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Abstract: The application of Artificial Intelligence or AI in education has been the subject of academic
research for more than 30 years. The field examines learning wherever it occurs, in traditional
classrooms or at workplaces so to support formal education and lifelong learning. It combines
interdisciplinary AI and learning sciences (such as education, psychology, neuroscience, linguistics,
sociology and anthropology) in order to facilitate the development of effective adaptive learning
environments and various flexible, inclusive tools. Nowadays, there are several new challenges in
the field of education technology in the era of smart phones, tablets, cloud computing, Big Data, etc.,
whose current research questions focus on concepts such as ICT-enabled personalized learning, mobile
learning, educational games, collaborative learning on social media, MOOCs, augmented reality
application in education and so on. Therefore, to meet these new challenges in education, several
fields of research using AI have emerged over time to improve teaching and learning using digital
technologies. Moreover, each field of research is distinguished by its own vision and methodologies.
In this article, to the authors present a state of the art finding in the fields of research of Artificial
Intelligence in Education or AIED, Educational Data Mining or EDM and Learning Analytics or
LA. We discuss their historical elements, definition attempts, objectives, adopted methodologies,
application examples and challenges.

Keywords: personalized learning; mobile learning; educational; collaborative learning on social
media MOOCs; AIED; EDM; LA

1. Introduction

The application of AI in education has been the subject of academic research for more
than 30 years. The field examines learning wherever it occurs, in traditional classrooms or
at workplaces so to support formal education and lifelong learning. It combines interdisci-
plinary AI and learning sciences (such as education, psychology, neuroscience, linguistics,
sociology and anthropology) in order to facilitate the development of effective adaptive
learning environments and various flexible, inclusive tools. It is personalized and attractive
for teaching and learning [1]. The same goes with the AIED, which focuses on issues related
to the theories of human learning and AI application in effective learning environments, as
well as theories of teaching and AI application to effective educational systems. It is clear
that in many cases, there is a fuzzy boundary between learning environments and teaching
systems [2].

2. Artificial Intelligence in Education (AIED)
2.1. The Objectives of the AIED

The scientific goal of AIED is to define specific and explicit forms of knowledge
about education, including several psychological and social aspects which often remain
implicit [3]. In addition to driving many “smart” technologies, AIED is intended as a
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powerful way to explore in detail what is sometimes called the “black box of learning.”
This helps to better understand how learning actually occurs; to analyze the influence of
the socio-economic factors of the learner [4], the physical context and the technology [5] or
to study the nature of knowledge and its representation. Determining the most appropriate
way to learn and the most effective teaching interaction styles helps a learner in his/her
learning, especially when it is used in the right moments. To identifying the misconceptions
that learners have about the learning object, AIED effectively involves two complementary
components: developing AI-based tools to support learning and using these tools to help
understand learning. For example, by modeling how learners solve an arithmetic problem
and by identifying misconceptions previously unknown to educators, researchers and
teachers can learn much more about the learning process itself, and these understandings
could then be applied to classical classroom practices [6]. In addition, they could be
integrated into the development of AIED tools [1].

2.2. The Strategy of the AIED

Researchers in AIED are paying increasing attention to the emotional [7], social [3]
and intellectual aspects of learning with very active research conducted in the study of
collaboration [8], metacognition [9], self-regulation, motivation and emotions [10]. This
research is motivated by educational problems and focuses as much on research as on tech-
nological development. Research based on theory is supported by a systematic empirical
evaluation that informs the further development of the theory. The AIED community is
actively exploring ways in which learning and education can take advantages of new and
advanced technologies, including advances in AI [11].

