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Abstract: Despite implementing adaptation strategies and measures to make cities sustainable and
resilient, the urban heat island (UHI) has been increasing risks to human health and the urban
environment by causing hot spots in city areas. This study investigates the spatial patterns in the
surface urban heat island (SUHI) over the study site and develops its relationships to socioeconomic,
demographic, and buildings’ characteristics. This paper examines the role of building roof types,
building roof material, building height, building age, and socioeconomic and demographic factors in
driving the SUHI in a city. Numerous studies have focused primarily on the influence of biophysical
and meteorological factors on variations in land surface temperatures (LSTs); however, very little
attention has been paid to examining the influence of socioeconomic, demographic, and building
factors on SUHIs within a city. The analysis has been carried out by processing Landsat based LST
data to UHI in the Google Earth Engine (GEE) cloud-based platform. The satellite-based research is
further integrated with GIS data acquired from the state government and local city council. Linear
regression and multiple regression correlations are further run to examine selected factors’ variance
on SUHI. Results indicate socioeconomic, demographic, and building factors contribute significantly
to SUHI generation; these factors collectively can explain 28% of the variance in SUHI patterns with
significant p-values.

Keywords: surface urban heat island (SUHI); remote sensing; GIS; satellite data; LST; EVI; socioeconomic
factors; demographic factors; SUHI drivers; urban greenness; Landsat

1. Introduction

Urban heat island (UHI) causes higher temperatures (air/surface) in the cities com-
pared to the adjacent rural or non-built areas [1–3]. Principally, it can be measured by sub-
tracting average urban temperature from average rural temperature measurements [4–6].
UHI comes into existence due to temperature differences between urban and rural zones.
The temperature difference rises due to changes in land use modifications that occur in
urban zones such as natural land being altered by built-up zones, which means relatively
more impervious surfaces than pervious surfaces. Therefore, the change in land use land
cover (LULC) causes the temperature gradients in adjacent rural zones to urban zones.

The impacts of UHI on cities across the globe play a vital role in exacerbating negative
impacts on urban residents’ health, environment, economy, energy, social wellbeing, and
others. UHIs adversely impact human health, and due to the increased temperatures, the
livelihood of urban residents is impacted by reducing human comfort and making it difficult
for urban dwellers to cool down in hot temperatures. These UHIs may become worse
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during summer heatwaves, leading to increased mortality amongst sensitive members
of the urban population [1,7,8]. For example, in July 2018, 25 people died in Tokyo, and
57,534 people were hospitalized due to a local heatwave event [9]. Similarly, in the USA,
heat-related mortality causes around 1500 deaths per year, more than other severe weather
events in any calendar year [10,11].

The UHI that is derived from land surface temperature (LST) is called surface urban
heat island (SUHI), and the UHI derived from air temperature is called canopy urban
heat island (CUHI) and boundary urban heat island (BUHI) [5,12]. SUHIs are mostly
driven by land use land cover (LULC) change, vegetation cover, and impervious surface
ratio. LST has different physical meanings from air temperature; however, they have close
and complex relations, and both contribute to building the UHI effect. Generally, under
cloudless sky conditions, larger LST means larger sensible heat flux, which could result
in larger surface air temperature and a higher urban boundary layer [13,14]. In this paper,
UHI derived from satellite data is used; therefore, the study examines SUHI patterns and
their relationship with selected factors. Therefore, onwards in the paper, the UHI term
refers to SUHI.

The SUHI comes into existence primarily due to the progress of urban land use
transformation and industrial agglomeration exacerbation [15]. Deleterious modifications
in LULC due to urban growth result in increased temperatures in urban zones due to a
rise in impervious surface areas as compared to rural or non-built areas. SUHIs are driven
directly by these factors, which are vegetation cover, impervious surface area ratio, and
LULC modifications. Some other factors also influence SUHI patterns, and the influence
may not be direct. Such indirect factors or drivers are socioeconomic conditions in a city,
demographic variability, and building attributes.

1.1. Significance of Research

To tackle the increasing issues of SUHI in cities, urban designers, planners, and
decision-makers need to come up with sustainable urban designs. To generate sustain-
able and resilient cities for SUHI, it is essential to consider both the direct and indirect
factors/drivers of SUHI. Understanding the role/impact of these drivers can help the
planners to plan/design the urban growth to avoid the SUHI issues.

1.2. Problem Statement

Most of the changes in a natural environment are related to human activities. Therefore,
increasing population density and human interventions in the natural environment may
positively raise the SUHI intensity. IPCC [16] also states that human-induced climate change
is the one that is affecting regions across the globe with increased heatwave events, floods,
droughts, etc. Hence, a systematic evaluation of the effect of socioeconomic drivers on SUHI
is still lacking, and the potential interaction between SUHI and the urban socioeconomic
system is unclear, according to the existing literature survey [15].

