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Abstract: This paper presents an architecture and a platform for processing of water management
data in real time. Stakeholders in the domain are faced with the challenge of handling large amounts
of incoming sensor data from heterogeneous sources after the digitalization efforts within the sector.
Our water management analytical platform (WMAP) is built upon the needs of domain experts (it
provides capabilities for offline analysis) and is designed to solve real-world problems (it provides
real-time data flow solutions and data-driven predictive analytics) for smart water management.
WMAP is expected to contribute significantly to the water management domain, which has not
yet acquired the competences to implement extensive data analysis and modeling capabilities in
real-world scenarios. The proposed architecture extends existing big data architectures and presents
an efficient way of dealing with data-driven modeling in the water management domain. The
main improvement is in the speed (online analytics) layer of the architecture, where we introduce
heterogeneous data fusion in a set of data streams that provide real-time data-driven modeling and
prediction services. Using the proposed architecture, the results illustrate that models built with
datasets with richer contextual information and multiple data sources are more accurate and thus
more useful.

Keywords: water management; groundwater level; internet of things; data mining; stream mining;
machine learning; data cleaning; predictive analytics

1. Introduction

During recent decades, the issue of water management has gained great interest due
to the constantly growing water demand, the limited availability of global water resources,
and the effects of climate change. Decision-makers strive towards utilization of optimal
water exploitation regimes, realizing that new approaches need to be adopted in order to
optimize the use of water resources. Scientific research, based on the latest technological
advancements, seeks to establish reliable, effective, and innovative solutions for integrated
water management and water resources preservation. These efforts are reflected in the
growing smart water management (SWM) paradigm, empowering a variety of information
and communication technology (ICT) methodologies. Wireless sensor networks and com-
munication technologies provide a powerful inventory tool to water operators, enabling
them to oversee significant water parameters in real time [1,2]. In fact, basic monitoring
of the water-related data can be extended with data analysis techniques to gain deeper
understanding of the underlying processes and even further with predictive analytics. This
contribution might prove crucial to the challenges of future water management.

Managing water relies on heavy physical infrastructure investments and inherently
reactive governing attitudes; thus, decision-making constitutes a challenging task for

Sustainability 2022, 14, 2886. https://doi.org/10.3390/su14052886 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14052886
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4918-0650
https://orcid.org/0000-0002-8540-5597
https://doi.org/10.3390/su14052886
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14052886?type=check_update&version=1


Sustainability 2022, 14, 2886 2 of 18

the operators, especially under the framework of securing systems’ sustainability and
resilience. Compared to other disciplines, the water domain has not yet witnessed thorough
investigation in terms of bringing together real-time monitoring, big data analysis, and
machine learning with advanced control systems and the internet of things (IoT). Scientific
research focuses on optimizing individual aspects of the water chain, while only recently
it turned to the development of cyber-physical systems towards a holistic and digital-
oriented approach to water management. Under this realization, the water management
analytical platform (WMAP) brings a multifunctional advanced tool to the table which
offers robust solutions in combining multiple types of data inputs and conducting analyses
using multiple modeling frameworks, especially when there is a goal of producing near-real-
time predictions as the basis of decision-making. Additionally, the ability to monitor and
model water systems more accurately and respond more quickly to unexpected changes
could provide a basis for adaptive management. The hydro-environment community could
benefit from the proposed tool by bringing powerful optimization capabilities to practice
and opening a wealth of opportunities for water management practitioners.

In many cases, water distribution networks monitor groundwater and surface water
bodies with a variety of sensors. Typical measurements include water level, pressure and
flow rate, water quality, etc. Related quantities such as precipitation, temperature, evapo-
transpiration, pumping water energy, or data emerging from human behavior or remote
sensing data are also relevant and are being collected by either water utilities or different
environmental agencies [3]. Combining these data enables discovery of causative relations
between water demand and demand drivers by means of demographic, socioeconomic,
touristic, and infrastructure effectiveness indicators and provides an a priori knowledge
on the patterns of water availability and demand [4]. Furthermore, all this knowledge can
be used as an input to predictive algorithms and thus, water utilities and municipalities
have the opportunity to plan water exploitation better, taking into account a fast-changing
environment (mainly due to climate change and population growth). Typical use cases,
where users benefit from efficient data-driven analytics, are in prediction of surface or
groundwater levels, prediction of water quality parameters, prediction of water demand
on household, district or urban levels, predictions of water demand in agriculture, etc.
In order to exploit the water management data and implement intelligent solutions, a
robust and efficient platform is needed. Some of the required functionalities include: data
integration from heterogeneous (streaming) sources, data cleaning, enrichment and fusion,
standardization of data access, and data mining and data-driven modeling capabilities that
enable batch as well as real-time processing.

In this paper we describe an overall architecture of the WMAP and its integration
into a real-world scenario. The presented solution is based on the EU H2020 Water4Cities
project [5]. The architecture can ingest large volume of high-velocity data and process it
either using online (close to real-time) or batch settings. The outputs of the platform match
the needs of the water management stakeholders as identified in Section 2.2. Our main
focus is on the online processing. We present data collection, data cleaning, and missing
data imputation techniques as well as online contextual heterogeneous data fusion, which
enables more accurate predictive analytics. We also introduce stream mining techniques
for online processing into water management domain. The latter can effectively address
many big data-related issues in an IoT setting. In such a setting, the user is often faced
with high-velocity data streams from a large amount of fairly independent sensors. The
consequence of the independence is twofold: (1) data streams can be easily processed in
parallel (which means that this could be achieved even without the use of modern tools for
distributed processing like Apache Hadoop, Spark [6] and others), and (2) stream mining
models represent a computationally cheap solution to model the large amounts of data.

