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Abstract: The instabilities of soil specimens in laboratory or soil made geotechnical structures in field
are always numerically simulated by the classical continuum mechanics-based constitutive models
with finite element method. However, finite element mesh dependency problems are inevitably
encountered when the strain localized failure occurs especially in the post-bifurcation regime. In this
paper, an attempt is made to summarize several main numerical regularization techniques used in
alleviating the mesh dependency problems, i.e., viscosity theory, nonlocal theory, high-order gradient
and micropolar theory. Their fundamentals as well as the advantages and limitations are presented,
based on which the combinations of two or more regularization techniques are also suggested. For
all the regularization techniques, at least one implicit or explicit parameter with length scale is
necessary to preserve the ellipticity of the partial differential governing equations. It is worth noting
that, however, the physical meanings and their relations between the length parameters in different
regularization techniques are still an open question, and need to be further studied. Therefore, the
micropolar theory or its combinations with other numerical methods are promising in the future.

Keywords: mesh dependency; finite element method; viscosity theory; nonlocal theory; high-order
gradient; micropolar theory

1. Introduction

Natural and artificial geotechnical structures play an essential role in our lives. Gran-
ular soils, whether as the main construction materials or the foundation of geotechnical
structures, determine, to an extent, their failure mechanisms. Many disasters that affect our
lives are linked to geotechnical failures, such as landslides, instabilities of side slope of high
embankments or dams, collapse of excavated tunnel surfaces, and uneven displacements
of buildings and roads. Most geotechnical hazards can be identified as examples of progres-
sive failure caused by the occurrence and development of severe strain localization [1–7].
Accordingly, to numerically reproduce the failure phenomena, such as strain localizations
among others, has long been an important and extensively researched topic.

The conventional limit equilibrium method is a very old means of stability analysis. It
was initially performed by Hultin and Pettersson in 1916 [8]. A safety factor Fs should be
estimated to judge the stability of slopes, as is still widely used in geotechnical engineering
nowadays. For example, based on the model tests results for a retaining wall, conducted
serially in Cambridge from 1962 to 1974, Leśniewska [9] systematically studied shear
band patterns, formations, and mechanism using the limit equilibrium method. However,
doing so requires so many assumptions that only very experienced engineers can make
a reasonable prediction. In short, the limit equilibrium method is no more an accurate
method than any other for analyzing structural failure [10].

The rapid progression of computing technology has greatly increased the efficiency
and accuracy of calculations in geotechnical engineering. To achieve solutions, numerical
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analyzing methods (e.g., finite difference method (FDM), finite element method (FEM),
finite volume method (FVM), boundary element method (BEM), extended finite element
method (X-FEM), discontinuous deformation analysis (DDA), finite cover method (FCM),
Peridynamics (PD), discrete element method (DEM), smoothed particle hydrodynamics
(SPH), material point method (MPM), etc., among others) have seen wide introduction in
geotechnical engineering. The development of finite element methods and other computer-
based numerical schemes has reached a stage at which solutions for many different geotech-
nical problems are obtainable. Besides, the onset and evolution of strain localization in the
model can be dynamically traced using various numerical simulation techniques.

FDM is one of the oldest numerical methods used to solve differential equations,
which are difficult or impossible to solve analytically. It is simple and well understood to
convert differential equations into linear algebraic equations as Taylor series to obtain the
approximations of the real solutions, but FDM is still difficult or not adaptable to higher-
dimensional and irregular geometries, which are actually widely existing in geotechnical
engineering [11,12]. Compared to FDM, as another numerical method to solve partial
differential equations (PDEs), FEM is more adaptable to high-dimensional problems, and it
is versatile for all complex and irregular geometries. Furthermore, FEM is widely used in
applied science and engineering with different disciplines, including heat transfer, fluid
mechanics analysis, soil mechanics, etc. [13–15]. FVE method has also been one of the most
commonly used numerical methods for solving PDEs. The main advantage of the method
is that the local physical conservation law can be maintained. So it has been extensively
used in computational fluid dynamics [12,16]. BEM is also a powerful and efficient method
for solving PDEs [17]. Unlike FEM, the boundary surface is modelled by surface elements
instead of the continuum. The simplicity of this method lies in meshing only the boundary
of the body instead of the entire domain. The nodal points located in the boundaries move
together with the moving phase change front. Consequently, a Stefan problem can be
solved without depending on moving or fixed grids as in FDM or FEM. Integration of PDEs
is performed with classical Green’s function, while boundary conditions are applied in a
way similar to that in FEM and FDM [12]. For FEM, FEM, FVM and BEM, all the methods
share some similarities, since they all represent a systematic numerical method for solving
PDEs. However, one crucial difference is the ease of implementation. Among the majority
of engineers, the prevailing opinion is that the FDM is the easiest to implement, while FEM
is the most difficult, leaving FVM somewhere in the middle.

The extended finite element method (X-FEM) developed by Belytschko and co-workers
has significantly enriched the existing FE technologies, in which discontinuous and asymp-
totic crack-tip displacement fields are added to the standard FEM to account for the crack
using the notion of partition of unity [18,19]. DDA was initially introduced by Shi and
Goodman in 1984 to deal with the problems in rock mechanics and rock engineering [20,21].
It is mainly used and improved to compute the deformation and motion of a multi-block
system. As a generalization or extension of FEM, FCM was actually an alias for numerical
manifold method (NMM), which was a numerical analysis method by unifying both the
methods of DDA and FEM and was also originally developed by Shi in 1991 even before
X-FEM [7,22]. It is claimed to be able to solve continuous and discontinuous problems
in a unified framework without additional treatment, such as the Heaviside functions in
XFEM. FCM has been extended to analyze the linear and non-linear mechanical behaviors
of solids and structures. And it can be used to analyze the discontinuity of displacement
and strains caused by interfacial de-bonding or rupture of material interfaces. PD is also a
very efficient method for dynamic fracture, it is able to solve discontinuity-related problems
such as crack propagations without requiring crack tracking procedures [23,24]. The crack
path in PD is a natural outcome of the simulation. X-FEM, DDA, FCM (NMM) and PD are
the main and suitable computational methods for fracture analysis.

