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Abstract: Many scholars have conducted research on the traffic oscillations and reproduced the
growth pattern by establishing stochastic models and simulations. However, the growth pattern of
oscillations caused by uncertainty have not been thoroughly studied. Recently, a frequency domain
stability analysis method was proposed to analyze the discrete stochastic model. This paper extends
this analysis to a continuous situation based on frequency domain tools (e.g., Laplace transform) by
introducing a continuous bandlimited white noise. The analytical expression for the evolution of
speed standard deviation has been derived. Our study of a homogeneous case reveals an interesting
phenomenon: when |G(ω)|∞ < 1, the speed variance will converge to a constant value, which only
depends on the self-disturbance of vehicles. The simulation results verified that the continuous
models and corresponding discrete model tend to be consistent when the discrete time step tends to
the infinitesimal. Overall, this paper makes up for the deficiency of previous studies on continuous
oscillations in car-following theory and can potentially be used to develop new control strategies to
help dampen traffic oscillations.

Keywords: car-following; traffic oscillations; stochastic analysis

1. Introduction

In the last century, the research on traffic flow mainly focused on the classical models.
The early exploration in this field can be traced back to 1953. Pipes [1] used a differential
dynamics equation to describe car-following behavior and assumed that there is a posi-
tive correlation between the speed difference and the following vehicle acceleration, in
other words, when the speed of the preceding vehicle is greater/lower than that of the
following vehicle, the following vehicle will accelerate/decelerate. Newell [2] took the
distance between the preceding and following vehicle into account and proposed that
the speed of the following vehicle is positively correlated with the distance. Furthermore,
Bando et al. [3] proposed that there exists an ‘optimal velocity’ determined by that distance.
He also proposed that the acceleration of the following vehicle should be related to the
‘optimal velocity’ and the current velocity. Based on this optimal velocity model, Hilbing
and Tilch [4] developed a generalized force model by considering the negative velocity
difference to avoid unrealistic deceleration. Jiang et al. [5] considered both negative and
positive velocity difference and developed a full velocity model. A nonlinear analysis
method was proposed by Xue et al. [6] with a full velocity model by which a reasonable
kinematics wave speed can be obtained. Zhao et al. [7] accounted for acceleration and
proposed a full velocity and acceleration difference model (FVADM). Nagatani [8–10] and
Sawada [11] extended the car-following model with a next-nearest neighbor interaction.

Although these classic models have clear and elegant stability properties, the growth
pattern of oscillation is inconsistent with the field experiment, in which the speed standard
deviation of each vehicle developed concavely. Jiang et al. established 2D models by
changing the deterministic parameters to stochastic and successfully simulated the concave
pattern in 2014 [12]. Lang et al. [13] improved the inertia model and proposed that the
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amplitudes of car accelerations become larger along the car platoon; Xu et al. [14] presented
an analysis of a Newell-type stochastic car-following model based on the stochastic desired
acceleration processes. After which, a number of stochastic car-following models were
developed [15–18].

From another point of view, bottlenecks and lane-changing have been believed to
be the main causes of traffic oscillations [19–22] until Sugiyama’s experiment [23], which
shows traffic oscillations occurred in the absence of lane changing/bottlenecks. However,
researchers are still in debate about traffic oscillations being a result of the string instabilities
in the mathematical models [24–26] or heterogeneous driving behavior [27–29]. This paper
put forward another view that the traffic oscillations are caused not by the model or
heterogeneous behavior, but by the disturbance of the drivers/vehicles itself.

