 1.3 5.5 2.2 2.6

rank 4 2 6 1 5 3

σbend
annD03

(MLP 6-10-1)

Error
quotient 3.3 9.7 4826 11,964 7021 29,524

rank 6 5 4 2 3 1

* Wcont—water content (kgwater·kgdry mass
−1), NrNod—internode numer (-), Dstem Max—maximum stem diameter

(mm), Dstem min—minimum stem diameter (mm), Thstem wall—stem wall thickness (mm) and Fbend Max—maximum
bending force value (N).

Table 3 lists the architecture, training algorithm and activation functions of the selected
ANNs.

Table 3. Characteristic of selected neural models.

ANN

Type and
Architecture

of the
Neural

Network

Neuron
Number
in Input

Layer

Liczba
Neuronów
in Hidden

Layer

Liczba
Neuronów
in Ouput

Layer

Learning
Algorithm

Activation
Function

in Hidden
Layer

Activation
Function
in Ouput

Layer

annA05 MLP 5-11-1 5 11 1 BFGS 170 Logistic Exponential
annB01 MLP 5-11-1 5 11 1 BFGS 178 Logistic Exponential
annC09 MLP 6-7-1 6 7 1 BFGS 82 Logistic Exponential
annD03 MLP 6-10-1 6 10 1 BFGS 237 Logistic Linear

BFGS—Broyden-Fletcher-Goldfarb-Shanno algorithm; MLP—multilayer perceptron.

Figures 8 and 9 show the MAPE error values for selected (best) models developed
in accordance with the semantic models A, B, C and D (annA05, annC09, annB01 and
annD03), for validation subsets. MAPE errors were calculated for individual measurement
conditions—for the set levels of the independent variables Wcont and NrNod.
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Figure 9. MAPE error values for the σbend dependent variable and for the validation data subset,
depending on the internode number (NrNod) and water content (Wcont): (a) for annB01 (MLP
5-11-1); (b) for annD03 (MLP 6-10-1).

In Appendix C (Figures A9–A12), MAPE error values for all data subsets (learning,
testing and validation) were compiled.
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4. Discussion

Based on the conducted sensitivity analysis, it was demonstrated that four semantic
models were correctly adopted—all input variables are important for the accuracy of
selected neural models (annA05, annB01, annC09 and annD03).

For the annA05 network, which enables the determination of modulus of elasticity
in bending (MOEbend) value, the values of the error quotient (Table 1) demonstrated that
the most important inputs of the neural network are the minimum diameter of the stalk
(Dstem min) and the thickness of the stalk wall (Thstem wall).

For the annC09 network (Table 2), the most important inputs of the neural network
are the minimum diameter of the stalk (Dstem min). The internode number (NrNod) came
second, and the maximum bending force (Fbend Max) came third as an additional network
input compared to annA05.

A slightly different ranking of the neural network inputs occurred in the case of the
annB01 model (Table 1), which made it possible to determine the maximum bending stress
(σbend). The most important input (the highest value of the error quotient) is the stalk wall
thickness (Thstem wall), followed by the minimum diameter of the stalk (Dstem min) and the
water content (Wcont).

However, for the annD03 model, in which the maximum bending force was introduced
as an additional network input, the ranking of the inputs is also different (Table 2). The
first is Fbend Max, with 2.5 times the error quotient value compared to the second Dstem min,
and about four times greater than the third Dstem Max. NrNod and Wcont, which are fifth
and sixth in the ranking and have error quotient values several thousand times lower than
Fbend Max.

Such order is understandable because the geometric dimensions of the cross-section of
the stalk, which is a biocomposite pipe with an oval cross-section, determine the value of
the moment of inertia that is used to calculate the modulus of elasticity and the maximum
bending stress (σbend). The value of Fbend Max appears in the formula for calculating σbend.
The significant influence of NrNod on the value of MOEbend may result from the fact that
the internodes are formed by the miscanthus gradually, from the lowest to the highest. On
the other hand, the influence of water content on biomechanical parameters of plants has
been demonstrated in many studies.