Compared with FEM, DEM focuses on the micromechanics of problems and more
realistically simulates the interactions of particles [25–27]. However, the maximum number
of particles and calculating efficiency are limited by computational power, which increases



Sustainability 2022, 14, 2982 3 of 20

difficulties of DEM for modeling a real scale structure (e.g., dam, slope, tunnel, foundation,
etc.) containing large numbers of particles. By contrast, FEM is more efficient and less
expensive when modeling large scale geostructures, which are just needed to be divided
by fine or coarse mesh. As the mesh-free particle method, SPH and MPM are accurate
and promising to simulate the high nonlinear and large deformation problems [28–30].
However, it is unavoidable to cause the increase in cost. Indeed, the mesh-free methods
have overcome many problems encountered with mesh based method, such as the mesh
dependency problems of FEM. But they are more complex and time consuming than the
conventional FEM to simulate the boundary value problems in geotechnical engineering.
Therefore, FEM is still a good choice only after dealing with the mesh dependency problems
faced with the strain localization problems.

To intuitively compare the some important widely used numerical techniques, their
main advantages and limitations are summarized in Table 1. Frankly, it is unable to cover
all the numerical methods as the new and advanced numerical methods have been being
consecutively developed by researchers in the world.

Table 1. Advantages and limitations of different numerical methods.

Numerical Techniques Advantages Limitations

FDM
It is a versatile numerical method, and especially simple

to be implemented and perform well for
simple geometries.

Compared with FEM, FDM is not adaptable
to higher-dimensional and

irregular geometries.

FEM

With high computing efficiency;
It is versatile for many problems of engineering and

mathematical physics;
Being able to reproduce the failures of specimens or

model tests in laboratory as well as the large
geotechnical structures in field.

Pathological or non-unique solutions in
post-failure regime for stain

softening problems;
Cracks can only propagate along the element

rather than natural path;
Severe mesh dependent problems in strain

localized regions;

FVM

It is relatively simple to be implemented;
FVM is a natural choice for fluid dynamics problems,

because the conservation of mass, momentum and
energy is always sustained;

It only needs to do flux evaluation for the
cell boundaries.

Even the corner of interest can be accurately
examined by refining the mesh of the corner,

but the higher-order elements cannot be
solved using FVM.

BEM

Compared with FEM, there is no need for discretizing
the domain under consideration into the elements

besides the boundary;
It saves the meshing efforts, and the system matrices

are smaller.

Matrices are fully populated, with complex
and frequency-dependent coefficients, which

deteriorate the efficiency of the solution;
Singularities may arise in the solutions

X-FEM

Powerful for discontinuous problems in mechanics, such
as: crack growth, complex fluid, interface and so on;
Allows simulation of initiation and propagation of a

crack along an arbitrary path without the requirement
of remeshing.

It needs to add the specific functions into
FEM, e.g., the Heaviside to describe the

discontinuities;
Time stepping needs to be small enough to

capture crack propagation;
Hard to localize the initial fracture.

DDA

DDA method has an important advantage of fast
convergence with unconditional numerical stability

compared to the DEM;
It has several strengths for stability problems in jointed

rock masses.

DDA can only be used to deal with the
problems about discontinuous deformation

or discontinuous motion;
It has serious limitations for larger scale and

faster moving problems.

FCM (NMM)

FCM is more suitable for modeling intersecting cracks;
It is able to predict the entire failure process from crack

propagation to sliding;
It can well capture both the continuous and

discontinuous problems in a unified framework;

The switch from continuum to discontinuum
is not automatically handled but it needs
parameters to control the computation to

change an equilibrium quasistatic system to a
kinematic system;
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Table 1. Cont.

Numerical Techniques Advantages Limitations

DEM

Micromechanics and interactions between grains at
particle-scale can be closely traced and studied;

It is well understood from a point of view of
physical characteristics.

High computing cost and high demand for
the hardware equipment;

It seems impossible to model the failure of
large geotechnical structures containing

countless particles.

PD

The crack path in PD is a natural outcome of the
simulation without requiring to describe crack topology;

Compared with X-FEM, meshless methods or other
partition of unity methods, it does not require

techniques to smooth the normals of the crack surfaces
in order to avoid erratic crack paths.

For conventional PD, it is unable to model
continuous problems;

The radii of horizons are required to be
constant, otherwise spurious wave reflections

shall emerge and ghost forces between
material points will deteriorate the results.

SPH

Capable of simulating high nonlinear and large
deformation, such as slope slide, large settlement and

complex large-deformed free surface flows, etc.;
More efficient and smoother than MPM for large-scale

free surface flows.

High computing cost and high demand for
the hardware equipment.

The explicit solver requires a small amount of
time increment.

MPM

No tensile instability that is annoying in SPH;
The formulations and boundary conditions are as simple

as FEM;
Capable of simulating high nonlinear and large

deformation, such as slope slide, large settlement, as
well as fluid flow, etc.;

Faster convergence speed than SPH.

High computing cost and time-consuming,
and high demand for the

hardware equipment;
Compared with SPH, the particles on fluid
free surface are relatively rough and messy.