Despite the research conducted to investigate the factors associated with SUHI phe-
nomena, many minor and less influencing parameters are still not investigated. Less
attention has been paid to studying the correlation of socioeconomic and demographic
factors on SUHIs within a city [17,18]. Numerous studies have focused primarily on the
influence of biophysical and meteorological factors on land surface temperatures (LSTs).

1.3. Research Objectives

This paper aims at understanding the impacts of socioeconomic and demographic
drivers on the variance of SUHI patterns using remote sensing, census, and GIS data. This
paper aims at understanding the relationships between the spatial variance of SUHI with
socioeconomic and demographic spatial patterns. In this research, the role of building
attributes in connection to driving the SUHI patterns in the city is also studied. This
study investigates the relationships between SUHI spatial variation, land use patterns, and
socioeconomic patterns in the City of Greater Geelong, Australia.
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The specific research question that this research is addressing is “which land-use,
building attributes, socioeconomic, and demographic factors significantly affect the SUHI
and how do they relate with the spatial pattern of SUHI intensity?”.

The research aims to provide primary evidence of the dynamic interplay between
SUHI and its drivers. The paper is articulated as follows: in the first phase, the estimation
of the spatial dynamic of SUHI using the Landsat-derived LST and SUHI data is performed.
In the second phase, the summer months’ Landsat image is processed and correlated with
building attributes, socioeconomic, and demographic variables.

2. Literature Review

Significant research is conducted to correlate the impacts of major factors such as
vegetation, impervious surface percent, LULC, and climatic conditions on SUHI [19–23].
The major factor after vegetation, surface imperviousness, land use, and climatic conditions
are the building attributes [24,25].

The role of roof material or type of roof has been seen to have quite a complex
relationship in driving the UHI effect in cities. The reflectance from the surfaces due to
the composition of material or type of roof is crucial as it plays an important role in the
surface energy balance of urban microclimates [26]. Whereas a building with a combination
of metal pitched and concrete-flatted roofs generates SUHI due to heat absorption and
maintaining drier surfaces [27] building density, on the other hand, has been observed to
have a significant impact on SUHI patterns by increasing the overall SUHI amplitude in the
city areas [28–32]. For example, a study showed that, to attain cooler temperatures in city
areas in Hong Kong, the building coverage ratio is set to less than 44% on an average [33].
Another variable that defines the building attribute is building height; research indicated
that the higher the building-to-street ratio, the larger the temperature values; for example,
it is seen for Hong Kong that, when the building-to-street ratio exceeded 1, the cooling
effect gradually decreased [31].

Other than building variables, socioeconomic and demographic factors may also
influence UHI in cities. Socioeconomic and demographic factors include the economic
development level, poverty levels, population density, education, and anthropogenic heat
emissions. These factors can mitigate it by increasing the secondary industry share and
raising per capita GDP [15]. However, some other research did not agree with it; rather,
those illustrated that the socioeconomic and demographic variables might intensify the
SUHI by changing the physical environment, for example, increased impervious surface or
reduced forest cover [32–35]. Research also indicates that socioeconomic drivers may have
a significant impact on the variance of UHI in temperate cities compared to subtropical
cities [34]. UHI increases gradually with the expansion of population in cities [34]. The
correlations between the spatial variations in surface temperatures and socioeconomic
patterns such as population density, industrial production, and household income are also
observed [36].

The SUHIs are measured from satellites; satellites offer numerous advantages in terms
of costs, the robustness of the process, and the convenience of processing [12,28,36]. How-
ever, these UHIs mostly indicate daytime intensity to be more severe [6,37], whereas SUHIs
measured from air temperature show nighttime UHIs to be hotter [36,38]. Moreover, these
SUHIs are seen to be directly driven by vegetation cover, impervious surface cover, and
other landscape characteristics; very few have analyzed their relationship with other factors
such as socioeconomic variables, demographic variables, and building characteristics [39].
Most of the studies covering the building attributes correlate with air temperature or UHI
derived from air temperature. Negligible studies are conducted to examine the surface-
temperature-derived UHI characteristics with building design or building attributes. The
reason could be the involvement of high costs for a high-resolution surface temperature
dataset whether obtained from drones or satellites.

Figure 1 further sums up the literature review, which indicates that most direct re-
lationships of SUHI are studied widely in literature and have been observed to have a
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robust influence on spatial and temporal patterns of SUHI. However, other factors that
may influence SUHI indirectly or directly remain untapped and less studied, whereas
studies are required to further understand their behavior and impact on SUHI patterns and
intensities in the city zones.
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Figure 1. Factors that impact SUHI patterns across the city. The figure illustrates a few of the major
factors that influence SUHI directly and other factors that may have an indirect influence on SUHI.