The contributions of this paper are as follows. (1) We present a conceptual architecture
for WMAP, which we built upon our previous work on the numerous subcomponents.
We developed our solution based on lambda [7] and hut [8] architectures. We suggest
refinements and particular implementation details of the architectures in order to support
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the needs of the water domain. (2) Our implementation supports real-world use case
integration. The platform provides the complete pipeline for data analysis from its source
(sensor, weather forecast, or other human-behavior data) to the final product (i.e., data-
driven prediction for groundwater level or household daily water consumption profile).
(3) To the best of our knowledge, we have introduced stream mining methods into the
water domain. Stream mining techniques improve the computational performance of the
pipeline and provide models that are better at adjusting to the changes (concept drift) in the
real-time data than traditional batch models. (4) We integrated a solution for heterogeneous
sources data fusion in a stream in the architecture, which enables contextual information
to be included in the data-driven models and consequently increases the final accuracy of
the models.

The paper is structured as follows. In Section 2.1 we present the relevant related work
and explain the benefits of our approach. In Section 2.2 we present typical water domain
use cases and corresponding data types. In Section 2.3 we present the architecture, which is
able to handle the previously identified data and its integration into a real-world system.
We proceed by presenting particular components within the architecture and corresponding
results in Section 3 and finally we conclude in Section 4, where we also provide insights
into the future challenges.

2. Materials and Methods
2.1. Related Work

The literature proposes a couple of architectures that are suitable for big data process-
ing within the internet of things (IoT) applications. The lambda architecture was proposed
by Marz and Warren [7]. The architecture includes two independent pillars for big data
processing, the batched processing (batch layer) and the stream processing (speed layer).
The serving layer presents a view of the results. The hut architecture [8] extends the
lambda architecture by formalizing the data acquisition and message distribution (broker)
components on the one hand and reduces the generic nature of the speed layer on the
other. It reduces real-time processing to event processing, by which we lose the potential
for real-time machine learning techniques. We propose two adjustments to the existing
architectures: (1) We propose a concrete framework for realization of the speed layer in
the lambda architecture which will serve the needs of water management domain. (2) We
propose the extension of the hut architecture with real-time machine learning components
within the speed layer (in contrast to only event processing, based on the rules generated
in the batch layer). Additionally, we propose the existing hut architecture’s principle to
deploy models learnt in the batch layer to the speed layer, where predictions are generated
on real-time data. Stream mining is a well-researched topic [9]; however, it lacks real-world
applications [10]. Many incremental learning algorithms exist. Among them are methods
that are based on stochastic gradient descent like recursive linear regression, support vector
machines, and neural networks [11], methods based on decision and model trees and their
ensembles [12] (i.e., streaming random forests) and incremental deep learning [13]. Many
well-known platforms that enable large scale analytics (Apache Spark, Samza, and Flink),
which are used in production systems, still lack implementations of more complex stream
mining algorithms. Among platforms that do enable incremental learning techniques we
can find academy-oriented frameworks such as MOA [14], scikit multiflow [15], and other
smaller projects dedicated to a single algorithm only. The infrastructure is sufficient, but a
unified production-oriented framework for stream machine learning techniques is needed.
We have based our work on QMiner [16], which has been successfully deployed in many
industry-grade use cases (from energy management to world news monitoring to anomaly
detection in large computer clusters).

Our main contribution is related to the inclusion of advanced heterogeneous data
fusion in the streaming setting. To the best of our knowledge, our methodology [17] is
the only one that deals with data fusion in an online scenario. A similar platform, IoT
streaming data integration (ISDI) [18], also solves real-time data integration using the
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generic window-based algorithm paradigm. The platform deals with the time alignment
issues and inherent heterogeneity of the incoming streaming data; however, it solves
the issue of data fusion with a batched algorithm on top of a relational database. Other
methodologies are mainly focused on solving non-heterogeneous sensor fusion, which is
not suitable for solving problems in environmental data-driven modeling [17]. The issue
has gained a lot of attention from the scientific community in recent years.

In the water domain, the research focus on data analytics ICT systems is spread among
various topics. Research has identified the potential of artificial intelligence techniques
for deepening the understanding of the acquired IoT data and for aiding decision-making
processes. Various architectures and functionalities have already been researched in several
areas of water management [19]. For instance, ref. [20] introduces a case study where
they deploy an IoT-enabled platform in order to gather data for precision agriculture and
ecological monitoring. In another case, ref. [21] presents a web-based platform for water
efficient households. The platform enables consumers to monitor and control the water
and energy consumption of their households in real time. From a hydrological perspective,
a global web-based catchment area (river basin or urban subcatchment area for rainwater)
hydrological information platform allows both scientists and non-expert users to easily
access and visualize hydrological information for local-level water management and water
stewardship in catchments [22]. Although the aforementioned ICT platforms provide
advanced and innovative features for water management, their design does not favor easy
adaptation to other uses. Their main drawback is the lack of support for standardized
data exchange protocols, while they also need to address connectivity with additional data
analytics tools. Our platform (WMAP) is implemented as an integrated support tool that
has the potential to adjust to different stakeholders’ needs, combining fast data acquisition,
data fusion capabilities, and low-computational stream mining methods.

On a conceptual level, the usefulness of a big data analytics platform for groundwater
management has been recognized by the Southern African Development Community [23].