In 2020, Wang et al. [30] proposed the frequency-domain stability analysis method for
linear stochastic car-following models, extending the traditional frequency domain analysis
tool of the deterministic model to stochastic models. This method is able to quantify speed
variations of a stream of vehicles following one another according to certain stochastic
linear car-following behaviors. However, this method is only applicable in a time-discrete
condition, which is inconsistent with the fact that physical time should be continuous. Mo-
tivated by the fact, this paper extends the abovementioned method to the first-order model
under time-continuous circumstance to verify whether this method is still feasible. We also
discussed the feasibility for extending this model to second-order models. Our study of
the homogeneous case reveals that when traffic is stable, the speed variance converges to a
constant value, which only depends on the self-disturbance of drivers/vehicles. The simu-
lation results verified that the continuous models and corresponding discrete model tend to
be consistent when discrete time step tends to the infinitesimal. The continuous models and
corresponding discrete model tend to be consistent in our simulations. Overall, this paper
fills the gap in the research of continuous noise in traffic-flow theory and could potentially
be used to develop new control strategies to help in dampening traffic oscillations.

The organization of this paper is as follows. In Section 2, the continuous stochastic
linear First-order model is described. In Section 3, the stability analysis method is performed
and reveals the relationship between the discrete and continuous model. In Section 4,
numerical examples are provided to illustrate the application of the proposed method
to continuous stochastic linear first-order models. Section 5 concludes this paper and
discusses future research directions.

2. Model

Assuming that a vehicle platoon with an index of n = 1,2,3 . . . , N moves on a single
lane without any overtaking as shown in Figure 1, we use N to denote the index set
{1,2,3 . . . , N} for convenience.
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Figure 1. Illustration of the car-following system with N vehicles in the system.

We introduce the definition of string stability as follows: the string of a vehicle is stable
if, for any set of bounded initial disturbances to all the vehicles, the position fluctuations of
all the vehicles remain bounded [31]. For the convenience of the readers, the key notation
is summarized in Table 1.
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Table 1. Notation List.

Notation Definition Notation Definition

N total vehicle number r1(ξ) the autocorrelation function of v1(t)
N vehicle index set S1(ω) power density

v0
n(t) the speed of the nth vehicle at time t Vn(s) Laplace transformation of vn(t)

p0
n(t) the position of the nth vehicle at time t Gn(s) transfer function between the n−1 and nth vehicle

vn(t)
the speed of the nth vehicle at time t

after linearization ∆n speed variance of the nth vehicle under DFM

pn(t)
the position of the nth vehicle at time t

after linearization ∆n speed variance of the nth vehicle under SFM

αn Constant coefficient ∆̂n simulate speed variance under DFM
τ reaction time ∆̃n simulate speed variance under SFM

εn(t) continuous bandlimited white noise ∆́n noise term (continuous condition)
σ2

n variance of white noise εn(t) ∆̀n noise term (Discrete condition)

We use v0
n(t), p0

n(t) to denote the speed and position of the nth vehicle at time t.
Assuming that at the initial time t = 0, all vehicles are in a stationary condition, which
implies the same starting speed v and corresponding spacing pn, i.e.:

v0
n(0) = v, p0

n−1(0)− p0
n(0) = pn, ∀n ∈ N (1)

Since this article focuses on the study of oscillation, we convert the variables as follows
according to the predecessor’s method [30]:

vn(t) := v0
n(t)− v, pn(t) := p0

n(t)− p0
n(0)− vt, ∀n ∈ N (2)

Assuming all vehicles follow the stochastic first-order model (SFM):

SFM : vn(t + τ) = αn (pn−1(t)− pn(t)) + εn(t), ∀n ∈ N\1 (3)

where τ is the reaction time and the definition of εn(t) is as follows: εn(t) is a continuous
bandlimited white noise with a variance of σ2

n defined on (0 ∼ T), (T → ∞) with equal
spectral density En at different angular frequencies (0 ∼ F), (F→ ∞), which means εn(t)
satisfies the following equations:

lim
T→∞

1
T

∫ T

0
|εn(t)|2dt = σ2

n (4)

|En(ω)| =
{

En, i f 0 ≤ ω < F
0, otherwise

(5)

where En(ω) is the Fourier transform of εn(t), i.e.: En(ω) := lim
T→∞

∫ T
0 εn(t)e−jωtdt. It is

worth noting that the reason we do not use a continuous unlimited white noise is that an
unlimited white noise has infinite variance, which is not realistic. To analyse the SFM, we
define the deterministic first-order model (DFM) as follows:

DFM : vn(t + τ) = αn (pn−1(t)− pn(t)), ∀n ∈ N\1 (6)

3. Stability Analysis
3.1. Deterministic Stability Analysis

In this subsection, the task is to obtain the speed variance of the nth vehicle under
DFM. The Laplace transformation of vn(t) can be written as follows:

Vn(s)
∫ ∞

0
vn(t)e−stdt (7)
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Applying the Laplace transformation to both sides of Equation (6), we can obtain the
Laplace form of DFM as follows:

(seτs + αn)Vn(s) = αnVn−1(s), ∀n ∈ N\1 (8)

Thus, the relation between the (i− 1)th vehicle velocity disturbance and the ith vehicle
velocity disturbance is described by:

Vn(s) = Gn(s)Vn−1(s), ∀n ∈ N\1 (9)

where the transfer function Gn(s) of DFM is:

Gn(s) =
αn

seτs + αn
(10)

According to Parseval’s theorem, we could obtain

lim
T→∞

∫ T

0
|vn(t)|2dt =

1
2π

∫ ∞

−∞
|Vn(jω)|2dω (11)

where j is the imaginary unite and s = jω. We use Vn(ω) to denote Vn(jω) in the following.
Dividing both sides of Equation (11) by T(T → ∞), we can transform Parseval’s theorem
to the following form (which is also the definition of average power Pn):

lim
T→∞

∫ T

0
|vn(t)|2dt =

1
2π

∫ ∞

−∞
|Vn(jω)|2dω (12)

Pn = lim
T→∞

1
T

∫ T

0
|vn(t)|2dt =

1
2π

∫ ∞

−∞
lim

T→∞

1
T
|Vn(ω)|2dω (13)

Noting that in the middle part of Equation (13) is the speed variance of the nth vehicle
under DFM, and lim

T→∞
1
T |Vn(ω)|2 is the power density of vn(t), i.e.:

∆n lim
T→∞

1
T

∫ T

0
|vn(t)|2dt (14)

Sn(ω) := lim
T→∞

1
T
|Vn(ω)|2 (15)

we can denote Equation (13) as:

∆n =
1

2π

∫ ∞

−∞
Sn(ω)dω (16)

and also, we can obtain:

Sn(ω) =
n

∏
m=2
|Gm(ω)|2S1(ω) (17)

where S1(ω) can be obtained by the Wiener–Khinchin theorem [32]: the autocorrelation
function has a spectral decomposition provided by the power spectrum of that process, i.e.:

S1(ω) =
∫ ∞

−∞
r1(ξ)e−jωξ dξ (18)

where r1(ξ) is the autocorrelation function of v1(t), i.e.,:

r1(ξ)E[v1(t)·v1(t + ξ)] (19)

To achieve r1(ξ), we set three leading vehicle cases as follows:
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Case 1: v1(t) = A0 sin(ω0t):

r1(ξ) = E[A0 sin(ω0t)·A0 sin(ω0(t + ξ))] =
A2

0
2

cos(ω0ξ) (20)

Then, we can easily obtain S1(ω) and ∆n through Equations (15), (16) and (18):

S1(ω) =
A2

0π

2
(δ(ω−ω0) + δ(ω + ω0)) (21)

∆n =
A2

0
2

n

∏
m=2
|Gm(ω0)|2 (22)

Case 2: v1(t) is a finite summation of the trigonometric functions:

v1(t) =
K

∑
k=1

ak sin(ωkt) (ωk 6= ωl i f k 6= l) (23)

The autocorrelation function can be derived as follows, according to the orthogonality
of trigonometric functions:

r1(ξ) =
K

∑
k=1

E[ak sin(ωkt)·ak sin(ωk(t + ξ))] =
K

∑
k=1

a2
k

2
cos(ωkξ) (24)