Besides the widely used classical models, e.g., Mises model, Mohr-Coulomb model,
Drucker-Prager model, Duncan-Chang model and Cam-Clay model etc. Nowadays, more
and more constitutive models have been proposed to specially describe the behavior of
soils, and some important models [31–36] are listed as examples in Table 2.

Table 2. Constitutive models and geotechnical issues.

Constitutive Models Geotechnical Issues

Nor-Sand model

Based on the second axiom of critical state theory, sand behaviors such as the attribute of normality and realistic
dilation rates are obtained in the model.

Nor-sand model has been used to model plane strain element tests, triaxial tests, cyclic shear tests, static
liquefaction and post- liquefaction strength etc. Geotechnical structures, such as passive walls have also been

modelled by the model [37].

Hypoplastic model

The Hypoplastic model, with relatively simple formulations, can consider the critical state of granular materials
and it is even simpler than MCC for simulating clay.

The hypoplastic model has been used to describe the mechanics behaviors of overconsolidated clays in laboratory
and the strain softening behavior of soil in practice. For instance, it has been used in a hydro-mechanical coupled

analysis for the long-term behavior of rainfall induced landslide [38,39].

Severn–Trent sand model
Severn–Trent sand model, considering bonding surface and kinematic-hardening, can describe well the sand

behavior. For example, it can reproduce well the compression triaxial tests and extension triaxial tests of Toyoura
sand. The model has also been successfully used to model the cantilevered wall-supported excavations [40,41].

Unified hardening model

Based on and developed from MCC, the proposed unified constitutive model can be used to describe well both
clay and sand behaviors with hardening parameter independent on stress path.

The unified mode has been widely used in geotechnical engineering. It has been developed to describe the stress
dilation and stress contraction, hardening and softening, overconsolidation, stress induced anisotropy, inherited

anisotropy, creep, asymptotic state, rotational hardening, crushing and other characteristics of soils [42].

Simsand model

The shear contraction and strain hardening of loose sand, and shear dilatancy and strain softening of dense sand
can be modelled by this simple critical-state based model.

It has been used to model the behaviors of Hostun sand and Toyoura sand in laboratory as well as failures of
passive wall [36,43].
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It should be noted that all these models are based on classical continuum mechanics
theory. Although the interested regions have been finely divided to obtain more reason-
able solutions, numerical and analytical solutions for strain localization using classical
continuum mechanics-based models are known to suffer from serious mesh dependent
problems. The pathological solutions are caused by the loss of ellipticity (hyperbolicity)
of governing field equations for static (dynamic) problems. Accordingly, non-localized
methods are needed to rectify the mesh dependency problems of conventional FEM. The
regularization techniques introduced in this paper are to remove or relieve the spurious
mesh dependency in numerical simulation of strain localization phenomena. In most cases,
the regularization techniques alleviate mesh dependency problems in simulating strain
localization phenomena by incorporating at least one implicit or explicit intrinsic parameter
with length scale. The length scales incorporated in the models, usually characterizing
the microstructures of material, manage to define the width of the strain-localized regions.
The main regularization methods include viscosity technique, nonlocal technique, gradient
technique, and micropolar technique, etc. However, the advantages and disadvantages
of these important regularization approaches are rarely systematically summarized and
compared in the past. Accordingly, a comprehensive review of these regularization ap-
proaches is necessary for a deep understanding of their differences and for the selection of
the appropriate regularization method in different cases.

This paper comprehensively summarizes the typical regularization approaches in
dealing with mesh dependency in numerical finite element analysis, mainly including
viscosity theory, nonlocal theory, high-gradient theory, and micropolar theory. Moreover,
the advantages and disadvantages of each regularization technique are systematically
introduced and compared.

2. Viscosity Theory

Viscosity regularization approach is used to describe different responses at some time
by means of introduced viscosity. In fact, soils and granular materials demonstrate obvious
rate-dependent behaviours, which can certainly be explained by viscosity. For example,
strain rate within the shear band is larger than that outside it, and when the difference
is obvious enough, shear bands will occur. The viscosity can control the different and
accordingly the localized region. Needleman [44] argued that even without clear internal
parameters for the dimension of length in the classical viscoplastic model, rate-dependent
constitutive models implicitly introduce a length scale into the governing equations, at
which the incremental equilibrium equations for quasistatic problems remain elliptic and
wave speeds for dynamic problems remain real, even in the presence of strain softening (one
main reason for strain localization, among others). Then the pathological mesh sensitivity
associated with numerical solutions of localization problems for rate-independent solids is
eliminated. In this way, introducing the viscosity into the elastoplastic model with strain
softening behaviour is able, in some degree, to reduce the mesh dependency of finite
element solutions. It is thus not surprising that the fluid in saturated granular model can
greatly affect the degree of mesh sensitivity [45].

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent
inelastic behaviour of solids. Herein, take a one-dimensional viscoplastic model for instance
as shown in Figure 1. The elastic response of viscoplastic materials can be represented by
a Hookean spring element. Rate-dependence can be represented by a nonlinear dashpot
element in a manner similar to viscoelasticity. Plasticity can be accounted for by adding a
sliding frictional element. Their roles playing in the viscoplastic model are described by
the formulae in Figure 1.
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Figure 1. Illustration of viscoplastic model: (a) spring element; (b) dashpot element; (c) sliding
frictional element.