Neural networks used to determine MOEbend, developed in accordance with the
semantic models A and C, are characterized by similar accuracy. The MAPE error values
are similar for the validation subset: 2.2–2.4% and 1.9–2.4% (Appendix B: Figures A5
and A7). The MAPE values for the learning subset are at a similar level, and slightly higher
for the testing subset (2.4–2.9%). The best ANNs selected (annA05 and annC09) have almost
identical MAPE error values: 1.8% and 1.9% for the learning subset, 2.4% and 2.5% for the
testing subset, and 2.3% and 2.2% for the validation subset (Figure 7).

Taking into account such small differences in errors between these ANNs and the
fact that with the annC09 model it is necessary to carry out an endurance test in order
to determine the Fbend Max value, the annA05 network is the more appropriate one. To
determine the MOEbend value with similar accuracy, annA05 requires only knowledge
of the dimensions of the stalk cross-sectional dimensions, internode number and water
content.

In the case of neural models used to determine the σbend value (developed in accor-
dance with the B and D semantic models), the differences in the MAPE error values are
much greater.

For B-type neural networks, the MAPE error for the validation subset varies from 3.7%
to 4.7% and for D models it is about 10 times smaller—from 0.20% to 0.44% (Appen-dix
B: Figures A6 and A8). The best-selected models (annB01 and annD03) have MAPE error
values of 2.7% and 0.16% for the learning subset, 3.0% and 0.17% for the testing subset and
4.1% and 0.20% for the validation subset (Figure 7).
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Such significant differences in the error values between the annB01 and annD03
networks mean that the annD03 network is the recommended model for determining the
σbend value, despite the need to perform a bending test.

Figures 8 and 9 enable detailed MAPE error analysis for selected models (annA05,
annC09, annB01 and annD03), for validation data subset. The MAPE values calculated
for individual Wcont and NrNod values (measurement conditions) were summarized—in
groups of 15 repetitions. It can be determined for which water contents and internode
numbers the ANNs are least accurate.

The MAPE errors for MOEbend-determining ANNs (Figure 8) are similar for both
models (annA05 and annC09). In the case of the validation subset, these errors are smaller
for high water contents (Wcont = 0.412 kgwater·kgdry mass

−1 and 0.481 kgwater·kgdry mass
−1).

The maximum MAPE for annC09 (3.7%) is only slightly lower than that for annA05 (4.1%).
The highest value of MAPE for annA05 occurs for NrNod = 3 and Wcont = 0.412

kgwater·kgdry mass
−1 (learning subset) and amounts to 6.4% (Appendix C, Figure A9). In

addition, for annC09, the highest value of MAPE occurs for NrNod = 3 and Wcont = 0.412
kgwater·kgdry mass

−1 and amounts to 6.7% (Appendix C, Figure A11). As there is the same
“measuring point”, it can be concluded that the increase in error is the result of a particularly
large data noise.

The most even distribution of MAPE values occurs for Wcont = 0.388 kgwater·kgdry mass
−1,

for annA05 from 0.7% to 2.6% (Appendix C, Figure A11) and for annC09 from 0.9% to 2.4%
(Appendix C, Figure A11). On the other hand, the least uniform distribution of MAPE
values was found for Wcont = 0.412 kgwater·kgdry mass

−1, for both neural models. The
spread of values is almost identical: for annA05 from 0.8% to 6.4%, and for annC09 from
0.7% to 6.7%.

The above analysis demonstrates that both developed neural models (annA05 and
annC09) are similar in terms of error values for different Wcont and NrNod values. They
are most accurate at Wcont = 0.388 kgwater·kgdry mass

−1, for all internodes.
The MAPE errors for σbend-determining ANNs (Figure 9) are very different for

both models (annB01 and annD03). In the case of the validation set, for annB01, these
errors are smaller for high water contents (Wcont = 0.412 kgwater·kgdry mass

−1 and
0.481 kgwater·kgdry mass

−1). The maximum MAPE for annB01 is 9.2% and the lowest is
1.7% (Figure 9a). For annD03, the MAPE values are much smaller. For the validation set,
the highest value is 0.31% and the lowest 0.13% (Figure 9b).