2.2. Typical Use Cases and Data Description

There is a great range of typical scenarios where ICT systems have the potential to
improve efficiency and facilitate critical decision-making in the water domain. Precision ir-
rigation, optimization of water distribution networks, preservation of environmental flows
in lake and river ecosystems [24], prevention of extreme events (floods and droughts) along
with water-oriented urban planning, present only a few interesting scenarios. Traditionally,
water management has been driven by process-based models focusing on revealing the
mechanisms of natural water resources and simulating the operation of water-related
infrastructure. Although modeling provides reliable and useful insights in relation to
critical parameters of the water cycle, its usability is limited and often fails to produce
timely solutions. The complexities and extensive detailing involved in the representation
of water processes make the development of process-based models extremely challenging.
Some of the major drawbacks arise from issues related to miscalibration, over parameteri-
zation, high computational requirements and extensive data preparation, while adapting to
changes and capturing hidden system dynamics is often impossible. Data-driven methods,
on the other hand, bridge some of the shortcomings of the process-based models by relying
heavily upon machine learning methods. This gives them the ability to overcome the
(in several cases) unknown physics of the modeled system by exploiting the information
implicitly hidden in the data. In agriculture, data analytics can reveal the causal relations
between irrigation and crop production and assist with preparation of reasonable and
precise irrigation schedules in compliance with environmental and socioeconomic aspects.
Furthermore, predicting water availability and demand, detecting anomalies throughout
the water distribution system, and raising alarms in case of water quality deterioration
present an important added value in urban water management. In terms of lake and river
ecosystems management, predictive analytics can allow proactive interventions both in
regulating environmental flows and preventing water quality degradation [25]. Floods
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and droughts, due to their devastating consequences on ecosystems, food supply and
economies, present a rather sensitive sector, where the proposed platform could proactively
predict such events and reveal the circumstances under which they may take place.

Since water management is often a complex process, encompassing various activities
and involving different stakeholders, the optimal use of water resources implies a wide
range of actions. Water system monitoring (by in situ sensors or remote sensing) is essential
in order to understand the underlying behavior of critical components of the system.
Monitoring includes data collection from various sources in (almost) real time. In this
paper, we assume that the underlying IoT infrastructure is already in place. Our tools
provide a data management and analysis level on top of the sensor layer. Typical data
sources in the water domain are (see Table 1):

Table 1. Typical data sources in the water domain and corresponding indicative subcategories.

Typical Data Sources in the Water Domain Indicative Subcategories

Surface and groundwater bodies data
groundwater level and pressure; permeability

and storage capacity; river water level and
discharge rates; flood inundation areas

Meteorological data precipitation; temperature; evaporation; wind
speed; radiation

Water repository data
accessible storage volume; water storage

bathymetry and level; reservoir or tank water
level; storage inflows, outflows and offtakes

Water exploitation data
volume of water taken from groundwater,

rivers, lakes, and storage infrastructure; water
pumping data

Water quality data temperature; pH; oxygen; nutrients; chlorine
concentration; electrical conductivity

Water pollutant data heavy metals concentration; fertilizers;
pesticides; bacteria; algae

Water distribution data flow rate; pressure; energy consumption

Human-behavior data water consumption; migration/tourism; public
participation data

Spatial data

infrastructure; future and current land use;
water bodies; static data based on previous
measurements and process models; surface

and topology; geological data; risk maps

Administrative data water management area boundaries; water
prices; water infrastructure inventories

Collected data can be further analyzed and used for modeling. Data-driven forecast-
ing has the potential to reveal system dynamics and produce meaningful and accurate
predictions about the state of crucial system components. Thus, water experts and water
operators will have the advantage of obtaining the necessary knowledge to proceed in
effective water management plans and secure sustainability of water resources.

Possible scenarios for usage of data-driven modeling are:

• Providing water security in agriculture (predicting water availability and demand,
regulating irrigation schedules, setting sustainable limits on water allocation);

• Delivering water supply services (predicting supply and demand fluctuations, pre-
dicting availability of water resources, securing adequate water quantity and quality,
semantic annotation of water demand, detecting anomalies throughout the water
distribution network in households or district areas in terms of leakage, theft, etc.) Se-
curing water in aquatic ecosystems (specifying environmental flow regimes to achieve
sustainability, identifying water contamination, and regulating the quality);
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• Reducing flood and drought risk (in-time storm water “hot spot” localization by
operating early warning systems, constructing efficient flood control infrastructure,
predicting drought events and taking the necessary preventive measures);

• Promoting integrated urban water management (IUWM) (suggesting possible lo-
cations of nature-based solution (NBS) interventions, designing land use change
allocation, assessing groundwater levels for urban planning extension).

We present two illustrative examples of typical water management use cases.

Example: Island of Skiathos, Greece. Skiathos Island is a typical Greek island with a
high touristic influx during the summer, which exceeds its population of 5000 inhabitants.
The influx results in a sharp increase in water demand during summer. This, combined
with an aged distribution network with high water loss due to leakage, means the island
often faces water shortage issues during the touristic peak. The quantity and quality of
groundwater, which serves as the island’s water supply, are being increasingly deteriorated;
thus, the water operator was forced to take actions towards a more efficient and rational
water management plan.

Balancing the water supply by means of water abstraction regulation, effective pressure
control schemes, and improvements to ageing infrastructure will help to rationalize the use
of the finite water resources. However, the accomplishment of an effective management
regime requires a thorough insight in relation to hydrological and hydraulic parameters and
other related variables. Aquifer water level, water abstraction rate, pressure throughout the
water supply network, seasonal water demand levels, touristic arrivals, weather predictions,
etc., are some of the parameters that the water operator needs in order to apply different
water supply regimes in accordance with demand [26].