Then, S1(ω) can be derived using Equation (18), and ∆n can be derived using Equa-
tions (16) and (17):

S1(ω) =
K

∑
k=1

a2
kπ

2
(δ(ω−ωk) + δ(ω + ωk)) (25)

∆n =
K

∑
k=1

a2
k

2

n

∏
m=2
|Gm(ωk)|2 (26)

From the above equation, we can derive the following proposition:

Proposition 1: If the leading vehicle moves as v1[i] = ∑K
k=1 fk[i], and fk[i] are orthogonal, then

∆n =
K

∑
k=1

∆nk (27)

where ∆nk is the speed variance of the nth vehicle with the leading vehicle move as fk[i] under DFM.

Case 3: v1(t) is a bandlimited white noise as defined in Section 2, with a variance
of σ2

1 :
By using definition of the Fourier transform of εn(t), i.e., En(ω) := lim

T→∞

∫ T
0 εn(t)e−jωtdt,

according to Parseval’s theorem, we can obtain:

lim
T→∞

∫ T

0
|εn(t)|2dt =

1
2π

∫ ∞

−∞
|En(ω)|2dω (28)

Speed variance can be derived by dividing both sides by T:

σ2
n = lim

T→∞

1
T

∫ T

0
|εn(t)|2dt = lim

T→∞

1
2πT

∫ ∞

−∞
|En(ω)|2dω (29)
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According to Equation (5), we can derive the following equation:

lim
T→∞

1
2πT

∫ ∞

−∞
|En(ω)|2dω = lim

T→∞
lim
F→∞

1
2πT

∫ F

0
|En|2dω (30)

Therefore:

σ2
n = lim

T→∞
lim
F→∞

1
2πT

∫ F

0
|En|2dω ⇒ |E1|2 = lim

T→∞
lim
F→∞

2πTσ2
1

F (31)

S1(ω) = lim
T→∞

1
T
|E1(ω)|2 =

{
lim
F→∞

σ2
n2π
F , i f 0 ≤ ω < F

0, otherwise
(32)

Then, we can easily and ∆n through Equations (15) and (16):

∆n =
1

2π

∫ ∞

−∞

n

∏
m=2
|Gm(ω)|2S1(ω)dω = lim

F→∞

σ2
n
F

∫ F

0

n

∏
m=2
|Gm(ω)|2dω (33)

It is obvious that |Gn(ω)|2 → 0 as ω → ∞ , thus ∆n = lim
F→∞

σ2
n
F
∫ F

0

n
∏

m=2
|Gm(ω)|2dω = 0

when n ≥ 2.

3.2. Stochastic Stability Analysis

By applying Fourier transform to the SFM Equation (3), we can obtain the frequency-
domain equation as:

Vn(ω) = Vn−1(ω)Gn(ω) + H(ω)En(ω) (34)

where H(ω) =
jω

jωeτ jω+αn
, with recursion to Equation (28), we obtain:

Vn(ω) =
n

∏
m=2

Gm(ω)V1(ω) +
n

∑
m=2

n

∏
m′=m+1

Gm′(ω)·H(ω)En(ω) (35)

Therefore, the power density Sn(ω) of vn[i] can be formulated as:

Sn(ω) =
n

∏
m=2
|Gm(ω)|2S1(ω) + lim

T→∞

1
T

n

∑
m=2

n

∏
m′=m+1

|Gm′(ω)|2·|Em(ω)H(ω)|2 (36)

Because ∆n = 1
2π

∫ ∞
−∞ Sn(ω)dω, the speed variance can be expressed as follows:

∆n = ∆n + lim
F→∞

σ2
n
F

∫ F

0

n

∑
m=2

n

∏
m′=m+1

|Gm′(ω)|2·|H(ω)|2dω (37)

where ∆n can be found in Equations (22), (26) and (33) for all three cases.