Research Gap

SUHIs are mainly driven by biophysical, climatic, socioeconomic, and demographic
factors [16–18,40,41]. Reasonable research has been conducted to study the impacts of
biophysical factors on SUHI. Previous studies have covered the impacts of urban vege-
tation/greenness, vegetation gradient between urban to rural, urban trees, impervious
surfaces, albedo, urban water bodies, and LULC change to SUHI [16,27–30,32–37]. How-
ever, building attributes (height, roof type, age, and building density) could not obtain an
appropriate attraction by the researchers among other biophysical factors [24,42]. Similarly,
socioeconomic and demographic factors, which include economic development, poverty
levels, population density, etc., remained less tapped and mostly ignored in the literature
so far [17,18]. Socioeconomic and demographic factors do not influence SUHI directly but
have been reported to have indirect impacts on SUHI [15]. However, the research per-
formed until now is quite limited and does not explicitly focus on these. The understanding
of these factors requires more exposure and analysis to better examine SUHI patterns in
a city.

3. Methodology

The methodology is divided into three major steps. The first is calculating SUHI over
the selected study area. The second step is the identification and collection of data on the
select factors that represented socioeconomic, demographic, and building attributes. Then,
it involved the integration of selected factors with the calculated SUHI. The third step
involved correlating SUHI with selected factors and identifying their role in driving or gen-
eration of current patterns in SUHI. Figure 2 further illustrates the complete methodology
in detail.

3.1. Study Area

The whole City of Greater Geelong, which is located in Victoria (Australia) is the study
site of research. Geelong is one of the fastest growing regional cities in Australia, with a
rate of 14.2% population growth [43]. The coastal city is geographically located deep down
the harbor, with temperate to semi-arid climate [44,45]. Figure 3 shows the Geelong greater
area as seen from space.

3.2. SUHI Development

SUHI development is carried out through the satellite data of Landsat data (land
surface temperature) and land use land cover data (LULC). LULC is used to mask the water
bodies and delineate urban and rural boundaries. Urban and rural masks are required to
be delineated to calculate the relative temperature of each zone and subtract to obtain the
SUHI values and spatial patterns across the city. The process along with the information on
data acquisition, processing, and analysis is further discussed in the following sections.
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3.2.1. Landsat Data

Landsat data are acquired from the Google Earth Engine archives of USGS Landsat
8 Collection 1 Tier 1 TOA Reflectance. The Landsat scene from 8 January 2021 is chosen as
it has the least cloud cover (about less than 5%) among all the images from January in 2021
over the selected city area. The satellite acquisition time is 10:00 a.m. morning over the
Australian region. The month of January is selected for downloading and acquisition of data
due to it being the middle month in the austral summer season. In addition to it, Australia
has faced its hottest days in January most of the time in the past few decades [46–48]. The
Landsat-8 data offer data in the thermal and optical band, with a spatial resolution of
100 m for thermal bands and 30 m for optical/near-infrared bands. The revisit time for the
satellite is 16 days; this is one reason to not find many cloud-free images for the same area
over the selected period.
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Although a single-day focus is not be the ideal case to evaluate the role of factors on
the spatial pattern of SUHI, multiple images on multiple locations would be the ideal case
to finalize these correlations, which is beyond the scope of this study. This study is an
initial attempt identifying the role of these factors; therefore, a hottest cloud-free day image
is considered sufficient to meet the objective of the study. However, the study has a large
spatial coverage, and abundant observation points are available to give the indication of
the role of the factors discussed.

3.2.2. Land Use Land Cover (LULC)

The land use land cover (LULC) data are acquired from the Department of Environ-
ment, Land, Water, and Planning (DELWP); the data were last updated in 2020 [49]. The
data are at the scale of parcels. Each parcel identifies land use as ‘residential’, ‘commercial’,
‘industrial’, ‘parklands (forest)’, ‘education’, ‘hospitals’, ‘transport’, ‘primary production
(grasslands)’, ‘water’, and ‘other (mixed-use)’. Figure 4 shows the LULC map for the
study area. The LULC map shows that grasslands dominate most of the rural or non-
built land in Geelong. The grasslands are mainly dominated by agricultural lands such
as orchards, groves, recreation camps, mixed farming zones, domestic livestock grazing,
plant tree nursery, protected landscape, timber yards, botanical gardens, racecourse, and
showgrounds. On the other hand, residential and non-residential parcels are identified
under the category of residential and non-residential built zones. Non-residential built
parcels include ‘transport’, ‘industry’, ‘education’, ‘hospitals’, ‘commercial’, and ‘other
(mixed-use)’ zones.
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Figure 4. The land use land cover (LULC) map as acquired from DELWP updated in 2020 [49]. The
map illustrates major LULC classes in the area; it can be seen grasslands that represent agricul-
tural land mostly dominate the rural area of Greater Geelong, whereas the urban class constitutes
residential and non-residential parcels. (Background image source: ESRI).