2.3. Example of AIED Tools: Intelligent Tutoring Systems

Intelligent tutoring systems or ITS is one of the most common applications of AI in
education, or at least it is probably the oldest. An ITS generally offers step-by-step tutorials
on topics in well-defined and structured subjects such as mathematics or physics, which
are customized for each learner. That is, it relies on specialized knowledge about the
subject and a pedagogical approach. In response to the misconceptions and correctness
of each learner, the system determines step by step an optimal path through the support
and learning activities. As the learner progresses, the system automatically adjusts the
level of difficulty and provides hints or tips that all aim to ensure that the learner is able
to learn the given subject effectively [12]. Some ITSs allow learners to control their own
learning to help them develop self-regulatory skills; others use instructional strategies to
regulate the progression of learning to support the learner [1]. ITSs are based on models
that represent knowledge specific to teaching and learning. In general, there are three types
of knowledge. Firstly, knowledge about the subject to be learned is represented in what
is so-called a domain model. Secondly, knowledge about effective teaching approaches is
represented in a pedagogical model. Thirdly, knowledge about the learner is represented
in a learner model. From these three models, algorithms can adapt a sequence of learning
activities to each learner [13]. Instead of models, many recent ITSs use machine learning
techniques, self-learning algorithms based on large data sets and neural networks to enable
them to make appropriate content which then is provided to the learner. However, with
this approach, it may be difficult to explain the rationale for these decisions [1] (Figure 1).

2.3.1. The Domain Model

A domain model represents the knowledge that ITS aims to help learners acquire. This
may include, for example, knowledge of mathematical procedures, genetic heritage, or
causes of the First World War [10]. In fact, mathematics for elementary and high school
students has dominated ITSs over the years. Physics and computer science are also fruits
within reach of ITSs because they are, at least at basic levels, well-structured and clearly
defined [14].
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2.3.2. The Educational Model

The pedagogical model represents knowledge of effective teaching and learning ap-
proaches that have been obtained from pedagogical experts and research in the learning
sciences [14]. The pedagogical knowledge that has been represented in many ITSs in-
cludes knowledge of pedagogical approaches [15], proximal developmental area, interlaced
practice, cognitive load and formative return. For example, a teaching model using the
Vygotsky Proximal Development Zone ensures that the activities provided by the system
to the learner are neither too easy nor too stimulating. A model implementing an individu-
alized formative return ensures that the return is provided to the learner whenever it is
possible to give support.

Figure 1. Simplified Schema of ITS based on a model.
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2.3.3. The Model of the Learner

What distinguishes AI-based ITSs is that they also include a learner model; that is,
a representation of the learner’s state of knowledge. In fact, many ITSs incorporate a
wide range of knowledge about the learner such as their interactions, the material that are
challenging to the learner, their misconceptions, and their emotional states when using
the system. This information can be used to inform the progress of the learning process
and therefore determine the support that will be given to the learner. When most ITSs go
much further, the knowledge stored on each learner is supplemented by the knowledge
of all learners who have already used the system. From the data of all learners, therefore,
the system learns to predict which pedagogical approach and field are appropriate for a
particular learner. It is the learner model that allows ITSs to be adaptive, and machine
learning makes this adaptive process more efficient [16].

3. Educational Data Mining (EDM)

EDM is an emerging field linked to several established research areas, including
e-learning, adaptive hypermedia, intelligent tutoring systems, online exploration, data
mining and so on. The application of data mining in education systems has specific
requirements that are not present in other areas, mainly the need to take into account the
pedagogical aspects of the learner and the system. Although the exploration of educational
data is a very recent field of research, a large number of contributions published in journals,
international congresses, specific workshops and works in progress [17] show that is
a promising new field. EDM is concerned with developing, researching and applying
computer-based methods to detect schemas of large educational data collections [18]. These
patterns would, otherwise, be difficult or impossible to analyze directly because of the huge
amount of data in which they exist. Data of interest is not limited to learner interactions
with an educational system (e.g., navigation behavior, questionnaire entry and interactive
exercises), but it may also include data from collaborating learners (textual dialogue, for
example), administrative data (school, etc.), and demographic data (such as gender, age,
school results). Data on learner states (motivation, emotional states, for example) has
also been taken into account, which can be deduced from physiological sensors (facial
expression, seat posture and perspiration, for example). EDM uses methods and tools from
the broader field of data mining [8,19], and a subdomain of computer science and AI that
has been used for purposes as diverse as credit card fraud detection, genetic sequence
analysis in bioinformatics, or analysis of customer buying behavior [20].