3.3. Discussion on Second Order Model

In this section, we apply the above method to second order models to analyze feasibil-
ity. To achieve the above purpose, we use the stochastic linear optimal velocity model [3]
as an example:

an[i + dn] = βn(αn (pn−1[i]− pn[i])− vn[i]) + εn(t), ∀n ∈ N\1 (38)

Thus, we can conduct the transfer function and the speed variance of the nth vehicle
under the Homogeneous case as follows:

G(s) =
αβ

eτss2 + βs + αβ
(39)
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∆n = ∆n + ∆́n (40)

where ∆́n = lim
F→∞

σ2

F
∫ F

0

(
1−|G(ω)|2(n−1)

)
·|H(ω)|2

(1−|G(ω)|2)
dω and H(ω) =

jω
−eτsω2+βjω+αβ

, it is obvious

that |H(ω)| → 0 and (1− |G(ω)|2)→ 1 as ω → ∞ , thus ∆́n = 0 for n ∈ N , which means
that the stochastic term has no effect on the speed variance under the stochastic linear
optimal velocity model. The reason for the different effects is that the transfer function
has a second order term for the denominator of the second order model, which leads to
|H(ω)| → 0 as ω → ∞ , but for the first-order model, |H(ω)| → 1 as ω → ∞ .

3.4. Homogeneous Case Analysis

We assume that all the vehicles have the same transfer function and white noise factor,
which means:

Gn(ω) = G(ω), ∀n ∈ N\1 (41)

σ2
n = σ2 En = E, ∀n ∈ N\1 (42)

By plugging Equations (41) and (42) to Equations (22), (26), (33) and (37), the speed
variance for the homogeneous scene under DFM and SFM could be expressed as follows:

∆n =
A2

0
2
|G(ω0)|2(n−1)(Case 1 for DFM) (43)

∆n =
K

∑
k=1

a2
k

2
|G(ωk)|2(n−1)(Case 2 for DFM) (44)

∆n =

{
0 i f n ≥ 2
σ2

1 i f n = 1
(Case 3 for DFM) (45)

∆n = ∆n + lim
F→∞

σ2
n
F

∫ F

0

n

∑
m=2
|G(ω)|2(n−m)·|H(ω)|2dω(Cases 1–3 for SFM) (46)

Noticing |G(ω)|2(n−m)·|H(ω)|2 is a geometric series, we obtain:

∆n = ∆n + lim
F→∞

σ2

F

∫ F

0

(
1− |G(ω)|2(n−1)

)
·|H(ω)|2(

1− |G(ω)|2
) dω (47)

Proposition 2: From the above equation, it is obvious that when |G(ω)|∞ > 1, ∆n → ∞ as

n→ ∞ ; when |G(ω)|∞ < 1, ∆n → lim
F→∞

σ2

F
∫ F

0

∣∣∣ 1
eτωj

∣∣∣dω = σ2 as n→ ∞ , which reveals that the

traffic oscillations is caused only by the disturbance of the drivers/vehicles itself.

3.5. Relationship between Discrete and Continuous Model

In this subsection, we analyze the difference between the discrete and continuous
first-order model under homogeneous case, and list the discrete and continuous first-order
model as follows:

First-order discrete model:

vn[i + dn] = αn (pn−1[i]− pn[i]) + εn[i], ∀n ∈ N\1 (48)

First-order continuous model:

vn(t + τ) = αn (pn−1(τ)− pn(τ)) + εn(t), ∀n ∈ N\1 (49)

Predecessors already conducted the standard deviation for the discrete model in
previous work [30], the expression of standard deviation in the discrete model has a similar
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expression under a continuous model for Case 1, but the transfer function has different
expressions under the discrete/continuous model:

G(ω) =
αδ

ejωd − ejω(d−1) + αδ
, ωε(0, 2π](Discrete model) (50)