This LULC map is used to identify urban and rural zones. Urban zones are identified
to be residential and non-residential built parcels, whereas the rural area is identified to be
the grasslands and non-built land adjacent to the urban area in Geelong.

3.2.3. Calculating LST

For calculating LST, Landsat and its thermal bands are used. Landsat’s thermal bands
are converted into brightness temperature and then into LST using the single-channel
(SC) approach pioneered by Jiménez-Muñoz at the University of Valencia [50,51]. All of
the processing from download, acquisition, and the calculation of LST is performed in
Google Earth Engine (GEE) API [50,51]. Figure 5 illustrates the LST as calculated from
Landsat thermal image. Figure 5 clearly shows the urban zones to be at a relatively higher
temperature than the ones in rural zones. Therefore, it indicates the presence of UHI in the
city or metropolitan areas. The figure further clarifies that some of the areas inside the city
are at an even higher temperature than their surrounding zones or parcels.
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center near the coastline. Hot LST spots can be seen in red, and cooler islands can be seen in blue or
indigo. (Background image source: ESRI).

3.2.4. SUHI Estimation

For understanding the spatial extent of SUHI and its variation in space, the paper uses
the following method to map UHI [1,3,4,39]. To map the spatial extent of SUHI, first urban
and rural zones are identified in the selected LST image using LULC data. For example,
zones with of residential, commercial, industrial, and mixed-use LULC categories are
labeled as urban or built zones, whereas areas with LULC categories of forests, grasslands,
open spaces, and parks are labeled as rural zones. Once the urban and rural mask is
generated, it is then used to separate the urban and rural pixels in the LST image.

Therefore, the first rural mask is applied to the LST image to extract rural LST pixels
in the image. Secondly, the average (mean) value is calculated over extracted rural pixels.
Then, the rural LST mean values are then subtracted from the original LST images to
calculate the overall SUHI (Equation (1)). Therefore, the subtraction gives us the SUHI,
which is calculated by subtracting the rural mean from the original LST image. The analysis
gives us the pixel based output, which is utilized to visualize the spatial variance in SUHI.

SUHI(x, y) = LST(x, y)original − LST(x, y)rural (1)

In Equation (1), x and y represent coordinates of single pixel, LST represents the LST
image, and subscripts on LST such as rural and original show the original image and the
mean calculated over the rural image. All the SUHI generation processing is performed in
the programming interface of R. Figure 6 shows the SUHI as calculated using Equation (1),
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and urban zones reach as high as 4 to 5 ◦C. The image illustrates hot spots in the city area
with temperatures above 4 ◦C; also at the same time, it shows cool islands within the city
area, which could be parks, open spaces, or water bodies.
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Figure 6. SUHI as calculated from LST thermal image. It clearly shows hot SUHI spots within the
city area. The grasslands or agricultural land that is highlighted in the LULC map is seen to be cooler
here in the SUHI image, whereas urban areas are at higher SUHI values, mostly from 2 ◦C to 5 ◦C or
even higher SUHI intensities. (Background image source: ESRI).

3.3. Identification and Correlation of Factors

The socioeconomic, demographic, and building factors are identified and then inte-
grated with SUHI to understand their relationship with SUHI. Furthermore, analysis is
carried out to examine each factor’s contribution or role in SUHI generation. The following
section describes the method in more detail.

3.3.1. Socioeconomic Factors

The socioeconomic data are acquired from the Australian Bureau of Statistics (ABS)
last updated in 2016 [52]. Socioeconomic factors involved ABS-defined Socioeconomic
Indexes for Areas (SEIFA) [52]. SEIFA uses national census data, it measures levels of
socioeconomic status, income, employment, education, and housing [39,52,53]. These
datasets are defined at the scale of Meshblock, where Meshblock is defined to have the
smallest block defined by ABS, and each Meshblock identifies land use categories [54].
The SEIFA data are available for download in the form of tables from the ABS [54]. The
SEIFA index further consists of four main types: ‘The Index of Relative Socioeconomic



Sustainability 2022, 14, 2777 10 of 21

Disadvantage (IRSD)’, ‘The Index of Relative Socioeconomic Advantage and Disadvantage
(IRSAD)’, ‘The Index of Education and Occupation (IEO)’, and ‘The Index of Economic
Resources (IER)’ [52].