3.1. Attempts to Define EDM

EDM is defined as the area of scientific inquiry focused on the development of methods
for discovering types of data uniquely derived from educational contexts, and for using
these methods to better understand learners and the context learning [8,15]. In other words,
EDM is about converting raw data from educational systems into useful information that
can be used to inform design decisions and answer research questions [21].

3.2. The Main Approaches in EDM

Data mining, in general, encompasses a wide range of search techniques that include
more traditional options such as database queries and simple automatic logging, as well
as more recent developments in machine learning and linguistic technology [21]. EDM
methods often differ from methods in the broader literature on data mining, explicitly
exploiting the multiple, hierarchical, significant levels of educational data. Psychometric
methods are often incorporated into machine learning and data mining methods to achieve
this goal [22]. As a result of this, there is a wide variety of common popular methods in
educational data mining (Table 1). These methods fall into the following general categories:
forecasting, grouping, relationship exploration, discovery with models and data distillation
for human judgment. The first three categories are widely recognized as universal for all
types of data mining (although they are in some cases under different names). The fourth
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and fifth categories gain special importance in the exploration of educational data, and so
on [22].

A large number of EDM applications have been used, so we have to pay particular at-
tention to four areas of application. One of the main areas of application is the improvement
of learner models, which is providing detailed information on learner characteristics or
states such as knowledge, motivation, meta-cognition and attitude. Modelling individual
differences between learners to allow software to address these differences is a key theme
in educational software research. A second key application area is to discover or improve
models of the domain knowledge structure. In EDM, methods have been created for rapid
discovery of specific domain models directly from data. A third key application area is
to study the educational support provided by learning software. Modern educational
software offers various types of educational support to learners. Finding the most effective
educational support is a key area of interest in EDM. The decomposition of learning, a type
of relationship exploration, adapts exponential learning curves to performance data so to
link learner success to the quantity of each type of instructional medium that a learner has
received (with a weight for each type of support) [23]. The weights indicate the effective-
ness of each type of pedagogical support to improve learning. A fourth key application
area of the EDM is scientific discovery about learning and learners. It therefore takes many
forms. The EDM to answer questions in one of the three areas previously discussed (such
as learner models, domain models and pedagogical support) may have broader scientific
benefits. For example, the study of pedagogical support may have the long-term potential
to enrich the theories of learning [24].

Table 1. The main categories of analyzes in EDM.

Category of Method Goals of Method Key Applications

Prediction

Develop a model which can infer a single
aspect of the data (predicted variable) from

some combination of other aspectsof the data
(predictor variables)

Detecting student behaviors (e.g., gaming
the system, off-task behavior, slipping);
developing domain models; predicting
and understanding student educational

outcomes.

Clustering
Find data points that naturally group

together, slipping the full data set into a set
of categories.

Discovery of new student behavior
patterns; investigating similarities and

differences between schools

Relationship mining Discover relationships between variables

Discovery of curricular associations in
course sequences; Discovering which
pedagogical strategies lead to more

effective/robust learning

Discovery with models

A model of a phenomenon developed with
prediction, clustering or knowledge

engineering, is used as a component in
further prediction or relationship mining

Discovery of relationships between
student behaviors, and student

characteristics or contextual variables;
Analysis of research questions across

wide variety of contexts.

Distillation of data for Human
judgment

Data is distilled to enable a human to quickly
identify or classify features of the data.

Human Identification of patterns in
student learning, behavior, or

collaboration; Labeling data for use in
later development of prediction model

3.3. Examples of Applications of EDM

A typical feature of educational data is its non-independence. That is, when we collect
data from educational discussions and when we want to rank whether the contributions are
on a topic or not, we must consider that the contributions are not statistically independent
of each other because many contributions may come from the same learner or discussion.
This could be detrimental to the calculation of models (standard machine learning schemes
usually include the built-in assumption of independent training examples) as well as model
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validation (for example, cross-validation could lead to biased results when the training and
the set of tests are not independent).