Overstress theory was firstly adopted in the models of Perzyna [46,47] or Duvaut &
Lions [48]. In these models, the stress is allowed to increase beyond the rate-independent
yield surface upon application of a load and then allowed to relax back to the yield surface
over time. The yield surface is usually assumed to be rate-independent in such models.
Rate-dependency was initially introduced to describe mesh sensitivity for localization
problems in metal, as by Needleman [44], Shawki and Clifton [49], and Wu and Freund [50].
Later, it was applied to deal with the instability and strain localization phenomena of satu-
rated porous media [51], of concrete and rock fractures [52–54], and of dilatancy materials
and clay [55–57]. Building on the work of Sluys and de Borst [53,54], Wang et al. [58]
introduced a consistency viscoplastic model in which the viscosity was implemented by
means of a rate-dependent yield surface, which was proven to have a faster global conver-
gence than the overstress viscoplastic models. Based on viscoplastic models proposed by
Perzyna [46,47] and Duvaut and Lions [48], Dias [59] also proposed a simple model for
viscous regularization of elastoplastic constitutive laws with softening. This model, when
tested in a problem with slip-driven softening (von Mises material) as well as in a problem
with decohesion-driven softening (Cam-Clay model), exhibited its capability to regularize
the solution.

With the regularization of viscosity, mesh dependency problems in strain localized
regions are significantly alleviated, allowing shear band thickness to be predicted and
specified. For example, in Equation (1) the localized strain rate distribution along a one-
dimensional bar with several elements was implicitly expressed by the internal length scale
l in the consistency model proposed by Wang et al. [58],

e
− 3Gl

2cgm

[
1 +

4h + 3G
4cgm

l
]
≈ β (1)

where β is a small constant that represents the cut off value of the relative strain rate at
the edge of the shear band, G is the shear modulus and cg =

√
G/ρ is the elastic shear

wave speed, m is the viscosity parameter, and h is the strain softening parameter. Wang
et al. [58] found that the smaller value of the internal length scale l and the imperfection
size w determined the shear band thickness (i.e., L = min[l, w]). In their numerical examples,
they observed that on mesh refinement, the shear band thickness converged to the material
length scale l as defined in Equation (1). Clearly, the thickness of shear band would decrease
when the viscosity m decreased or when the absolute value of softening parameter |h|
increased (h is a negative value). If the imperfection size w was taken into consideration,
it was observed, the imperfection size dominated the shear band thickness when it was
smaller than material length scale (w < l). In contrast, if the imperfection size exceeded the
material length scale, the influence of the imperfection would disappear, and the material
length scale determined the shear band thickness.

The main advantage of viscosity regularization is that it does not need any additional
global discretization, because it requires only supplementary operations at the local level in
constitutive models, whose implementation in common nonlinear finite element packages is
very simple. Furthermore, it works equally well for both the decohesion failure mechanism
and the slip-driven softening failure mechanism. Its main disadvantage is the need to
add an artificial feature, viscosity, to describe the material behaviour when it does not
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exhibit rate-dependency. Therefore its applicability is obviously limited to transient loading
conditions, and the regularizing effect rapidly decreases for slow loading rates or when
approaching the rate-independent limit.

3. Nonlocal Theory

Modern nonlocal elastic constitutive models of the integral type-using weighted
spatial averages-first saw use in the 1960s, motivated by homogenization of the atomic
theory of Bravais lattices. By means of nonlocal approaches, researchers managed to
describe the damage and dislocation phenomena in crystals on a scale comparable to the
range of interatomic forces. Using nonlocal models, researchers managed to reproduce
the dispersion of short elastic waves and enhance descriptions of interactions between
crystal defects such as vacancies, interstitial atoms, and dislocations or even reproduce the
electromagnetic wave characteristics of composite media [60–68]. What’s more, the bending,
buckling and free vibration of nanobeams, nanowires, nonuniform carbon nanotube at
nano-scale, have been studied via nonlocal models these years [69–72]. Plastic nonlocal
models were first proposed as a way of describing the stress field at a fracture front [73–75].
However, Eringen’s formulation did not mean to serve as a localization limiter, and the
averaging operator was applied to the total strain tensor, which could lead to spurious
instabilities. Later, nonlocal plasticity theory was improved and initially introduced to
describe strain localization phenomena of softening materials by Bažant et al. [76,77].
After these initial attempts, a comprehensive number of relevant contributions rapidly
emerged [78–94].

Nonlocal regularization has been proven to reduce mesh sensitivity when simulat-
ing the damage behavior of ductile materials with microdefects and strain localization
phenomena caused by strain softening.

The derivation of a nonlocal approach starts from the choice of the variable to be
enhanced by nonlocality. Typical choices are, among others, the regularization of vari-
ables related to kinematics (such as the strain tensor), the regularization of internal state
variables (such as scalar measurements of the amount of plastic strain or damage) or the
regularization of thermodynamic forces power-conjugated with internal state variables (for
instance, the elastic energy release rate in damage models). Faced with this wide range
of possibilities, deciding which term is more effective is difficult. Indeed, the choice of
the nonlocal variable depends on the kind of material to be modelled, as well as on the
nature of the problem to be solved. In the particular case of elastoplastic damaging ductile
solids, internal degradation, which is closely related to the localization phenomena, is
usually chosen as an internal nonlocalized variable. After the nonlocal variable is chosen,
its nonlocal counterpart can be expressed, in an integral-type formulation, by means of the
spatially weighted averaging integral. For example, the spatial average of the magnitude
of plastic strain εp at location x has been illustrated as Figure 2, and the formulations are
presented as follows,

〈εp(x)〉 = 1
Vr(x)

∫
V

α(s− x)εp(s)dV =
∫

V
α′(x, s)εp(s)dV (2)