Each index summarizes a different subset of census variables and focuses on another
aspect of socioeconomic advantage and disadvantage. For example, IRSD provides infor-
mation about people’s financial and social conditions; IER summarizes information on
variables related to income and wealth; and IEO quantifies the workforce, skill levels, and
unemployment levels within an area [54]. In literature, these indices have been used and
analyzed in multiple studies [53,55,56]. In this paper, IRSD, IER, and IEO are investigated,
which represent overall socioeconomic disadvantage, level of education, and status of
economic resources. For the integration of socioeconomic variables with SUHI, ArcGIS was
used for extraction of SUHI values to each Meshblock.

3.3.2. Demographic Factors

The demographic data are acquired from the Australian Bureau of Statistics (ABS)
based on census data of 2016 [52]. The population data included information on the num-
ber of persons per Meshblock. For the subject study, population density is calculated
by dividing population number per unit area concerning Meshblock. For the integra-
tion of population density with SUHI and converting the output information, the same
methodology of Section 3.3.1 is used.

3.3.3. Building Factors

Building factors that are considered for the subject study included building density,
building height, building age, building roof material, and building roof type. The data
on building blocks and their attributes such as building roof type and roof material are
acquired from Geo-vision Australia, updated in 2020.

Other building data on buildings, such as construction year and building height, are
acquired from the central source of Australian open government data, updated in 2013 [57].
All collected data on buildings included building shapefiles at a single building scale. Each
building block contained information on its building ID, usage, height, construction year
(building age), roof type, and roof material. The SUHI generated is at the scale of 100 m,
since Landsat offers this 100 m resolution for its thermal images, whereas the building
file data is at the resolution of single building scale, which is much finer than the Landsat
image. Therefore, the SUHI values are extracted to each building block using ArcGIS.

3.4. Analysis and Results

The data analysis included generating maps for visual output and regression anal-
ysis. The data files are mapped in ArcGIS for their visual representation in the form of
thematic maps.

The extracted data tables of socioeconomic, demographic, and building variables are
further processed into R programming to statistically analyze the data. For understanding
the individual relationships of SUHI with selected factors, linear regression analysis is
performed, and scatter plots along with their regression coefficients are analyzed. For
examining their relative importance and relative significance in driving or generating the
SUHI patterns, multivariant regression analyses are carried out [58,59]. For the subject anal-
ysis, the Lindeman, Merenda, and Gold (LMD) method is used for multivariant regression
analysis [58]. These methods are embedded in the R programming language and are run
on data to analyze the resulting regression coefficients [59].

Figure 7 illustrates the maps for each of the selected factors or indicators. Socioeco-
nomic maps illustrate the variance of values in form of deciles (1 to 10), where 1 represents
the most disadvantaged areas and 10 represents the most advantaged zones. Similarly,
the demographic map represents population density at the scale of persons per unit area
of Meshblock.
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Figure 7. From top left, maps indicating the spatial distribution of socioeconomic and demographic
factors: (A) IRSD: the map illustrates the socioeconomically disadvantaged parcels; (B) IEO: the maps
illustrate the education and occupation; (C) IER: map showing the spatial distribution of economic
resources and (D) population density. Socioeconomic variables are given on a scale of deciles, where
1 decile represents most disadvantaged and 10 represents most advantaged [60].

Figure 8, the building density map, presents the number of buildings per unit area
of Meshblock; these maps also illustrate the urban zone clearly in the CoGG area. The
building height map further illustrates that the average height of buildings in Geelong is
4 m and the tallest building has a height of 44 m. The figure on building construction year
depicts that the new construction is mostly at the outskirts of the city, which is understood
as city expending outwards. Building roof type map shows the most common building
type is moderate pitch. The building rood material map shows that the common building
roof type in Geelong is tile.

Figure 9 shows the individual linear regression plots for each of the selected socioeco-
nomic and demographic factors. The scatter plots for socioeconomic variables indicate an
inverse relationship with SUHI. It means the larger the socioeconomic disadvantage and
the poorer the suburb, the higher the SUHI values. Scatter plots for population density,
building density, and building age illustrate a direct linear relationship with SUHI. There-
fore, they show that the higher the population density, the higher the building density,
which will ultimately lead to larger values of SUHI. On the other hand, the building height
plot shows an inverse relationship for SUHI. The building roof type and roof material show
that steep pitch type roof has relatively higher SUHIs, and roof material ‘polycarbonate’
contributes to much higher SUHI values.
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Figure 9. Correlation plots (linear regression) for (A) IRSD, socioeconomic disadvantages measured
in deciles; (B) IER, economic resources in decile; (C) IEO, education and occupation measured in
decile; (D) population density measured in persons per unit area of Meshblock; (E) building density
measured in number of buildings per unit area of Meshblock; (F) building age measured in the
year of construction; (G) building height measured in meters; (H) building roof type; (I) building
roof material.