In addition, the results of research in EDM are generally obtained in the narrow context
of specific research projects and educational contexts (such as a particular school). The
question is how general these results are, for instance, if the same learner model parameters
can also be used with other learner populations or if a predictive model is always reliable in
a different context. Therefore, there is a growing need for replication studies to test broader
generalizations. As a result, EDM researchers are increasingly interested in open data
repositories and standard data formats to promote the exchange of data and models [18].

EDM is a young field of research, and it is necessary to initiate more specialized and
oriented professional training in order to achieve a level of success similar to that of other
fields such as the extraction of medical data, extraction of e-commerce data, and so on [25].

4. Learning Analytics: Towards Decision Support Tools in a Learning Context
4.1. Definition of Learning Analytics

Learning Analysis is an emerging field concerned with analyzing the vast data of
learners from the environments supported by technology to inform the theory and practice
of education. Since its creation, it has adopted a multidisciplinary approach integrating
learning studies and technological capabilities [2]. According to SoLAR [2], learning analy-
sis is the measurement, collection, analysis and communication of data about learners and
their contexts for understanding and optimizing purposes, learning and the environments
in which it occurs [23].

4.2. Objectives of LA

A multitude of factors motivated interest in learning the analysis. The general trend
towards increased accountability at all levels of education is a motivating factor for the
increased interest in learning analysis. Educational institutions are increasingly eager
to report what their learners are learning and where there is even greater pressure for
e-learning as these courses now have separated accreditation standards. Learning analysis
not only documents learners’ performance, but it also provides tools that encourage the
types of continuous improvement sought by accreditors. In addition, there are other goals
that the analysis of learning aims to achieve. These may include predicting learner perfor-
mance, suggesting learners relevant educational resources, increasing learner awareness
and reflection, detecting unwanted learning behaviors, and detecting emotional states (e.g.,
boredom, frustration). It should be remembered that teachers were essentially inspired by
their intuition to know when learners are struggling, when to propose relevant educational
resources or how to encourage them to reflect on their learning. These intuitions will not
disappear with the advent of the analytics of learning, of the actions that flow from them.
The analytics of learning promises to make these intuitions and the resulting actions more
data-driven and easier to detect.

4.3. Research Methodology in Leanring Analytics

Research in learning analysis should clearly indicate how the proposed work offers
new and relevant analytical methods (e.g., methods of calculation, representation, statistics
and visualization) or should improve our understanding of the value of existing analytical
methods in the literature. Therefore, research on learning analysis may vary in technical
contribution, but the link with learning must be present. There are two cases to understand
learning and teaching practices. Research with strong technical input does not need to
include a study in an applied context, but it must at least explain how the properties of
the technical contribution are relevant to understanding or managing learning in practice.
Research with a theoretical or practical contribution to learning does not necessarily have to
advance the technical state of the analysis, but it must at least examine or evaluate whether
and how the advantages of the chosen analytical methods generate the relevant aspects of
the analytical data, so to allow the main contribution [3].
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No particular theory or design of learning should be favored a priori: individuals,
small groups and/or larger collectives can be agents of learning; and learning may include
the acquisition of knowledge or skills, the definition of an inter-subjective meaning, or
changes in identity and participation in a community among other processes [24]. In
addition, learning can be conceived as taking place simultaneously with all these granu-
larities and involving all these epistemological processes. Research that analyzes learning
processes across multiple granularities and that provides multiple methodological and
theoretical orientations is particularly appropriate for understanding learning as a complex
phenomenon. Regardless of how learning is conceptualized, the goal is to encourage
learning analytics researchers to make their design explicit and to think about the links
between their analytic approach and their understanding of learning.