G(ω) =
α

jωeτ jω + α
, ωε(0, ∞)(Continuous model) (51)

where δ is the discretization time interval and dδ > 0 is vehicle n’s reaction time τ.
Figure 2 shows the relationship between ω and G(ω) under the Continuous model,
as well as ω/δ and G(ω) under the Discrete model. The parameters are as follows:
α = 0.5 τ = 1.2 d = τ/δ. One can see that G(ω)→ G(ω) as δ→ 0 .
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We also compare the noise term ∆́n = σ2

F
∫ F

0

(
1−|G(ω)|2(n−1)

)
·|H(ω)|2

(1−|G(ω)|2)
dω (Continuous

model) with ∆̀n = σ2

2π

∫ 2π
0

(
1−|G(ω)|2(n−1)

)
|L1(ω)|2(1−|G(ω)|2)

dω (Discrete model) in Figure 3. Parameters

are as follows: F = 10, 100, 1000; σ2 = 1; δ = 0.1, 0.01, 0.001; α = 0.3 τ = 1.4. One can see
that ∆́n → ∆̀n as F→ ∞ and δ→ 0 .
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|

2(𝑛−𝑚)

∙ |
𝑗𝜔

𝑗𝜔𝑒𝜏𝑗𝜔 + 𝛼𝑛

|
2

𝑑𝜔 

𝑛

𝑚=2

𝔽

0
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In this section, we simulatively show that when a discrete interval δ→0, the transfer
function of discrete model converges to that of the continuous model and furthermore,
when frequency F→∞, the noise term of discrete function and continuous function con-
verge to each other. Thus, we can derive that ∆n,discrete → ∆n when F→ ∞ and δ→ 0 .
(Simulation shows in Appendix A)

4. Numerical Simulations

In this section, we let the leading vehicle move as v1(t) = A1 sin(ω1t) + A2 sin(ω2t),
(ω1 6= ω2), then a speed variance of DFM and SFM can be driven through Equations (44) and (46):

∆n =
A2

1
2

∣∣∣∣G( α

jω1eτ jω1 + α

)∣∣∣∣2(n−1)
+

A2
2

2

∣∣∣∣G( α

jω2eτ jω2 + α

)∣∣∣∣2(n−1)
(52)

∆n = ∆n +
σ2

n
F

∫ F

0

n

∑
m=2

∣∣∣∣ α

jωeτ jω + α

∣∣∣∣2(n−m)

·
∣∣∣∣ jω

jωeτ jω + αn

∣∣∣∣2dω (53)

To verify Proposition 1, we decompose v1(t) = v1,1(t)+ v2,1(t), where v1,1(t) = A1 sin(ω1t)
and v2,1(t) = A2 sin(ω2t), and we denote the simulation result of speed variance with the
leading speed v1,1(t) and v2,1(t) under DFM as ∆̂1,n and ∆̂2,n. We use Equation (46) as the
discrete model, δ = 0.001 as a very tiny discrete time interval to simulate the traffic flow
system and ∆̂n ∑I

i=1+I/5(vn[i])
2 to denote the simulation speed variance under DFM to

avoid the impact of start-up, where I = 106. Correspondingly, we run the simulation for
M = 1000 iterations under SFM, and directly measure the speed variance of SFM using the
following equation:

∆̃n
∑M

m=1 ∑I
i=1+I/5(vn[i])

2

4MI/5
(54)

The simulation settings are taken as follows: F = 3000, N = 30, τ = 1, d = τ/δ,
α = 0.5, σ = 2, A1 = 1.5, ω1 = 1, A2 = 1, ω2 = 2. As the results demonstrate in
Figure 4, we can see G(ω1) < 1 and G(ω2) < 1 from Figure 4b, thus DFM with a leading

speed of v1(t) is stable. We can see that
√

∆̂1,n + ∆̂2,n,
√

∆n and
√

∆̂n overlapped very
well with each other, which is consistent with Proposition 1. Additionally, |G(ω)|∞ < 1,
thus

√
∆n → 2 , is consistent with Proposition 2.
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Then, we exam this case with τ = 1.5. The simulation result is shown in Figure 5. It
is obvious that |G(ω)|∞ > 1 from Figure 5b, thus ∆n → ∞ as n→ ∞ , which is consistent
with Proposition 2.
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Figure 5. Simulation results with α = 0.5, σ = 2, τ = 1.5: (a) Time-Domain Speed Standard
Deviation; (b) Magnitudes of G(ω), G(ω1) and G(ω2).