The highest MAPE value for annB01 occurs for NrNod = 5 and Wcont =
0.219 kgwater·kgdry mass

−1 (validation subset) and amounts to 9.2% (Appendix C,
Figure A10). On the other hand, for annD03, the highest MAPE value occurs for NrNod = 4
and Wcont = 0.470 kgwater·kgdry mass

−1 (testing subset) and is 0.33% (Appendix C,
Figure A12).

The most even distribution of MAPE values occurs for Wcont = 0.470 kgwater·kgdry mass
−1,

for annB01 from 2.2% to 3.7% (Appendix C, Figure A10), and for Wcont = 0.412 kgwater·
kgdry mass

−1, for annD03 from 0.12% to 0.20% (Appendix C, Figure A12). On the other hand,
the least uniform distribution of MAPE values was found for Wcont = 0.219 kgwater·kgdry mass

−1,
for both neural models. The spread of values is: for annB01 from 2.1% to 9.2%, and for
annD03 from 0.08% to 3.1%.

5. Conclusions

The four developed neural models, enabling the determination of the value of the
modulus of elasticity in bending (annA05 and annC09) and the maximum stress in bending
(annB01 and annD03), demonstrate sufficient and even very high accuracy. The neural
networks, annA05, annC09 and annB01, respectively, have an average relative error of
2.18%, 2.21% and 3.24% for all data subsets. On the other hand, the average relative error
for annD03 is an order of magnitude lower and amounts to 0.18%.

The results of the sensitivity analysis confirmed that all input variables are important
for the accuracy of the developed neural models—correct semantic models.
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To determine the MOEbend value, we propose the annA05 neural model, which re-
quires only knowledge of the dimensions of the stalk cross-section, internode number and
water content (the annC09 model is just as accurate but requires a three-point bending test).
However, for the determination of the value of σbend, we propose the neural model annD03,
which is about 18 times more accurate than annB01, although it has an additional input
variable (Fbend obtained from the three-point bending test).

Our further research will be conducted towards increasing the operability of ANNs
models used to determine the biomechanical parameters of miscanthus. We will try to
develop a tool that will reduce the need to carry out labor-intensive strength tests when
determining the MOEbend and σbend values for individual parts of the stem (individual
internodes).
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Figure A9. MAPE error values for the MOEbend dependent variable for annA05 (MLP 5-11-1),
depending on the internode number (NrNod) and water content (Wcont). Testing data: Wcont = 0.219
(NrNod = 3, 6, 8); Wcont = 0.226 (NrNod = 3); Wcont = 0.388 (NrNod = 6); Wcont = 0.412 (NrNod = 4,
5, 7); Wcont = 0.470 (NrNod = 4, 7). Validation data: Wcont = 0.219 (NrNod = 5); Wcont = 0.226
(NrNod = 7, 10); Wcont = 0.298 (NrNod = 2, 3, 9); Wcont = 0.412 (NrNod = 10); Wcont = 0.481
(NrNod = 4, 7). The remaining values not mentioned are the learning data subset.
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on the internode number (NrNod) and water content (Wcont). Testing data: Wcont = 0.219 (NrNod = 3,
6, 8); Wcont = 0.226 (NrNod = 3); Wcont = 0.388 (NrNod = 6); Wcont = 0.412 (NrNod = 4, 5, 7); Wcont
= 0.470 (NrNod = 4, 7). Validation data: Wcont = 0.219 (NrNod = 5); Wcont = 0.226 (NrNod = 7, 10);
Wcont = 0.298 (NrNod = 2, 3, 9); Wcont = 0.412 (NrNod = 10); Wcont = 0.481 (NrNod = 4, 7). The
remaining values not mentioned are the learning data subset.
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on the internode number (NrNod) and water content (Wcont). Testing data: Wcont = 0.219 (NrNod = 3,
6, 8); Wcont = 0.226 (NrNod = 3); Wcont = 0.388 (NrNod = 6); Wcont = 0.412 (NrNod = 4, 5, 7); Wcont
= 0.470 (NrNod = 4, 7). Validation data: Wcont = 0.219 (NrNod = 5); Wcont = 0.226 (NrNod = 7, 10);
Wcont = 0.298 (NrNod = 2, 3, 9); Wcont = 0.412 (NrNod = 10); Wcont = 0.481 (NrNod = 4, 7). The
remaining values not mentioned are the learning data subset.