Therefore, Learning Analysis is a rapidly expanding field of educational technology
research. it has strong roots in a variety of areas, including business intelligence, web
analytics, data mining and referral systems. Its close links to these areas mean that re-
searchers and practitioners have approached it from different angles, and they must now
work together to identify not only the goals that can be achieved through learning analysis
but also the measures to achieve these objectives [25].

4.4. Types of Data Used in Learning Analytics

Educational institutions have a wealth of data that can help improve learners’ per-
formance and increase their motivation. Hence, we present some data that teachers are
likely to have at their fingertips and that are amenable to some basic data analysis. In the
table below (Table 2), the types of data available in an LMS are presented. The first column
includes data automatically generated by the LMS. The second column is an example of
the types of data that can be generated by the instructor, much of which can be stored in
the LMS.

Table 2. Types of Data Available for Learning Analytics.

Data Generated by LMS Data Generated by Instructor

Number of times resource accessed Grades on discussion forum
Date and time of access Grades on Assignment

Number of discussion posts generated Grades on tests
Number of dissussion posts read Final Grades

Types of resource accessed
Number (and type) of questions asked in a

discussion forum.
Number of Emails sent to instructor

4.5. LA and EDM: Similarities and Differences

Educational Data Mining (EDM) and Learning Analysis (LA) are relatively new and
promising areas of research aimed at improving educational experiences by helping stake-
holders (trainers, learners, administrators and researchers) make better decisions using
data. Their growth has been stimulated by the increased capacity of computers to store and
analyze large amounts of data and the availability of statistical methods and techniques,
machine learning and data mining. Online environments are an extremely important area
of application. On the one hand, they continuously generate data from many events such
as reading files or participating in forums, with different formats and levels of hierarchy.
Similarly, online courses have higher drop-out rates than traditional courses. EDM and LA
are mainly used to monitor learners and groups (to identify students who are likely to drop
out or fail, or who do not contribute enough to collaborative activities), suggest changes
in course structure and experiences tailor-made learning (recommending materials based
on needs, motivations and skills, for example). There is a wide variety of methods and
techniques adapted from other disciplines or specifically designed to analyze educational
data. There are many similarities between the two areas of research, such as objectives,
methodologies and techniques. However, there are several differences mainly due to their
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origins and tendencies. The coexistence of their respective scientific communities creates
competition with positive effects for society.

Despite the high expectations and the amount of work on EDM and LA, their ap-
plication in educational environments still faces significant challenges such as a lack of a
data-driven culture and fast, comprehensive, easy-to-use tools to understand who could be
integrated into the most popular learning management systems.

In the age of Big Data, the combination of the current capacity for capturing, storing,
managing and processing data in a timely manner, and data from e-learning environments
provides researchers with AL opportunities to better explore the learning processes of
students and effective ways to improve them. An important application is that of MOOCs,
where the data of thousands of learners can be used to redefine the courses of future
learners by using navigation and the use of tools. A much more ambitious approach is to
develop adaptive MOOCs in which courses are automatically customized according to the
student profile (needs, goals, background, country, learning style, etc.) and performance.
This is a relatively new subject of research that currently attracts the attention of researchers
and companies.