Table 1 further illustrates the regression coefficients for each of the factors against
SUHI as derived from scatter plots, as in Figure 9. These plots and figures are further
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discussed in the discussion section (refer to Section 4). Table 1 illustrates the correlation
coefficients obtained from the above figure for each of the selected factors and their role in
generating the existing patterns of SUHI in the city. The table shows that each factor and its
role is significant with p-values less than 0.01. The linear regression further illustrates the
direct relationship of SUHI with building age, building density, and population density.
Moreover, the SUHI illustrates a negative relationship with building height, socioeconomic
disadvantages, education and occupation, and economic resources. The slope values
indicate the variance in each of the scatter plots.

Table 1. Output from linear regression plots for each of the selected factors. The table illustrates the
slope value, trend, coefficient of correlation, and p-value for scatter plots.

SUHI Factors Attributes Slope R2 p-Value

Building variables

Building height −0.06 0.004 <0.01

Building age +3.351 × 10−5 0.07 <0.01
Building density +407 0.07 <0.01

Building roof Type - - -
Building roof Material - - -

Demographic variables Population density +407 0.12 <0.01

Socioeconomic variables
Socioeconomic disadvantage −0.19 0.08 <0.01

Education and occupation −0.19 0.06 <0.01
Economics resources −0.18 0.09 <0.01

These correlation plots and their table provide the information on the individual
relationship of the selected factors with SUHI; however, these do not inform about which
variable or factor is more important or contributes more in driving the SUHI values.
Therefore, a relative importance matrix is generated using multivariant regression.

Table 2 illustrates the output acquired from the multivariant regression model as indi-
vidual scatter plots alone fail to answer which variable contributes more to generating the
SUHI [59]. Accordingly, it depicts the relative importance of selected factors and their rela-
tive contribution in driving the current patterns of SUHI. The model illustrates an overall
proportion of variance to be 28.65%. It further indicates that the factor that contributes most
to the selected variables is ‘population density’, as it indicates an average coefficient value
of +369 and relative importance of around 8% in the combined model which is relatively
highest to other selected variables. The confidence interval for ‘population density’ is also
the smallest with a p-value less than 0.01, therefore indicating that this factor contributes
the most among selected factors. On the second number, the factor that plays a major role
in generating SUHI patterns is seen to be ‘education and occupation’ with a slope value
of −0.18, the relative importance of 7%, and the second shortest confidence interval. The
p-value is also significant for this socioeconomic variable on ‘education and occupation’.
Among all selected factors, only ‘building density’ shows the p-value to be non-significant.
Table 2 further provides other factors and their contribution levels in form of relative
importance and average coefficients along with their significance measures, which are
confidence intervals and relevant p-values.

Figure 10 illustrates the relative variance of selected factors. The model explains up
to 28.65% of the variance in the SUHI model. The population density shows the highest
contribution to selected variables, and building age illustrates the smallest magnitude of
contribution. Building density shows a significant confidence interval; however, the p-value
does not become significant. Among socioeconomic variables, it can be seen education and
occupation plays vital role in driving SUHI.
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Table 2. Output from multivariant regression analysis indicates the contribution of each factor in
driving the existing patterns in SUHI. The table shows that population density has the highest R2

with significant p-values and the smallest confidence interval (CI).

SUHI Factors Attributes Relative
Importance (R2)

Average
Coefficient

Confidence
Interval (CI) p-Value

Building variables
Building height 0.019 +0.012 0.0188 <0.01

Building year 0.017 +0.007 0.0154 <0.01
Building density 0.023 +448 0.0138 0.912

Demographic variables Population density 0.078 +369 0.0351 <0.01

Socioeconomic variables
Socioeconomic disadvantage 0.045 −0.172 0.0072 <0.01

Education and occupation 0.073 −0.181 0.0237 <0.01
Economics resources 0.033 −0.165 0.0147 <0.01
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4. Discussion

Our analysis applies a similar methodology used in other academic research projects
to map SUHI characteristics and their relationship with socioeconomic, demographic, and
building factors. It is highlighted how some of the factors played role in driving the SUHI
in the city area. The regression analysis illustrated that the model with selected indicators
can explain 29% of the variance in SUHI with its combined model R2 value to be 28.65%. In
the following sections, the results are further discussed.