In which
Vr(x) =

∫
V

α(s− x)dV (3)

α′(x, s) = α(s− x)/Vr(x) (4)
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The angle brackets < > denote the averaging operator, with εp and <εp>, the local and
nonlocal internal variables, respectively. V is a finite volume of the body that is dictated by
one constitutive parameter, generally called intrinsic length l with a dimension of length.
Vr has approximately but not exactly the same meaning as the representative volume in the
statistical theory of heterogeneous materials. α(x) is the weighting function that defines the
averaging and s the general coordinated vector. Because numerical computations show
much better convergence if the weighting function is smooth, the error density function
(normal distribution function) has been suggested as the suitable form of the weighting
function [76],

α(x) = e−(k|(x)|/l)2
(5)

In which, for one, two and three dimensions

1D : |x|2 = x2, k =
√

π (6)

2D : |x|2 = x2 + y2, k = 2 (7)

3D : |x|2 = x2 + y2 + z2, k =
(
6
√

π
)1/3 (8)

l is the characteristic length, a material property that defines the diameter of the
representative volume (a line segment, circle, or sphere), and is determined pursuant to the
condition that the representative volume has the same volume as the normal distribution
function extending to infinity (x, y, z are the Cartesian coordinates). For numerical finite
element computations, only those elements whose integration points are distributed in the
domain of 2l around x need to be included in the sum using the Gauss integration method.
For those elements outside the domain, the error density function α is negligible. As for
the strain localization problems caused by softening, the nonlocal average should simply
be applied to those variables controlling strain softening.

Nonlocal approaches work well for both types of failure mechanisms (mode I: deco-
hesion; mode II: slip-driven). For total stress-strain relations (without decomposition into
elastic and plastic parts) the nonlocal approach is computationally more efficient than the
gradient models discussed in the next section. A definite disadvantage of current nonlocal
formulations is that they are at odds with existing numerical strategies [95]. Gradient
models, for their part, are much more amenable to an efficient numerical implementation
by preserving their favorable property of containing an internal length scale [96]. Another
disadvantage is that the consistency condition results in an integral-differential equation
instead of an algebraic equation which can be solved locally.
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4. High-Order Gradient Theory

Generally speaking, gradient models and nonlocal models belong to a common theo-
retical category, with the gradient model a particular nonlocal model. Gradient models can
be derived from nonlocal models by expanding the kernel of the integral employed in the
averaging procedure for the inelastic strains. The gradient theory has been widely used as a
very effective tool for regularizing finite element solutions so as to study strain localization
phenomena in geotechnical engineering. Gradient approach was first used for rigid plastic
material to analyze persistent slip bands [97,98] and shear bands [99] in metals. Vardoulakis
and Aifantis [100,101] used the second-order gradient theory in studying the heterogeneous
deformation in the granular media. They modified a flow theory and the yield function by
incorporating high-order gradient, and the incorporation of an appropriate length scale
allowed them to capture the shear band thickness reasonably. To gain a better understand-
ing of its application, the paper of Vardoulakis and Sulem [102] should be referred to.
Ever since, many other researchers have also contributed greatly to this area. Chambon
et al. [103] proposed a local second-order gradient model for dealing with localization
phenomena; Borja [104] obtained a finite element solution for the shear band evolution
using the deformation gradient to map between stress tensor; Voyiadjis and Song [105]
used the gradient theory to capture strain localization when considering micro-interactions
between granular grains. More than just the application of high-gradient approach in a
single-phase solid, it was also used to study the strain localization of saturated porous
media. Chikazawa et al. [106] used a gradient-dependent viscoplastic constitutive model
to study the strain localization of water saturated soils and found strain localization to be
highly dependent on strain gradient; Dorgan and Voyiadjis [107] used the second-order
gradient theory in the kinematic hardening by introducing an internal length scale. They
found the thermos-elastic Helmholtz free energy function to be dependent on those internal
variables and their second-order gradients. Even so, the internal length has not yet clear
physical meaning, being merely a mathematical method.

Now, with a view to explain the mechanism of gradient continuum theory (second-
order generally suffices), we revisit the gradient plasticity formulations proposed by de
Borst et al. [96,108–110], in which they restricted the yield function to second-order deriva-
tives so that the yield function was also dependent on the Laplacian of a hardening param-
eter in addition to the hardening parameter itself [96,108–111],

f (σ, γp, ∇2γp) = 0 (9)

Compared with nonlocal theory, a distinct advantage of gradient plasticity is that
the consistency condition yields a partial differential equation instead of an integral
differential equation,

.
f = nT .

σ− h
.
λ + g∇2

.
λ = 0 (10)

where nT, h, and g are given by

nT =
∂ f
∂σ

(11)

h = −
.
γ

p

.
λ

∂ f
∂γp (12)

g =

.
γ

p

.
λ

∂ f
∂∇2γp (13)

In which g is a positive gradient influence coefficient with the dimension of force [111].
For g = 0, the classical plastic flow theory is obtained. The enhanced gradient theory aims at
preserving the well-posedness of the governing equations for materials that do not comply
with the material stability requirement. When a softening relation between stresses and
strains (h < 0) is assumed or when non-associated plastic flow is postulated as reproducing
an experimental response in soil, the tangential stiffness matrix Dep becomes non-symmetric,
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leading to an inclination of instability. For strain softening materials (h < 0), the gradient
term seen in Equation (13) can act as a stabilizer and guarantee ellipticity of the governing
partial differential Equation (10) after the onset of plastic deformation. For example, in
a one-dimensional problem (de Borst et al., 1993), the gradient influence coefficient g is
expressed by a strain softening parameter and an internal length parameter l,

g = −hl2 > 0 (14)