Table A1. Weights and biases between the input layer and the hidden layer as well as those between
the hidden layer and the output layer for the annA05 neural network.

Weights and Biases between
Input and Hidden Layers

Weights and Biases between
Hidden and Output Layers

Connections Connections

Input
Neuron

Hidden
Neuron Weights Hidden

Neuron
Output
Neuron Weights

Wcont

1

−1.9046

1 MOEbend −2.0160

NrNod 2.4885
Dsteam Max −2.7905
Dstem min 3.1284
Thsteam 3.6997

Bias −4.6094

Wcont

2

1.7757

2 MOEbend −0.3861

NrNod −10.4613
Dsteam Max 3.1509
Dstem min 2.6889
Thsteam 6.5689

Bias 3.5696

Wcont

3

−2.7473

3 MOEbend −0.1412

NrNod −9.5350
Dsteam Max 3.8914
Dstem min −1.6132
Thsteam 9.4627

Bias 2.6229



Sustainability 2022, 14, 3062 21 of 26

Table A1. Cont.

Weights and Biases between
Input and Hidden Layers

Weights and Biases between
Hidden and Output Layers

Connections Connections

Input
Neuron

Hidden
Neuron Weights Hidden

Neuron
Output
Neuron Weights

Wcont

4

3.0543

4 MOEbend −1.2546

NrNod −12.4148
Dsteam Max 2.8839
Dstem min 1.8528
Thsteam 1.6986

Bias −3.9850

Wcont

5

−2.9733

5 MOEbend 9.3524

NrNod −12.8446
Dsteam Max −4.5719
Dstem min 3.5891
Thsteam 3.6138

Bias −5.1506

Wcont

6

1.7490

6 MOEbend 0.3699

NrNod −4.3593
Dsteam Max 2.5651
Dstem min 3.7031
Thsteam 4.6927

Bias −0.8075

Wcont

7

−2.8369

7 MOEbend −2.1642

NrNod 1.9192
Dsteam Max 0.7166
Dstem min 1.3162
Thsteam 2.5379

Bias −5.0349

Wcont

8

0.7975

8 MOEbend −8.6974

NrNod −8.7901
Dsteam Max 0.6474
Dstem min 6.1603
Thsteam 3.5364

Bias −11.3223

Wcont

9

6.3097

9 MOEbend −2.8854

NrNod −0.9085
Dsteam Max 4.1519
Dstem min 0.0516
Thsteam −4.4881

Bias 3.2790

Wcont

10

2.6881

10 MOEbend 2.3047

NrNod −8.4866
Dsteam Max 1.7032
Dstem min 0.7164
Thsteam −1.2511

Bias −2.2674

Wcont

11

1.3527

11 MOEbend −0.5312

NrNod 0.3887
Dsteam Max 5.3995
Dstem min 0.9965
Thsteam −3.0340

Bias −2.9259

- - - Bias MOEbend 2.9477
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Table A2. Weights and biases between the input layer and the hidden layer as well as those between
the hidden layer and the output layer for the annD03 neural network.