The similarities between EDM and LA suggest many areas of overlapping research.
In addition, organizational deployment of EDM and LA requires similar data sets and
research skills. However, these two communities have different roots, so it is important
to note some distinctions. Table 3 shows some of the main differences between the two
communities. It is sufficient to note that these distinctions are meant to represent the
major trends in both communities; many researchers in electro-erosion are conducting
research that could be placed on the local knowledge of each of these distinctions, and
many researchers in these regions are conducting research that could be placed on these
distinctions in SHS. By identifying these distinctions, we hope to recognize places where
both communities can learn from each other, rather than defining communities exclusively.
Indeed, communities that develop organically like these two communities will not have a
rigid boundary between the work that appears in both communities. A key distinction lies
in the type of discovery prioritized. In both communities, research can be found that uses
automated discoveries and research that harness human judgment through visualization
and other methods. However, EDM puts a lot more emphasis on automated discovery,
and LA relies much more on human judgment. Even if researchers combine these two
directions, this preference can be seen; that is, EDM research, which is often based on
human judgment, provides labels for classification, while LA research using auto-discovery
often informs humans who make the final decisions. This difference is associated with
another one between the two communities: the type of adaptation and customization
generally supported by both communities. In addition to the emphasis on automated
discovery in EDM, whose models are more often used as a basis for automated adaptation
carried out by a computer system such as a smart tutoring system. In contrast, LA models
are more often designed to inform and empower instructors and learners. A third and
important difference is the distinction between holistic and reductionist frameworks. It is
much more common in EDM to see research that reduces phenomena to components and
that analyzes individual components and their relationships. The “discovery with models”
paradigm for EDM research presented in [23] is a clear example of this paradigm. On the
other hand, LA researchers generally emphasize the need to understand systems as sets
in all their complexity. The debate between reductionist and holistic paradigms has often
paralyzed discussions between educational researchers of different “camps”. Encouraging
discussions between EDM and LA researchers is an essential way to prevent this common
split from reducing what EDM and LA researchers can learn from each other.

The methodologies used in EDM and LA come from a number of sources, but the
two most important sources of inspiration are methods of data mining and analysis in
general, as well as psychometric and educational measurement. In many cases, the spe-
cific characteristics of education data have led to different methods generally playing a
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greater role in EDM and LA than in data mining, or leading to adaptations to methods of
existing psychometrics:

• Prediction methods,
• Discovery of the structure,
• Mining relationship,
• Distillation of data for human judgment,
• Discovery with models, and
• Tools for conducting EDM/LA methods.

Table 3. A brief comparison of the two fields.

LA EDM

Discovery
Leveraging human judgment is key;

automated discovery is a tool to
accomplish this goal.

Automated discovery is key; leveraging
human judgment is a tool to accomplish

this goal

Reduction & holism Stronger emphasis on understanding
systems as wholes, in their full complexity.

Stronger emphasis on reducing to
components and analyzing individual

components between them

Origins
LA has stronger origins in semantic web,

“intelligent curriculum”, outcome
prediction, and systemic interventions.

LED has strong origins in educational
software and student modeling, with a

significant community in predicting course
outcomes.

Adaptation and personalization Greater focus on informing and
empowering instructors and learners

Greater focus on automated adaption (e.g.,
by te computer with no human in the loop)

Techniques and methods

Social network analysis, sentiment analysis,
influence analytics, discourse analysis,

learner success prediction, concept analysis,
sensemaking models

Classification, clustering, Bayesian
modeling, relationship mining,

visualization

5. Conclusions

Through this paper, we carried out a characterization of research work on the applica-
tion of AI in education. The oldest scientific community, AIED, stands out above all for its
research on the development of intelligent systems based on the modeling of elements of
the learning context such as knowledge, teachers, learners, etc. Previously, these models
were based on knowledge representation techniques, as well as the profiling of teachers
and learners through their respective attributes. After that, we now have a large amount
of varied data on education available with the advent of Big Data. This paved the way
for new research work including the field of EDM. Here, we seek to develop systems that
draw their intelligence from the exploitation of educational data through the extraction
of relevant information about the learning context and their uses by these systems. In the
same context of Big Data, there has also been the emergence of research work on the issues
of the collection, measurement, analysis and communication of educational data. Thus,
we are in the context of developing decision support tools in a learning context. In other
words, it is the stakeholders, including institutions, educational managers and learners
who constitute the direct consumers of the information provided by the LAs. Moreover, it
also appears that these different research works are complementary for the improvement
of learning and teaching through ICTs.

Author Contributions: Conceptualization, O.H.; methodology, O.H.; software, O.H, J.L. and M.H.A.H.;
validation, N.-E.E.F.; formal analysis, O.H. and M.H.A.H.; investigation, O.H. and N.-E.E.F.;
writing—original draft preparation O.H. and M.H.A.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Sustainability 2022, 14, 2862 10 of 11

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the authors
upon request.