For strain hardening materials, the Laplacian term with g > 0 is also demonstrably
able to smooth the solution. Similar observations can also be obtained for the general cases
of three-dimensional continua [96,112]. The width of localized zones in strain localization
problems, as measured by the evolution of plastic strain, was estimated analytically by a
constant w = 2πl in a one-dimensional localization problem as shown in Figure 3 (pure
tension of a bar with length L; [111,112]). That is to say the thickness can be related to a
length parameter but not the element size.
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Gradient plasticity theory has proven to be highly versatile for describing localization
of deformation in a continuum media and also to be computational with good efficiency.
The regularization of the gradient approach is effective for both mode I (decohesion) and
mode II (frictional slip) failures. A disadvantage of the approach is the introduction of an
additional variable at global level. What’s more, the determination of the gradient variables
is not an easy task. Importantly, the gradient terms disappear from the constitutive equa-
tions if a homogeneous state of strain and stress is analyzed, and although gradient terms
are negligible if strains vary slowly in the pre-peak regime of strain softening problems,
they exert a significant influence in the presence of strain localization (in the post-peak
regime). Because higher-order continuum models have no effect for homogeneous deforma-
tions, additional parameters of high-order continuum models cannot be measured directly
from elementary tests such as uniaxial or triaxial tension or compression tests. However, a
semi-inverse manner can be used by fitting the experimental results of different types of
tests in the post-peak regime.

5. Micropolar Theory

Micropolar theory is one of the most important regularization approaches, which has
a more physical meaning than a wholly mathematical technique when compared with
other regularization approaches aforementioned (e.g., nonlocal and high-gradient). Many
researchers [43,96,108,113–126] have used micropolar theory as a regularization approach
for analyzing strain localization phenomena, and it has played a positive role to alleviate
or even solve mesh dependency problems by preserving the ellipticity or hyperbolicity of
governing partial differential equations for boundary value problems.
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Micropolar theory (also called Cosserat theory) is a generalized classical continuum
theory. According to Ristinmaa [127], one of the oldest theories belonging to this class of
models is the centennial couple stress theory originally proposed by Voigt in 1887 and
later developed by the Cosserat brothers [128], who removed the connection between the
rotational field and the displacement gradients. Couple stress theory (constrained Cosserat
theory) considers the possibility of body couples existing in the interior of the body and
of surface couples existing on the surface of the body. Because of the relative complexity,
however, it received little attention. Investigations into Cosserat theory saw an uptick
in the early 1960s with the work of, notably, Mindlin [129] and Koiter [130]. Ever since,
Cosserat theory has also been called micropolar theory, a terminology in vogue at that time
that has also been adopted in this manuscript. Interests in the applications of micropolar
theory began to increase in the mid-1970s when specialists in geotechnical engineering
began to link micropolar kinematics and strain localization phenomenon. Finite element
calculations using micropolar theory with independent rotations began with Mülhaus [119]
and de Borst and Sluys [115]. After that, more and more micropolar constitutive models
have been implemented and adopted to analyze the shear localization phenomena of other
microstructural problems by FEM.

In classical continuum mechanics, the strain tensor can be decomposed into a sym-
metric part (the stretch tensor) and an antisymmetric part (the spin tensor) regardless
of whether it is the Green-Lagrangian strain tensor or the Eulerian strain tensor. The
classical spin tensor generally corresponds to the macro-rotation caused by differences
in displacement gradients. However, in practical cases, the onset and evolution of shear
bands is closely related to grain rotation as well as the translational deformations, which
has also been confirmed by experimental results [131,132]. Unlike in classical continuum
mechanics theory, which accounts for only macro-rotations, micropolar theory takes into
account the independent micro-rotations of material points, as seen in Figure 4 (a plane
element having four material points). For example, for a plane strain element, there are
three degrees of freedom (two translational and one rotational). The micro rotations will
cause the micro curvatures and the corresponding energetically-conjugated couple stresses
in the micro element surfaces. Consequently, the theorem of conjugate shearing stress is no
more satisfied as shown in Figure 5.
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In micropolar theory, rotational degrees of freedom are independent of the displace-
ment field and are considered on constitutive level and in balance equations. From a
material point of view, these rotations can be considered as the rotations of grains or aggre-
gates. Accordingly, each grain or aggregate has additional rotational degrees of freedom
besides the translational degrees of freedom. Thus, there are six degrees of freedom (three
translational and three rotational) in three-dimensional problems as Equation (15) and three
(two translational and one rotational) in two-dimensional problems as Equation (16) for
each material point,

3D : u =
[
ux uy uz ωx ωy ωz

]
(15)

2D : u =
[
ux uy ωz

]
(16)

where ωx, ωy, and ωz are the micro-rotations in the x, y, and z directions. These micro-
rotations will cause the micro-curvatures and the corresponding energetically-conjugated
couple stresses in the micro-element surfaces. What’s more, the theorem of conjugate
shearing stress is no more satisfied. For 3D problems, the generalized stress and strain
vectors in micropolar theory are augmented,

σ =
[
σxx σyy σzz σxy σyx σyz σzy σzx σxz

mxx
lt

myy
lt

mzz
lt

mxy
lc

mxz
lc

myx
lc

myz
lc

mzx
lc

mzy
lc

]T (17)

ε =
[
εxx εyy εzz εxy εyx εyz εzy εzx εxz

κxxlt κyylt κzzlt κxylc κxzlc κyxlc κyzlc κzxlc κzylc
]T

(18)