Additionally, in terms of water quality, measurements have shown mercury concen-
trations above the safety threshold in the groundwater. Thus, water cannot be used for
drinking or cooking purposes and people turn to bottled water to cover these needs. In-
creased mercury concentrations are linked to high salinity in the water; therefore, it becomes
important to quantify seawater intrusion, which entails measurements of groundwater
level, temperature, and conductivity.

In order to proceed to a smart water monitoring scheme, the operator installed a
range of wireless sensors measuring flow, pressure, water level, temperature, and water
quality parameters, producing large amounts of real-time data. However, these data are
not interoperable, so the water operator is faced with the need to install various different
platforms to get access to the data, while any data fusion exercise is an arduous task. From
this perspective, Skiathos presents a suitable case for the implementation of our proposed
water management analytical platform. The uniform access to the data along with the
implementation of data analytics and prediction algorithms will not only serve the efficient
real-time data monitoring but will enable new insights into water management planning.

Example: Ljubljana urban region, Slovenia. The goal of the Ljubljana case study is
to provide a reference system that will enable integrated urban water management (IUWM).
IUWM is based on existing water supply and sanitation principles within an urban area
by involving urban water management within the scope of the entire river basin [27]. The
conceptual framework and approaches regarding a more efficient IUWM have evolved
the past decades to involve new technology solutions, the idea of integration towards the
holistic theory, and the public participation through awareness raising and participatory
designing. The IUWM system should enable stakeholders to gain deep knowledge of
their water systems through the clever visualization of key design parameters, and a valid
simulation that will complete and interpolate their information. This way, hidden elements
of the urban water cycle will be revealed as well as cause–effect relations. Stakeholders,
including citizens, will benefit from optimum and inclusive design. There is a need to build
an appropriate system that will enable IUWM decisions on an urban district level.

We found the Ljubljana case study suitable as a reference system because the urban area
of the Ljubljana City spreads between two rivers—the Ljubljanica and the Sava rivers, the
latter being the main Slovenian river discharging water from the Alpine mountains in the
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north-west of the country. The urban and agricultural area between the two rivers is where
almost 15% of Slovenian inhabitants live and work and the main groundwater resource
at the same time. Two recharging components of the Ljubljanskoaquifer, i.e., the local
precipitation and infiltrated Sava River, are exposed to different sources of contamination
because they originate from different parts of the hydrological circle. The area of the city of
Ljubljana has a long history of various flood protection measures. Nevertheless, many parts
of the urban area of the city are still heavily threatened by floods, which are a consequence
of intensive urbanization, surface run-off increase, as well as climate change effects.

The use of information and communication technologies (ICT) enables IUWM by
weighting the measure not only in comparison with comparable measures, but also against
other aspects of planning [28]. It is important that any system results are precise enough
to enable IUWM decisions (e.g., investments in infrastructure, city master plan rules);
therefore, the big river catchment areas need to be sliced into suitable sub–catchment areas
on an urban district level. Freshwater, wastewater, and storm water constitute the parts of
the urban water cycle, while the urban surface, the aquifer, and water supply infrastructure
constitute the linking mediums that intervene in the natural water cycle, forcing an altered,
disturbed urban water cycle. The level of disturbance determines the consequences for
water availability, water quality, and the regime of flows that with the increase of extreme
events may (or already) constitute a severe threat to social integrity, urban infrastructure,
the economy, and the natural environment. The architecture should support ingestion of
the identified data sources and provide mechanisms to perform the usage scenarios. The
interaction of groundwater with other urban systems, such as infrastructure and surface
water networks, is well recognized by expert practitioners and is increasingly important to
the everyday city agenda [29]. Therefore, the first step towards the IUWM reference system
in Ljubljana is presented with groundwater level sensor data.

2.3. Architecture

Lambda [7] and hut [8] architectures provide a solid basis for building the water
management analytical platform (WMAP). According to the identified usage scenarios in
the water management domain, we propose a couple of modifications which are depicted
in the WMAP architecture in Figure 1.
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Figure 1. Proposed modification of lambda and hut architectures for usage in the water management
domain. Heterogeneous input data streams are fused in the data fusion component and pushed into
both speed and batch layers. The speed layer includes two types of models—incremental (being
updated with only new data online) and batch. Batch models are updated with all the data from the
batch layer.
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Arrows in the figure depict data flows. Streaming data is handled by Apache Kafka
infrastructure in the back end and with Web Sockets (which can be ingested by HTTP clients)
in the serving layer. Static data, web resources, and communication within the batch layer
are handled with HTTP requests. The data enters the framework directly from sensors
(and corresponding adapters) and from data collection in the data gathering infrastructure
(from different web resources that need to be polled for the data). All the data undergoes
the initial online data cleaning and fusion. The data fusion component is depicted in more
detail in Figure 2. This component provides ingestion of different heterogeneous data
streams (including different streams from the internet of things, weather forecasts, and
static data on human behavior). All these streams are enriched (with different aggregated
values of the stream). In the next step, we join the streams together with special attention
to their records’ original timestamp. Finally, we compose the feature vectors. Fused
(feature vectors) are injected into speed and batch layers and used for predictions of further
modeling. Raw data is also pushed into the batch layer for further offline analysis. It is
worth noting that we propose the usage of data-driven machine learning models even in
the speed layer (we do not limit it to event processing). Technologies like heterogeneous
streams data fusion and stream mining provide fast alternatives to traditional data-driven
analytics. Finally, results are exposed via the serving layer.
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Figure 2. Design of data fusion component in the speed layer. The component is able to ingest three
types of data streams and output a stream of feature vectors.