Acknowledgments: The authors would like to thank the individuals who generously shared their
time and experience for supporting the purpose of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pai, K.C.; Kuo, B.C.; Liao, C.H.; Liu, Y.M. An application of Chinese dialogue-based intelligent tutoring system in remedial

instruction for mathematics learning. Educ. Psychol. 2021, 41, 137–152. [CrossRef]
2. Du Boulay, B.; Lajoie, S.P. Fallible, distractible, forgetful, willful and irrational learners. In Computers as Cognitive Tools, Volume

Two: No More Walls; Routledge: New York, NY, USA, 2000; pp. 339–376.
3. Baker, R.S.; Inventado, P.S. Educational data mining and learning analytics. In Learning Analytics; Springer: New York, NY, USA,

2014; pp. 61–75.
4. Suthers, D.; Verbert, K. Learning analytics as a middle space. In Proceedings of the Third International Conference on Learning

Analytics and Knowledge, Leuven, Belgium, 8–13 April 2013; ACM: New York, NY, USA, 2013; pp. 1–4.
5. Chiu, C.K.; Tseng, J.C. A bayesian classification network-based learning status management system in an intelligent classroom.

Educ. Technol. Soc. 2021, 24, 256–267.
6. Holmes, W.; Bialik, M.; Fadel, C. Artificial Intelligence in Education: Promises and Implications for Teaching and Learning; Center for

Curriculum Redesign: Boston, MA, USA, 2019; ISBN 978-1-79429-370-0.
7. Underwood, J.; Luckin, R. What Is AIED and Why Does Education Need It. A report for the UK’s TLRP Technology Enhanced

Learning—Artificial Intelligence in Education Theme. May 2011. Available online: https://www.researchgate.net/publication/
41698223_What_is_AIED_and_why_does_%20Education_need_it (accessed on 10 December 2021).

8. Zhang, Y.; Paquette, L.; Baker, R.S.; Ocumpaugh, J.; Bosch, N.; Biswas, G.; Munshi, A. Can Strategic Behaviour Facilitate
Confusion Resolution? The Interplay Between Confusion and Metacognitive Strategies in Betty’s Brain. J. Learn. Anal. 2021, 8,
1–17. [CrossRef]

9. Hamal, O.; El Faddouli, N.E.; Harouni, M.H.A. Design and implementation of the multi-agent system in education. World J. Educ.
Technol. Curr. Issues 2021, 13, 775–793. [CrossRef]

10. Utterberg Modén, M.; Tallvid, M.; Lundin, J.; Lindström, B. Intelligent Tutoring Systems: Why Teachers Abandoned a Tech-nology
Aimed at Automating Teaching Processes. In Proceedings of the 54th Hawaii International Conference on System Sciences, Kauai,
HI, USA, 5–8 January 2021; p. 1538.

11. Siemens, G.; Baker, R.S. Learning analytics and educational data mining: Towards communication and collaboration. In Proceed-
ings of the 2nd International Conference on Learning Analytics and Knowledge, Vancouver, BC, Canada, 29 April–2 May 2012;
ACM: New York, NY, USA, 2012; pp. 252–254.

12. Romero, C.; Ventura, S. Educational data mining: A survey from 1995 to 2005. Expert Syst. Appl. 2007, 33, 135–146. [CrossRef]
13. Castro-Schez, J.J.; Glez-Morcillo, C.; Albusac, J.; Vallejo, D. An intelligent tutoring system for supporting active learning: A case

study on predictive parsing learning. Inf. Sci. 2021, 544, 446–468. [CrossRef] [PubMed]
14. Siemens, G. Learning analytics: Envisioning a research discipline and a domain of practice. In Proceedings of the 2nd Inter-

national Conference on Learning Analytics and Knowledge, Vancouver, BC, Canada, 29 April–2 May 2012; ACM: New York, NY,
USA, 2012; pp. 4–8.

15. Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufmann: San Francisco,
CA, USA, 2005.