Weights and Biases between
Input and Hidden Layers

Weights and Biases between
Hidden and Output Layers

Connections Connections

Input
Neuron

Hidden
Neuron Weights Hidden

Neuron
Output
Neuron Weights

Wcont

1

0.46161

1 σbend 1.52045

NrNod −0.03784
Dsteam Max −0.60342
Dstem min −2.48068
Thsteam −1.42360

Fbend Max 1.11253
Bias −1.53380

Wcont

2

0.90075

2 σbend 0.65696

NrNod −0.34368
Dsteam Max 0.30125
Dstem min 0.99976
Thsteam −0.25100

Fbend Max 1.38583
Bias 0.64301

Wcont

3

0.11674

3 σbend −2.56040

NrNod 0.07561
Dsteam Max −0.10368
Dstem min −0.30686
Thsteam 0.09658

Fbend Max −0.84279
Bias −0.83605

Wcont

4

0.13237

4 σbend −3.48714

NrNod −0.32838
Dsteam Max −0.52042
Dstem min −1.88645
Thsteam −1.19246

Fbend Max −3.61781
Bias −1.60437

Wcont

5

0.07777

5 σbend 1.87011

NrNod 0.21921
Dsteam Max −0.30698
Dstem min −0.54980
Thsteam 0.01191

Fbend Max −0.10285
Bias 0.50076

Wcont

6

−0.08613

6 σbend −1.25730

NrNod 0.30877
Dsteam Max 0.06363
Dstem min 0.35557
Thsteam −0.08044

Fbend Max −0.14423
Bias −0.38527

Wcont

7

−0.10644

7 σbend 4.13679

NrNod −0.10213
DsteamMax −1.39496
Dstemmin −1.47598
Thsteam −5.34947
Fbend Max 3.03086

Bias −2.17910
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Table A2. Cont.

Weights and Biases between
Input and Hidden Layers

Weights and Biases between
Hidden and Output Layers

Connections Connections

Input
Neuron

Hidden
Neuron Weights Hidden

Neuron
Output
Neuron Weights

Wcont

8

−0.67496

8 σbend 0.58499

NrNod 0.36754
DsteamMax −0.50233
Dstemmin −0.30770
Thsteam −1.25587
Fbend Max −0.01521

Bias 0.30264

Wcont

9

−0.31464

9 σbend −0.64292

NrNod 0.43811
DsteamMax −1.29949
Dstemmin −0.88291
Thsteam −1.54375
Fbend Max −2.38035

Bias −1.57620

Wcont

10

0.33966

10 σbend −1.66961

NrNod −0.10133
DsteamMax 1.85831
Dstemmin 3.92750
Thsteam −0.52006
Fbend Max −1.86429

Bias 1.13502

- - - Bias σbend 1.16164
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8. Bryś, A.; Zielińska, J.; Głowacki, S.; Tulej, W.; Bryś, J. Analysis of possibilities of using biomass from cherry and morello cherry
stones for energy purposes. In Proceedings of the E3S Web of Conferences; EDP Sciences: Ulys, France, 2020; Volume 154.

9. Mudryk, K.; Jewiarz, M.; Wróbel, M.; Niemiec, M.; Dyjakon, A. Evaluation of urban tree leaf biomass-potential, physico-
mechanical and chemical parameters of raw material and solid biofuel. Energies 2021, 14, 818. [CrossRef]

10. Rezania, S.; Ponraj, M.; Din, M.F.M.; Songip, A.R.; Sairan, F.M.; Chelliapan, S. The diverse applications of water hyacinth with
main focus on sustainable energy and production for new era: An overview. Renew. Sustain. Energy Rev. 2015, 41, 943–954.
[CrossRef]

11. Brzychczyk, B.; Hebda, T.; Pedryc, N. The influence of artificial lighting systems on the cultivation of algae: The example of
chlorella vulgaris. Energies 2020, 13, 5994. [CrossRef]

http://doi.org/10.3390/en13236186
http://doi.org/10.3390/en13071809
http://doi.org/10.3390/en14113016
http://doi.org/10.3390/en12163042
http://doi.org/10.1016/j.fuel.2019.03.141
http://doi.org/10.3390/en14040818
http://doi.org/10.1016/j.rser.2014.09.006
http://doi.org/10.3390/en13225994


Sustainability 2022, 14, 3062 24 of 26

12. Clifton-Brown, J.C.; Lewandowski, I.; Andersson, B.; Basch, G.; Christian, D.G.; Kjeldsen, J.B.; Jørgensen, U.; Mortensen, J.V.;
Riche, A.B.; Schwarz, K.-U.; et al. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 2001, 93, 1013–1019.
[CrossRef]

13. Chae, W.B.; Hong, S.J.; Gifford, J.M.; Lane Rayburn, A.; Widholm, J.M.; Juvik, J.A. Synthetic polyploid production of miscanthus
sacchariflorus, miscanthus sinensis, and miscanthus x giganteus. GCB Bioenergy 2013, 5, 338–350. [CrossRef]