The speed layer consists of two different predictive models: stream models (which
are based on incremental learning) and batch predictions, which implement batch models
developed in the batch layer. Both components provide similar functionality; however,
incremental models are updated with each new measurement whereas batch models need
to be updated from the batch layer. As shown in the data description, the uses in water
management consist of larger number of contained data-mining problems. Parallelization
of the computational tasks in such a setting emerges naturally. Each use (sensor) is indepen-
dent and requires limited needs for computation power. Therefore, the load can simply be
balanced over a set of workers, which are connected by data distribution infrastructure as
depicted in Figure 3. The whole streaming pipeline (data fusion and speed layer) is generic
and is described in more detail in related work [17].
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The batch layer includes data gathering infrastructure (a data layer that can consume,
store, and serve large volumes of data according to the specific use, and is able to perform
data cleaning and missing data imputation) and batch models with Jupyter Notebooks to
support machine learning on top of these data. The aim of the batch models component is
twofold: (1) the learned models is fed into the batch predictions component in the speed
layer, and (2) data-mining process results are provided from the batch modeling component,
which is useful for on-demand processing. The layer also includes monitoring and API
management (to handle availability and access to the data).

2.4. Notes on the Implementation of Speed Layer

An illustrative example of the implementation of the speed layer is depicted in Figure 1.
Sensor, speed, and serving layers are positioned from left to right. The gray rectangle
depicts the data distribution infrastructure, which takes care of transferring streaming
data between components. The blue color depicts components and data flow related to
sensors (IoT). The green color represents forecasts (i.e., weather forecasts). The yellow color
represents static metadata sources. Data fusion components are depicted in purple, and
finally the modeling components and its predictions are depicted in brown.

Data are flowing from left to right, originating from sensors or other sources, being
infused into appropriate message channels or topics (depicted as circles) in the data dis-
tribution infrastructure and then consumed by different instances of fusion components.
These components can consume data from the same or from a different set of sensors,
forecasts, and static metadata sources. Here the data are enriched, validated, consolidated,
and finally merged into viable feature vectors suitable to be consumed by machine learning
models. The models (either batch or stream based) consume the data from fusion message
channels and provide results to prediction message channels. Multiple models can consume
data from the same fusion message channel, meaning that we can easily provide multiple
predictions with heterogeneous properties for the same scenario.

There are many viable platforms to be used for message distribution. We have in-
tegrated Apache Kafka (https://kafka.apache.org/, accessed on 1 January 2022), which
seems to be the favorite choice in terms of performance and functionality, and RabbitMQ
(https://www.rabbitmq.com/, accessed on 1 January 2022) in some cases. The data fusion
component has been implemented with QMiner (http://qminer.ijs.si, accessed on 1 January
2022), which enables large-scale data analysis and provides methods (stream aggregates)
for enrichment and consolidation of the heterogeneous streaming data. Stream models have
been implemented using the same framework, but experiments have been performed also

https://kafka.apache.org/
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Sustainability 2022, 14, 2886 10 of 18

with Scikit-multiflow (https://github.com/scikit-multiflow/scikit-multiflow, accessed
on 1 January 2022) and MOA (https://moa.cms.waikato.ac.nz/, accessed on 1 January
2022), which offer a larger variety of algorithms. However, none of the platforms for
stream learning algorithms has reached the maturity that could enable it to be used in
production setups with ease and confidence. Batch modeling has been developed using
Python scikit-learn (https://scikit-learn.org/, accessed on 1 January 2022) library.

Particular parts of the platform are described in the Section 3. Every subcompo-
nent of our architecture has been described in a separate paper, which is cited in every
subsection below.

3. Results and Discussion
3.1. Data Gathering Infrastructure

Data gathering infrastructure was implemented as part of the batch layer and is
depicted in the bottom of Figure 2. The layer is described in more detail in related work [30].
It consisted of a data collection component, which controlled subscribing, polling, and
preprocessing of external data sources. The latter can include remote devices, sensors,
external data access APIs, and other web resources. A built-in feed monitoring component
provided the ability to notify different stakeholders about failures and anomalies in the
incoming data streams. The data were stored in a MongoDB NoSQL database. The latter
allowed handling of data records with flexible schema. We have identified this as a useful
feature, since some feed formats may evolve over time and records from different time
intervals may contain different data fields. Additionally, the batch layer offered end
users secure and uniform access to the data and easy integration with widely used data
analysis tools such as Jupyter Python and R notebooks, Matlab scripts, and others. The
data gathering infrastructure could also be used to trigger stream simulations, which are
helpful for testing and development of streaming models. Loosely coupled data collection
components could be scaled horizontally in order to improve performance.

In Water4Cities scenarios, we have stored the information about groundwater levels,
pump sensors, and weather data. Special attention was given to the ease of integration of
different data sources by providing boilerplate code in various languages (Python, Java,
JavaScript). The platform performance has been proven adequate in the traffic domain,
where we retrieved and stored approximately 100,000 records per hour (records include
images and heterogeneous sensor data for Slovenia), collecting more than 1.2 TB of data per
year. With just this amount of data, we could monitor the whole center of Ljubljana with
water smart meters with an update interval of 15 min in every household. As data collection
components could be distributed to different machines, the bottleneck was represented
by data storage [31]. Even with a single high-end server the authors were able to achieve
throughput of 1882 records per second, which is equivalent to 1.6 million records in 15 min.
Such a setup would be adequate for the whole Ljubljana region and the database could
have been scaled horizontally by adding new machines to balance the system load.