4.1. Socioeconomic Correlations

The selected socioeconomic factors are seen to be playing a significant role in the gen-
eration or driving of the current SUHI patterns in CoGG. All of the selected three factors,
‘socioeconomic disadvantage’, ‘education and occupation’, and ‘economic resources’ can ex-
plain the SUHI variance with proportions of 4.5%, 7%, and 3%, respectively with significant
p-values and confidence intervals. The proportion of variance of selected socioeconomic
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factors in UHI generation is not bigger in magnitude; however, it remains significant and
cannot be ignored. Moreover, among the selected socioeconomic variables, ‘education
and occupation’ contributes the most with significant p-values and significant confidence
interval. This can be explained by the fact that people living with poverty, unemployment,
and other social disadvantages in urban zones lack the resources to maintain their suburbs
and consequently contribute robustly to generating SUHI patterns. In the case of CoGG,
areas with low income (identified to be ones with income less than 26,000/annum), more
unemployed people, households having many people with no qualification, or many peo-
ple in low-skill occupations are seen to be contributing to exaggerating the SUHI values.
On the other hand, the richer suburbs or parcels with the most advantaged socioeconomic
status such as people having qualifications and skilled occupations are having lower SUHI
values. This can be explained by the fact that more people with relatively lower personal
resources may lack the capability to maintain or mitigate the urban heat effect, ultimately
causing higher adjacent temperatures in their neighborhoods. In addition, the areas with
relative disadvantages in social status, education levels, and employment conditions lack
the attention required from concerning authorities. It may require the town planners and
policymakers to invest more to make the suburbs greener or environmentally sustainable,
while lowering prices of the building stock and thus avoiding the displacement of current
inhabitants. The other reason for higher surface temperatures in socially disadvantaged
suburbs can be due to high population density and more manmade surfaces in those ar-
eas [61]. Moreover, in this study, it is observed that the factor of ‘education and occupation’
is contributing most among seriocomic variables, however, with a smaller difference in R2

compared to other variables. Results also provide the point of discussion that this group of
population with lower socioeconomic resources can become even more vulnerable to any
climate intensifications in heat due to lack of resources and higher SUHI values [34].

4.2. Demographic Correlations

Among all selected factors, the demographic factor, ‘population density’ indicated the
relatively highest contribution in SUHI generation. Higher population density is mostly
accompanied by relatively higher impervious surface areas and lower vegetation or tree
canopy cover, consequently triggering the SUHI effect in that area. Higher population
density is also accompanied by poor health status and welfare dependencies, causing the
relevant suburbs to be at higher risk of heat from the generation of SUHI. Residential areas
with less population density and low building density with higher spatial distribution
contribute to the SUHI effect. Moreover, higher population density results in higher
anthropogenic heat due to dense settlements and a high percentage of impervious surfaces,
reducing latent heat flux and increasing sensible heat flux due to more impervious surfaces
such as buildings, roads, traffic, etc.

4.3. Building Attributes Correlations

Among all selected building attributes, in generating current SUHI patterns, the most
robust and relatively larger contribution is from ‘building height’.

‘Building height’ illustrated a direct relationship in the multiple regression model,
indicating that, with other explanatory variables in place, building height played a signif-
icant role in driving the SUHI values; however, the contribution remained quite smaller
in extent. It further illustrated that the taller the building, the higher the SUHI value. The
individual scatter plot indicated the reverse, which means an inverse relationship with
SUHI. However, when there are multiple predictors, which is the case in our study, it is
highly recommended to rely on multivariant regression results rather than on induvial
linear regression results [59]. Multivariant regression analysis illustrates how various
independent explanatory variables drive the dependent variable [62]. The height of build-
ings in the city aggregates the SUHI, since the taller the buildings, the more wind will be
obstructed, and ultimately, the SUHI values rise by not letting the surfaces cool down due
to wind obstructions [63,64]. On the other hand, building height may also play a role in
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decreasing the surface temperatures by providing a shadowing effect on low-rise buildings
or streets [64]. On the other hand, the study site of this paper, Geelong, is a regional city in
Australia; it does not have many high-rise buildings, and most of the buildings are at an
average height of 4 to 5 m. The city is growing at a relatively higher pace, which does not
mean it has reached a stage where it has much variance or spatial variability in high-rise
buildings [43]. Therefore, the results are recommended to be further analyzed for other
cities with more variations in high-rise buildings and low-height buildings.

Among other building attributes, ‘building age’ is the second most significant con-
tributor behind existing SUHI patterns. The construction year or age of the building is a
factor that is not much examined in previous studies in the literature. In subject analysis,
‘building age’ illustrated a direct robust contribution to the development of SUHI. It means
the newer the building, the higher the SUHI value. The possible reasons could be the
change in construction materials that have been switched to concrete and steel in modern
days. As most of the factors that are discussed in research presented in this manuscript does
not have direct impacts on UHI, it is recommended to further investigate the characteristics
of building age that are causing the difference. However, the results also pointed out
that newly constructed buildings increased the SUHI within the areas, suggesting their
significant role in increasing the SUHI effect. For the subject study, the scale of analysis
is set to Meshblock level. Therefore, this contribution also supports the statement that
the higher the impervious surface cover, the higher the SUHI values. However, further
research is required in this area to better understand the relationship of new construction
than the older constructions.