For 2D problems, the generalized stress and strain vectors are simplified,

σ =
[
σxx σyy σzz σxy σyx mzx/lcmzy/lc

]T (19)

ε =
[
εxx εyy εzz εxy εyx κzxlc κzylc

]T (20)

where σxy 6= σyx, σxz 6= σzx, σzy 6= σyz, and mij are the coupled stress components (mii are
the torsion ones and mij (i 6= j) are the bending moments). κij are the gradients of micro-
rotations ωj in direction i. Of the two new incorporated micro length scale parameters lc
and lt, lc is the length scale parameter related to bending couple stress, and lt is related to
torsion couple stress. When the microstructure is considered, a typical strain localization
problem such as the relation of shear band to microstructures can be reasonably predicted
to leave the thickness of shear band to be specified. At the same time, the high-order terms
guarantee the ellipticity (for static problems) of the governing partial differential equations,
especially in the post-bifurcation regime, and then the mesh dependent problems can be
obviously alleviated.

Take the 2D problems for example, for the constitutive relation of elastic materials, the
stress is linearly related to elastic strain by the elastic stiffness matrix:

σ = Deε (21)

In which

De =



λ + 2G λ λ 0 0 0 0
λ λ + 2G λ 0 0 0 0
λ λ λ + 2G 0 0 0 0
0 0 0 G + Gc G− Gc 0 0
0 0 0 G− Gc G + Gc 0 0
0 0 0 0 0 2G 0
0 0 0 0 0 0 2G


(22)
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where Lamé constant λ = 2Gυ/(1 − 2υ), G and υ are the conventional shear modulus
and Poisson’s ratio, respectively, and Gc is the micropolar shear modulus affecting the
asymmetric degree of shear stress.

According to de Borst et al. [96] the strain and stress invariants within the framework
of the micropolar theory can be formulated as:

.
ε

p
d =

[
b1

.
ep

ij
.
ep

ij + b2
.
ep

ij
.
ep

ij + b3
.
κ

p
ij

.
κ

p
ijl

2
c

] 1
2 (23)

J2 = a1sijsij + a2sijsji + a3mijmji/l2
c (24)

where
.
ep

ij is the plastic deviatoric strain rate tensor,
.
κ

p
ij is the plastic micro-curvature rate

tensor, and sij is the deviatoric stress tensor. The summation convention with respect to
repeated indices has been adopted. Furthermore, the deviatoric stress q is updated by new
stress invariant

√
3J2. For numerical convenience, the choices a1 = a2 = 1/4, a3 = 1/2 and

b1 = b2 = 1/3, b3 = 2/3 have been used in majority cases [96,115,133].
Micropolar theory can yield efficient and fully mesh-independent solutions for static

problems as well as for dynamic problems. In analyzing the problems of frictional slip
failure mode (mode II failure type) involving a high localized shear band, the micropolar
approach seems to be a particularly natural framework, being easily implemented and
physically meaningful. However, a disadvantage of the micropolar continuum theory is
that the rotational degrees of freedom are activated only under shear loading. Numerical
results suggested that for failure problems in which decohesion played a prevailing role
(mode I failure type), rotational degrees of freedom became inactive and microcurvatures
remained zero, as did the energetically-conjugated couple stresses. That is to say, when
decohesion rather than frictional slip is the predominant failure mode, the regularization
effect of micropolar theory is generally too weak to preserve the ellipticity of the boundary
value problems. Instead, for tensile loadings in which decohesion is the main cause of
structure failure, nonlocal models [134] are very effective at keeping the boundary value
problem elliptic. It is worth noting that strain localization in dry and saturated specimens
has been studied experimentally by many researchers on loose sand as well as dense
sand, demonstrating that frictional slip (mode II failure mode) is the dominant failure
phenomenon [135–137]. It is also the main failure mechanism for geostructures in reality.
There is no doubt, then, that micropolar theory can be used to analyze strain localization
problems in geomaterials.

6. Discussions

In this paper, four main numerical regularization techniques, i.e., viscosity theory,
nonlocal theory, high-order gradient and micropolar theory, are fundamentally demon-
strated. Inevitably, each regularization method has its disadvantages and limitations, and
in some cases in which a single regularization method does not work well, a regular-
ization method combining at least two regularization approaches might be efficient. In
general, the combination of viscosity with another regularization technique has seen wide
adoption. For instance, Wang et al. [58,138] proposed a model regularized by both rate
dependency (viscoplasticity) and plastic gradient that was effective for both quasistatic
and dynamic problems when dealing with mesh dependency problems. What’s more,
interactions between these two methods in controlling shear band thickness were also
discussed. Oka [55,139] proposed a gradient-dependent elastoviscoplastic model for clay
to study the strain localization problems and deformation mode. Based on a typical plastic
constitutive model proposed by de Borst et al. [109] that featured both rate and gradient de-
pendence for strain localization analysis, Zhang [140,141] predicted the internal length scale
of the combined model for general cases and illustrated the interactions between different
length scale parameters for rate dependency models and gradient plastic models from a
mathematical point of view using a one-dimensional example. Liu and Yang [45] proposed
a coupled Boit-Cosserat model produced by combining both Biot’s theory (the pore pres-
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sure dissipation is rate-dependent) and micropolar theory with a view to simulate strain
localization phenomena caused by strain softening in saturated porous media. Numerical
results demonstrated the developed models’ abilities to maintain the well-posedness of
boundary value problems while incorporating strain softening behavior, as well as the
capability to reproduce the strain localization phenomena in geotechnical structures.