16. Heiner, C.; Heffernan, N.; Barnes, T. Educational data mining. In Proceedings of the 13th International Conference of Artificial
Intelligence in Education, Marina del Rey, CA, USA, 23 July 2007.

17. Baker, R. Data mining for education. Int. Encycl. Educ. 2010, 7, 112–118.
18. Beck, J.E.; Mostow, J. How who should practice: Using learning decomposition to evaluate the efficacy of different types of

practice for different types of students. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems,
Montreal, QC, Canada, 23–27 June 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 353–362.

19. Schiff, D. Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. Int. J. Artif.
Intell. Educ. 2021, 1–37. [CrossRef]

20. Rohal, M.; Barrera, N.; Escobar-Briones, E.; Brooks, G.; Hollander, D.; Larson, R.; Montagna, P.A.; Pryor, M.; Romero, I.C.;
Schwing, P. How quickly will the offshore ecosystem recover from the 2010 Deepwater Horizon oil spill? Lessons learned from
the 1979 Ixtoc-1 oil well blowout. Ecol. Indic. 2020, 117, 106593. [CrossRef]

21. Thomas, C.C.; Otis, N.G.; Abraham, J.R.; Markus, H.R.; Walton, G.M. Toward a science of delivering aid with dignity: Experimen-
tal evidence and local forecasts from Kenya. Proc. Natl. Acad. Sci. USA 2020, 117, 15546–15553. [CrossRef] [PubMed]

22. Elias, T. Learning Analytics: Definitions, Processes, and Potential. Creative Commons. Available online: http://learninganalytics.
net/LearningAnalyticsDefinitionsProcessesPotential.pdf (accessed on 18 October 2021).

http://doi.org/10.1080/01443410.2020.1731427
https://www.researchgate.net/publication/41698223_What_is_AIED_and_why_does_%20Education_need_it
https://www.researchgate.net/publication/41698223_What_is_AIED_and_why_does_%20Education_need_it
http://doi.org/10.18608/jla.2021.7161
http://doi.org/10.18844/wjet.v13i4.6264
http://doi.org/10.1016/j.eswa.2006.04.005
http://doi.org/10.1016/j.ins.2020.08.079
http://www.ncbi.nlm.nih.gov/pubmed/32958966
http://doi.org/10.1007/s40593-021-00270-2
http://doi.org/10.1016/j.ecolind.2020.106593
http://doi.org/10.1073/pnas.1917046117
http://www.ncbi.nlm.nih.gov/pubmed/32581121
http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf
http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf


Sustainability 2022, 14, 2862 11 of 11

23. Ferguson, R. Learning analytics: Drivers, developments and challenges. Int. J. Technol. Enhanc. Learn. 2012, 4, 304–317. [CrossRef]
24. Liñán, L.C.; Pérez, A.J. Educational Data Mining and Learning Analytics: Differences, similarities, and time evolution. Int. J. Educ.

Technol. High. Educ. 2015, 12, 98–112.
25. Surubaru, N.C. European funds in Central and Eastern Europe: Drivers of change or mere funding transfers? Evaluating

the impact of European aid on national and local development in Bulgaria and Romania. Eur. Politics Soc. 2021, 22, 203–221.
[CrossRef]

http://doi.org/10.1504/IJTEL.2012.051816
http://doi.org/10.1080/23745118.2020.1729049

	Introduction 
	Artificial Intelligence in Education (AIED) 
	The Objectives of the AIED 
	The Strategy of the AIED 
	Example of AIED Tools: Intelligent Tutoring Systems 
	The Domain Model 
	The Educational Model 
	The Model of the Learner 


	Educational Data Mining (EDM) 
	Attempts to Define EDM 
	The Main Approaches in EDM 
	Examples of Applications of EDM 

	Learning Analytics: Towards Decision Support Tools in a Learning Context 
	Definition of Learning Analytics 
	Objectives of LA 
	Research Methodology in Leanring Analytics 
	Types of Data Used in Learning Analytics 
	LA and EDM: Similarities and Differences 

	Conclusions 
	References