Building roof type illustrated three major types used in most of the buildings in
Geelong. The roof type presented the roof geometry of the building identified as flat,
moderately pitched, step pitched, or varied. The highest contribution in SUHI came from
the roofing geometry of steep pitched or varied pitch roofs. However, the flat remained
relatively cooler roofing geometry.

On the other hand, building material presented roofing systems constructed from
various materials. The study highlighted four major building roof types, which included
‘fiberglass plastics’, ‘flat concrete’, ‘metal’, and ‘tile’. The material type ‘fiberglass/plastic’
showed the highest average SUHI values, which is explainable. Since ‘fiberglass plastic’
represents a roofing system constructed from corrugated polycarbonate materials, these
are mostly fiberglass shingles used as asphalt shingles in residential roofs. Asphalt is a
dark brown to black cementitious material. These materials are not temperature-resistant;
however, they work best in cold conditions [28,65]. The study site had most of the buildings
with roof type ‘tile’, where a ‘tile’ roofing system represented roofs constructed traditionally
from cement, water, and sand. This material type illustrated the coolest roofs with the
least intense UHI values. Other roofing systems, such as ‘tile’, ‘metal’, and ‘flat concrete’
remained at relatively lower SUHI values. ‘Flat concrete’ represented roofing systems
constructed from individual concrete slabs, more of composed from blend of broken stone,
gravel, and sand. ’Metal’ represented a roofing system constructed from metal sheets; this
may include galvanized steel, zinc, aluminum, lead, or tin.

For ‘building density’, the individual correlation plots indicate a significant direct
relationship with SUHI, which is easily explainable as a higher building density leads
to a higher impervious surface ratio, and so it causes higher SUHI values. The multiple
regression, on the other hand, indicates the role of building density to be relatively non-
significant. This indicates that, among selected independent variables, the role of building
density decreased to a non-significant contribution.

5. Conclusions and Recommendations

This research provides a comprehensive analysis of the contributions of socioeco-
nomic, demographic, and building factors in driving the SUHI intensity in a city. It can be
concluded that, among selected land use, building attributes, or socioeconomic or demo-
graphic factors, ‘population density’ and then ‘education and occupation’ disadvantages
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significantly affect the SUHI spatial patterns and intensity in the city. The magnitude of
contribution in SUHI variance remains smaller, but still, these contributions cannot be
ignored as they remain robust and play a vital role in SUHI intensity development.

Moreover, the selected factors in socioeconomic, demographic, and building variables
collectively contribute around 28% to existing SUHI patterns in the city, and the contribution
is significant. It means these factors do not explain larger variance in the SUHI model;
however, the smaller contribution from these factors is also significant and cannot be ignored.
Another major finding from this study is that the role of socioeconomic disadvantages in
SUHI generation is significant. It means suburbs dedicated or dominantly resided by a
particular group of people with certain socioeconomic conditions may lead to variation
in spatial patterns of SUHI across the city, since people with low resources may not be
able to maintain or mitigate the variance of SUHI in their local areas at a suburban level in
comparison to suburbs with better social advantages and resources to cope with SUHI.

The paper also presents an excellent work that can help urban planners, decision-
makers, and relevant authorities in making decisions, particularly when designing sustain-
able cities for extreme heat or making strategies to mitigate the urban heat island effect. This
paper could be of very much importance to relevant decision-makers or urban planners,
as it points towards areas within the city that might need more attention when planning
SUHI mitigation strategies.

As a recommendation, it is thought that more cities need to be considered when trying
to better understand the effect of these minor factors on SUHI development. It is further
recommended that, when adopting the policies to mitigate SUHI within the city, the urban
land planners, policymakers, and concerning authorities provide more attention to suburbs
at relatively higher disadvantages in socioeconomic conditions, education levels, and
employment status. We suggest furnishing the disadvantaged suburbs with better options
of maintaining the greenery and impervious surface ratios within their areas. Moreover,
suburbs with young buildings and high inertia roof material may also require attention
from town developers to maintain an adequate ratio of greenery and impervious surfaces
to mitigate the SUHI effect within the city areas. A study carried out on a larger number of
cities with similar methodology will be helpful in better understanding the SUHI patterns
and their major or minor factors. Moreover, other factors such as vegetation, impervious
surface, and LULC changes may also be incorporated in the model to better understand
their combined role in SUHI generation.
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