From the above descriptions of the four main regularization techniques, it can be seen
that the domain of the strain localized region is closely related to the internal length scale,
however, the meanings of different length scales and their relations to the thickness of
shear band are not identical. For viscoplastic model, take the consistency model proposed
by Wang et al. [58], the shear modulus, shear wave speed, viscosity parameter as well
as the softening parameter, etc. are believed to decide the thickness of shear band, and
these factors can be related to the cut off value of the strain rate at the edge of the shear
band by an implicit parameter with length scale. What’s more, under the approximate
form of the relation, the implicit length scale is able to denote the thickness of shear band.
For nonlocal theory, certain internal variables closely related to the strain localization are
averaged in a nonlocal finite volume to reach the regularization effectiveness, and the finite
representative volume decided by the parameter with length scale is believed to be the
damaged region and strain localized region. In this way, the size of the strain localized
region is controlled by the internal length scale and the chosen weighting function. For
gradient theory, a special case of the nonlocal theory, the gradient term can be denoted by
the softening parameter and the internal length scale, then it can be thought to reflect the
fact that below the certain size scale the interaction between the microstructural carriers of
the deformation is nonlocal, resulting in the thickness of shear band decided by the internal
length scale. For a micropolar model, the independent grains’ rotations result in the couple
stresses, therefore, in 2D problems the internal length scale is naturally regarded as the
bending length between grains or aggregates for granular materials. Thus, the thickness of
shear band can be predicted by the value of the internal length parameter as the relation
between the grain size and the shear band thickness in experimental tests.

The respective and common features of the discussed regularization techniques are
summarized in Table 3, based on which researchers can choose them more reasonably and
scientifically according to their features. Furthermore, one technique maybe not enough
to fit all problems, so the micropolar technique and its combination with other numerical
techniques are favored in prospective.

Table 3. Features of each regularization technique and promising prospective.

Numerical Techniques Respective Features Common Features

Viscosity approach

Being able to consider the rate-dependent behaviors
of soils;

It can be used to model both the slip-driven failure and
the decohesion-driven failure of soils;

It only requires operations at the local level in
constitutive models;

The implementation is very simple.
However, it is not appropriate for modelling the

rate-independent materials.

The abilities to maintain well-posedness
of boundary value problems while

considering strain softening behavior;
Some implicit or explicit parameters with

micro-length scale are contained in
the models;

With excellent performances in dealing
with mesh dependency problems in FEM;
The thickness of strain localized region is
closely influenced by the internal length
scale of each regularization technique;

Besides the micropolar theory, of which
the length scale can be regarded as the

mean grain size, it is still an open
question for other regularization

techniques to physically relate the length
parameters to grain size.

Nonlocal approach

It works well for both the decohesion-driven and the
slip-driven failure modes;

It is computationally more efficient than the high
gradient models;

However, the choice of nonlocal variable is not an easy
task, and it is affected by specific problems;

The integral-differential equation is more complex than
algebraic equation.
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Table 3. Cont.

Numerical Techniques Respective Features Common Features

High-gradient approach

Gradient models can be derived from nonlocal models
by expanding the kernel of the integral;
It has good efficiency in computation;

It is effective for both decohesion-driven and
slip-driven failures;

However, it introduces an additional variable at global
level, and the determination of the gradient variables is

not easy.

Micropolar approach

Micropolar theory takes into account the independent
micro-rotations of material points, so it has a more

physical meaning than a wholly mathematical technique
when compared with other regularization

approaches aforementioned;
It can efficiently and fully obtain the mesh-independent

solutions for static problems as well as for
dynamic problems;

The thickness of shear band can be controlled by the
length parameter as the cases it is influenced by the

mean grain size in laboratory tests;
However, when decohesion rather than frictional slip is
the predominant failure mode, the regularization effect
of micropolar theory is generally too weak to preserve

the ellipticity of the boundary value problems.

Micropolar approach and
its combinations with

other numerical methods

In present paper, the micropolar theory, considering particles’ rotations and moments, is favored and
believed to have more wide applications in the future. Besides the combinations of different

regularization techniques discussed above. For further study, the combinations of micropolar theory
with other numerical techniques, such as DEM, SPH, MPM, FCM, etc., can play more significant roles.
For example, the macro rotation in strain localized regions can be described by micropolar technique,
but for the most concerned regions or the interactions between particles can be analyzed by DEM.

7. Conclusions

In conclusion, with the capability of overcoming the numerical difficulties and dealing
with the mesh dependency problems, the regularization approaches, including viscosity ef-
fect, nonlocal theory, high-order gradient and micropolar theory, have always been adopted
to reproduce and track the onset and evolution of the strain localization phenomena in
geotechnical engineering in finite element analysis. No matter which regularization method
is adopted, at least one explicit or implicit internal length scale parameter must be generally
incorporated into the constitutive model. In the research of many scientists aforementioned,
the internal length scale parameters have been hypothetically related to the microstructure,
with random constants distributed within a certain range of the ratio of a structure’s typical
dimension, internal defection, or even interactions, etc., indicating that the physical mean-
ings of internal length scales and their interrelations have not been obtained a common
sense until now. Accordingly, further investigation of these internal length scales in each
regularization approach is still a matter of great urgency and significance.

At last, the argument of Tejchman [125] is also favored in present paper, the micropolar
approach is more suitable, from a physical sense, for modeling of shear zones in granular
materials than other models that seek to capture strain localization in a proper manner (e.g.,
the nonlocal, high-order gradient, and viscous models), because it takes into account grains’
rotations and couple stresses, which can be experimentally observed during shearing
(even though these remain negligible during homogeneous deformation). What’s more, its
developments or combinations with other numerical methods are believed to be promising
in geotechnical engineering in the future.
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