3.2. Missing Data Imputation and Data Cleaning

According to the CRISP-DM methodology [32], the process of data mining is devised
into six separate stages. Modeling itself represents only one of these stages and the majority
of a data scientist’s work time is invested in a process of understanding and preparing data.
Data preparation includes data transformation, data cleaning, missing data imputation,
and also data fusion, which is described in Section 3.3. Algorithms for data cleaning and
missing data imputation differ significantly between the speed and batch layers. Within the
speed layer, the algorithms should be simple and efficient and should rely only on historic
data of a time series in question. They should also be autonomous and should not rely
on any expert intervention, as the data stream is continuous. We proposed the usage of
the Kalman filter’s short-term prediction capabilities in order to address outlier detection
(cleaning) and sporadic missing sensor readings in a data stream [33]. In the batch layer it
is feasible to use more complex and therefore more effective models that can rely on any

https://github.com/scikit-multiflow/scikit-multiflow
https://moa.cms.waikato.ac.nz/
https://scikit-learn.org/
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data within the dataset and exploit the power of machine learning to find optimal models
for missing data imputation as well as for anomaly detection, as described by [34].

An example of the results of the missing data imputation algorithm on a “Ljubljana
polje” groundwater levels dataset [35] is depicted in Figure 4. Nearby sensors were used to
predict the missing values of another sensor. High accuracy of the methodology suggests
that the data from the sensors were reliable. Accuracy of the sensors maintained by
Slovenian Environment Agency is ±0.01 m [36].
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Figure 4. Example of missing data imputation algorithm based on nearby sensors, R2 > 0.99. The
dataset with missing data is depicted in the top panel. The imputed part of the time series is depicted
in black in the lower panel.

For groundwater level data in the Ljubljana region, we were able to achieve high
R2 > 0.997 scores for highly correlated sensors (correlations up to 0.98) and were able to
improve scores significantly for sensors with low correlation to nearby sensors. A more
detailed description of the dataset, methodology, and results is given in related work [34].

3.3. Real-Time Heterogenous Data Fusion

An intrinsic property of big data is its heterogeneity [37]. In a WMAP system, hetero-
geneity has been observed regarding data delay (data are submitted via various legacy
systems, which bring systematic constant lags, sometimes send data in batches every hour
or every day, etc.), data frequency, data type (i.e., weather forecast time series is updated
every hour whereas the sensor stream is coherent in regard to its time component). To pro-
vide efficient and accurate predictive models, the usage of multiple data sources is essential.
Feature vectors that contain additional enriched and contextual data will normally provide
additional information to the predictive models and finally result in better prediction
accuracies. To the best of our knowledge, our solution [17] is the first to mathematically
describe and solve this problem.

The data fusion architecture within the speed layer is depicted in Figure 2. There are
three basic tasks to be accomplished within the data fusion: stream enrichment, partial
fusion (of sources of the same type), and full fusion. The stream processing component
supports ingestion of three different types of streams: sensor data (which might have
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various frequencies and delays), forecast data (which is being updated regularly, i.e.,
weather forecasts are updated every hour for the next 48 h), and other contextual and
human-behavior data (usually static pre-generated data, which we include as a stream in
our platform).

Every data stream was separately transformed (i.e., we transformed weather predic-
tions into a number of regular data streams) and enriched with stream aggregates (i.e.,
moving averages, variances, minimums, and maximums in different time windows).

Final feature vectors were generated from partial feature vectors within the fusion
component, where time consolidation was done. Time consolidation is a process in which
we bring all the partial feature vectors to the same master time (we handled delays and
different update frequencies here; we also provided constant sampling; i.e., every 15 min
a feature vector was generated, which is essential for most machine learning techniques).
Finally, the fusion component expands the feature vector with historic data or even some
derivatives (i.e., difference between hourly moving averages in the past hour), which often
provide viable information to the data models. Final feature vectors are provided to stream
or batch models, which calculate final predictions.

To the best of our knowledge, no methodologies described in the scientific literature
can match the expressiveness of our system’s feature extraction language and cannot handle
heterogeneous streaming data fusion. As argued in the next subsection, such data fusion
is beneficial for improved prediction accuracy. There are, however, no direct validation
methodologies for data fusion systems, especially not for the online versions’ latencies.

When profiling the pipeline, it is evident that the data fusion system works much faster
than the optimal prediction algorithm. On a server machine, the average time to process
the message in the online data fusion framework is 0.2 milliseconds (Figure 5). However,
a prediction step with the random forest method takes on average 63 milliseconds on a
server and 740 milliseconds on Raspberry Pi 2 (Figure 5). It is, therefore, important to
have an architecture to be able to parallelize the processes (in our case any number of
data fusion, stream models, and batch predictions could be running distributed in the
network, reachable by message distribution system). The lesson learned in the performance
validation of the system was that the message distribution system (i.e., Apache Kafka) has
to be optimized within the network. If not, the bottleneck can be in the message distribution
and not necessarily in the processing power.
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3.4. Data-Driven Modeling

Based upon the experience in the other fields that have faced the artificial intelligence
breakthrough in recent years (physics, remote sensing and earth observation, energy
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management, etc.), we propose to bring the data (for batch analysis) to the users and let
them manipulate the data in the fashion that is standardized or is based on the tools they
are already familiar with. Our data gathering infrastructure provides a uniform access
point for heterogeneous data sources and provides basic boilerplate code to speed up data
analysis and development. An expert can access the data in the tool of their preference (i.e.,
Jupyter notebook), perform analysis, and even deploy their own models to the production
by simply updating corresponding configuration structures (feature vectors and models).