To better correlate with field data, the GPS data from our previous work were uti-
lized [33]. The sampling frequency of the GPS data is 0.1s. We randomly selected the speed
track of one vehicle as the speed data of the leading vehicle. The data length is 930.7s,
which means T = 9307 sampling points, see Figure 6.
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We decompose v1[i] as v1[i] = ∑T
k=1 ak sin

[
k
T 2πi

]
+ bk cos

[
k
T 2πi

]
, where ak =

1
T ∑T

i=1 v[i]

cos
(

k
T 2πi

)
, bk = 1

T ∑T
i=1 v[i] sin

(
k
T 2πi

)
and T = 9307. Then, we recompose v1(t) =

∑T
k=1 ak sin

[
k
T 2πt

]
+ bk cos

[
k
T 2πt

]
as the leading vehicle. To avoid the impact of start-ups,

we used two cycles of the leading vehicle in the simulation. The simulation settings are as
follows: F = 3000, δ = 0.001, N = 30, τ = 1, α = 0.5, σ = 2.5. The simulation result is
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shown in Figure 7, where the simulation results and the theoretical results overlap with
each other and

√
∆n → 2.5 , which is consistent with Proposition 2.
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5. Conclusions

In this paper, we extend the previous work [30] to the Fist-order continuous model,
which allows us to analytically quantify the speed variance without discretize the model,
the main contribution of this paper is as follows:

- This paper presents an analytical expression for the evolution of speed standard
deviation under a continuous first-order model.

- We simulatively show that when the discrete interval δ→0, the transfer function of the
discrete model and continuous model converge to each other; when frequency F→∞,
the noise term of discrete function and continuous function converge to each other.

- This paper put forward another view that traffic oscillations are caused not by the
model or heterogeneous behavior, but by the disturbance of the drivers/vehicles.
From the traffic control aspect, this paper reveals that the key point of dampening the
highway traffic oscillations is to reduce the noise caused by driver/vehicles. (Specific
measures can be to improve driving concentration, pavement repair, and reduce
roadside distractions, etc.)

This study proposed an analytical method for the first-order continuous stochastic
model, but there is still work that needs to be done. Firstly, white noise may not be the
best choice of the stochastic term; therefore, we need to further analyze the form of noise.
Secondly, we need to study the relationship between acceleration noise and velocity noise to
extend the method to models such as the optimal velocity model or full velocity difference
model. Finally, this method might be potentially extended to nonlinear stochastic models
using the describing function method proposed in Li [34].
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Appendix A

Proposition:
∆n,discrete → ∆n when F → ∞ and δ→ 0.

Simulation:
We set the leading vehicle movement as v1(t) = A0 sin(ω0t) (for the continuous

model) and v1[i] = A0 sin(ω0iδ) (for the discrete model). According to previous work, the
speed variance of the nth vehicle under discrete model can be derived as:

∆n,discrete =
A2

0
2

∣∣∣ αδ

ejω0δd+ejω0δ(d−1)+αδ

∣∣∣2(n−1)

+ 1
2π

∫ 2π
0

n
∑

m=2

∣∣∣ αδ
ejωd+ejω(d−1)+αδ

∣∣∣2(n−m)

·
∣∣∣ 1−e−jω

ejωd+ejω(d−1)+αδ

∣∣∣2σ2
mdω

The simulation settings are taken as follows: F = 3000, N = 15, τ = 1, δ = [1 0.1 0.01],
d = τ/δ, α = 0.5, σ = 2, A0 = 1, ω0 = 0.5. The result shows in Figure A1.
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