14. Doczekalska, B.; Bartkowiak, M.; Waliszewska, B.; Orszulak, G.; Cerazy-Waliszewska, J.; Pniewski, T. Characterization of
Chemically Activated Carbons Prepared from Miscanthus and Switchgrass Biomass. Materials 2020, 13, 1654. [CrossRef]
[PubMed]

15. Pointeau, S.; Jaguenet, E.; Couty, A.; Dubois, F.; Rambaud, C.; Ameline, A. Differential performance and behavior of the corn leaf
aphid, Rhopalosiphum maidis, on three species of the biomass crop miscanthus. Ind. Crops Prod. 2014, 54, 135–141. [CrossRef]

16. Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision Support System for the Production of Miscanthus and Willow
Briquettes. Energies 2020, 13, 1364. [CrossRef]

17. Styks, J.; Wróbel, M.; Fraczek, J.; Knapczyk, A. Effect of compaction pressure and moisture content on quality parameters of
perennial biomass pellets. Energies 2020, 13, 1859. [CrossRef]

18. Fusi, A.; Bacenetti, J.; Proto, A.R.; Tedesco, D.E.A.; Pessina, D.; Facchinetti, D. Pellet Production from Miscanthus: Energy and
Environmental Assessment. Energies 2021, 14, 73. [CrossRef]
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45. Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural
Networks. In Renewable Energy Sources: Engineering, Technology, Innovation.; Mudryk, K., Werle, S., Eds.; Springer International
Publishing AG: Cham, Switzerland, 2018; pp. 571–581. ISBN 978-3-319-72371-6/978-3-319-72370-9.

46. Roshani, M.; Sattari, M.A.; Muhammad Ali, P.J.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural
network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas.
Instrum. 2020, 75, 101804. [CrossRef]

47. Sanaat, A.; Zaidi, H. Depth of interaction estimation in a preclinical PET scanner equipped with monolithic crystals coupled to
SiPMs using a deep neural network. Appl. Sci. 2020, 10, 4753. [CrossRef]

48. Tamouridou, A.A.; Alexandridis, T.K.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Kasampalis, D.; Kontouris, G.; Moshou, D.
Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using. Sensors 2017, 17, 2307.
[CrossRef]

49. Francik, S.; Kurpaska, S. The use of artificial neural networks for forecasting of air temperature inside a heated foil tunnel. Sensors
2020, 20, 652. [CrossRef]
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84. Świetlicka, I.; Kuniszyk-Jóźkowiak, W.; Świetlicki, M. Artificial neural networks combined with the principal component analysis

for non-fluent speech recognition. Sensors 2022, 22, 321. [CrossRef]
85. Allouhi, A.; Choab, N.; Hamrani, A.; Saadeddine, S. Machine learning algorithms to assess the thermal behavior of a Moroccan

agriculture greenhouse. Clean. Eng. Technol. 2021, 5, 100346. [CrossRef]

http://doi.org/10.3390/s121014004
http://doi.org/10.3390/app11062735
http://doi.org/10.3390/w11010158
http://doi.org/10.1016/j.biosystemseng.2007.11.009
http://doi.org/10.1016/j.measurement.2008.08.013
http://doi.org/10.1016/j.compag.2009.07.011
http://doi.org/10.1016/j.compag.2017.03.024
http://doi.org/10.3390/s21123973
http://www.ncbi.nlm.nih.gov/pubmed/34207546
http://doi.org/10.3390/agronomy10070936
http://doi.org/10.1016/j.jclepro.2021.129172
http://doi.org/10.3390/s20061756
http://doi.org/10.1016/j.rser.2019.109480
http://doi.org/10.1016/j.rser.2018.05.060
http://doi.org/10.13031/trans.12781
http://doi.org/10.1016/j.compag.2016.01.019
http://doi.org/10.1016/j.apenergy.2018.11.001
http://doi.org/10.3390/pharmaceutics11030109
http://doi.org/10.1016/j.proeng.2017.03.172
http://doi.org/10.3390/s22010321
http://doi.org/10.1016/j.clet.2021.100346

	Introduction 
	Materials and Methods 
	Gathering Experimental Data 
	Semantic Models Formulation 
	Selecting Neural Network’s Type and Carrying Out the Process of Learning 
	Choosing and Assessing the Best Neural Models 

	Results 
	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