As demonstrated in more detail in related work [38], a time series based on ground-
water level sensor data can be enriched with various derivatives and with appropriate
contextual data. Models will benefit from features such as readings of level change in the
past hour, past day, or past week, moving average in the past day or past five days, or
even past month. Weather and especially historic weather data (precipitation, snowfall
and change of snow blanket) from the area and corresponding river basin, aggregated
over a longer period (typically one week) will show good correlations with groundwater
level change and will improve the models significantly. In particular areas, the time of the
year might expose some typical local dynamics, etc. As stated in the related work section,
other generic stream processing platforms do not enable heterogeneous sources data fusion
and can therefore not easily provide enriched feature vectors which yield more accurate
predictions. In addition, our data fusion component enables easy manipulation (with a
single configuration structure) of stream aggregates (such as moving averages or variances)
and their historic values.

Experiments have been conducted on the Ljubljana polje aquifer dataset [35], which is
also available via an endpoint (data gathering infrastructure API) exposed by the platform,
described in this paper (check the dataset source for additional instructions on how to use
the API). The dataset includes more than 600 groundwater stations for Slovenia, which
measured groundwater levels between years 1950 and 2018. A subset relevant for the Ljubl-
jana polje aquifer was used in the experiments. Weather data were provided by Slovenian
environment agency (ARSO) and were also included in the dataset. Normalization has not
been performed on the data, since tree-based methods do not benefit from it and because
the features themselves are in the same order of magnitude, which should be sufficient for
the convergence of the linear regression models.

Feature correlation matrix for one of the time-series is depicted in Figure 6. It includes
groundwater level features and weather features. Initial features are from the original
dataset. The others have been extracted from historic values. Weather features have been
averaged by various intervals (from 1 to 100 days) and different averaging windows have
been considered. Next, these features have also been shifted by different time intervals
in order to compensate for the time needed for weather-related phenomena to have effect
on the groundwater. Based on the correlation matrix we have chosen features from the
top 100 features correlated with the target value. Best- and mutually least-correlated
features (according to Figure 6) have been selected for each feature subset (aggregated
data, aggregated weather data, shifted historic weather data). All the raw values have
been considered in the models. Correlations of features with the target value vary from
−0.4 to 0.78 (precipitation averaged over next 3-day weather forecast is the best correlated
feature). The feature selection process can be achieved using a more thorough search
through the grid of features. Greedy algorithms would not be able to accomplish this task
in a reasonable time; however, smart heuristics powered by genetic programming and
entropy-based similarity measures can canvas the most relevant sections of the feature
space and extract (almost) optimal feature vectors from a large feature space, usually further
improving accuracy of a particular model [39].
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Figure 6. Correlation matrix includes 544 features. The features are the original ones represented in
the dataset (such as weather data and current and historic groundwater levels) and derived ones
(such as averaged and shifted by different time intervals). Our platform enables online generation of
all these features. Positive correlation is depicted in yellow and negative in dark blue shades.

Accuracy of the models has been evaluated using R2 score. R2 is invariant to offset the
target value from 0 (which is not true for other relative scores like mean average percentage
error—MAPE) and to amplitude within the dataset (which influences the root mean squared
error—RMSE). R2 is therefore suitable for comparison of different approaches.

Figure 7 depicts learning curves (improvement of R2 score with number of training
examples) of different models for prediction of groundwater levels (with 3-day prediction
horizon) in the Ljubljana region. Each model (defined by a learning algorithm and a
feature set) is represented by a curve in Figure 7A–D. Curves with a larger number of
contextual features are higher in the learning curve graphs, which indicates the benefits
of the methodologies presented in this paper. Figure 7A depicts results based on linear
regression, Figure 7B on decision trees, Figure 7C on gradient boosting regression and
Figure 7D on random forests.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 19 
 

regression, Figure 7B on decision trees, Figure 7C on gradient boosting regression and 
Figure 7D on random forests. 

In every picture we can observe five different curves that represent five different 
feature sets. The blue curve represents a feature set with only direct features from the 
groundwater level time series, the orange curve represents the “blue” feature set en-
riched with various stream aggregates, the green curve represents a feature set which 
also includes current weather data. The red curve is based on the results from a feature 
set which is further enriched with various aggregations of weather data, and finally the 
violet curve models include also time-shifted weather features to reflect the potential 
hysteresis effect of weather on groundwater levels. 

 
Figure 7. Learning curves of plain and enriched datasets with multiple learning methods: (a) linear 
regression, (b) decision trees, (c) gradient boosting regression, (d) random forest regression. 

Example results for groundwater level predictions (using linear regression and 
gradient boosting) are shown in Figure 8. We have modeled daily changes of the 
groundwater (depicted on the left side of Figure 8) and then calculated cumulatives (on 
the right side of the same figure). Cumulative values show how well the model captures 
the dynamics of groundwater levels. The values themselves diverge from the true values, 
but the important information is that the models reflect the trends in the real world well. 

 
Figure 8. Groundwater level change predictions and summed predictions over time. First row de-
picts linear regression results, the second row depicts gradient boosting results. Summed predic-
tions may drift over time, which does not give an objective measure of the model’s accuracy. 
Capturing the correct trends is much more important. 

Figure 7. Learning curves of plain and enriched datasets with multiple learning methods: (A) linear
regression, (B) decision trees, (C) gradient boosting regression, (D) random forest regression.

In every picture we can observe five different curves that represent five different
feature sets. The blue curve represents a feature set with only direct features from the
groundwater level time series, the orange curve represents the “blue” feature set enriched
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with various stream aggregates, the green curve represents a feature set which also includes
current weather data. The red curve is based on the results from a feature set which is
further enriched with various aggregations of weather data, and finally the violet curve
models include also time-shifted weather features to reflect the potential hysteresis effect of
weather on groundwater levels.

Example results for groundwater level predictions (using linear regression and gradi-
ent boosting) are shown in Figure 8. We have modeled daily changes of the groundwater
(depicted on the left side of Figure 8) and then calculated cumulatives (on the right side of
the same figure). Cumulative values show how well the model captures the dynamics of
groundwater levels. The values themselves diverge from the true values, but the important
information is that the models reflect the trends in the real world well.
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Figure 8. Groundwater level change predictions and summed predictions over time. First row depicts
linear regression results, the second row depicts gradient boosting results. Summed predictions may
drift over time, which does not give an objective measure of the model’s accuracy. Capturing the
correct trends is much more important.

Each consecutive dataset includes more potentially relevant features that enable the
model to reflect the underlying process better. Results, represented with blue and orange
lines, which only include features based on the groundwater level time series itself, behave
even worse than a constant zero model. As soon as additional weather data are considered
(green line), the accuracy improves drastically. The biggest improvement is however
achieved by including different time-window and time-shifted aggregates of weather
data, which seem to reflect dynamics of groundwater adequately. The linear regression in
Figure 7A gives stable results (curves rise with the number of learning examples). Each
addition to the feature set increases the accuracy of the model by bringing new knowledge.
Decision trees in Figure 7B behave slightly worse and are much less stable. We also observe
that decision trees learn slower. They need more examples to reach comparable accuracy
to linear regression. The learning rate of gradient boosting regression in Figure 7C and
random forests in Figure 7D matches the speed of linear regression. Random forests, which
are usually the method of choice in environmental data-driven modeling, behave best with
the raw weather dataset (green) and aggregated weather dataset (red), but slightly worse
than linear regression in the best-case scenario. The best results are given by gradient
boosting regression, which can achieve an R2 score close to 0.8. As a baseline, a model with
only the best feature would yield R2 ≈ 0.6, which is 0.16 less than the results of gradient
boosting with the best feature subset.
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Usage of data-fusion and data-driven modeling within the speed layer of the architec-
ture enables real-time application of the predictive analytics, developed in batch mode.

4. Conclusions

We have presented a water domain view on the data mining approaches within a smart
water management scenario. We have identified the needs of stakeholders and provided
a description of typical data sources that support achieving the desired results. We have
presented an architecture based on standard big data approaches and an early prototype
which enables offline analysis tailored to the stakeholders’ needs and real-time predictive
analytics that can be applied to real-world scenarios. The platform provides parallelization
of data processing, which enables horizontal scalability of the system. The measurements,
however, demonstrate that even a single high-end server can support a reasonably big
project with up to 400,000 connected IoT devices. The main contributions within the
streaming part of the architecture (speed layer) are the data fusion component and the
usage of computationally less demanding stream mining techniques for predictive analytics.

Although a lot of work has been done in the field of digitalization in the water manage-
ment domain, there is still a gap to be bridged in the water management domain to reach
its counterparts in energy management, traffic, and manufacturing. Many solutions have
been developed in those fields, especially in energy management, which can be applied to
the water domain. Understanding of dynamics in the water domain has traditionally been
supported by process-based models, which require extensive knowledge of the domain,
including geology and fluid dynamics. With more data provided, machine learning models
can provide an efficient alternative to the existing state, simply because they are easier to
implement, because they reflect the current state of the system immediately (including
human behavior-related variables), because predictive techniques have been proven to
mimic hidden process dynamics and because they can be cost effective. As both approaches,
data-driven and process-based, have their own advantages, they should work hand in
hand, which offers another research challenge for the future. On the other hand, the water
community has to embrace and gain trust in data-driven approaches. We should therefore
allow the community to perform their analysis with the tools they are already familiar with
or with the tools that are well documented and widely used in the data mining community
(i.e., scikit-learn with Jupyter notebooks). In order to maximize the accuracy of data-driven
models, data fusion techniques (like we have described in this paper) will be of the utmost
importance. Weather plays an important role in the modeling of water-related phenomena.
An efficient generic way to input weather data into the models is needed. The weather data
are similar (in structure as well as in volume) to the remote sensing data from Sentinel and
LandSat systems. The water management community (as well agriculture or others from
the environmental domain) should take advantage of efficient technologies for exploiting
earth observation data that has been evolving fast in recent years.

Finally, all this knowledge will have to be integrated under a standardized framework
which will enable an efficient exchange and processing of large amounts of high-velocity
data streams enriched with appropriate contextual data. An effective provisioning system
for deployment of models is needed in order for the framework to take full advantage of
parallel processing and to successfully deploy the system within a large sensor network. We
have depicted the foundation for such a system, but efficient management of the analytics
components still remains a challenge.
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36. Andjelov, M.; Frantar, P.; Mikulič, Z.; Pavlič, U.; Savić, V.; Souvent, P.; Uhan, J. Groundwater quantitative status assessment for

River Basin Management Plan 2015-2021 in Slovenia. Geologija 2016, 59, 205–219. [CrossRef]
37. Wu, X.; Zhu, X.; Wu, G.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26, 97–107.
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