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Abstract: An analytical model was developed in this study for predicting the dynamic temperature
profile in natural gas hydrate (NGH) reservoirs that receive heat energy from a geothermal layer
for accelerating gas production. The analytical model was validated by a comparison of its result
to the result given by a numerical model. The expression of the analytical model shows that, for a
given system, the heat transfer is proportional to the mass flow rate and the temperature drop along
the heat dissipator wellbore. Applying the analytical model to the NGH reservoir in the Shenhu
area, Northern South China Sea, allowed for predicting the dynamic temperature profile in the NGH
reservoir. The model result reveals that the NGH reservoir temperature should increase quickly
at any heat-affected point, but it should propagate slowly in the radial direction. It should take
more than two years to dissociate NGH within 20 m of the heat dissipator wellbore due to only
thermal stimulation. Therefore, the geo-thermal stimulation method should be used as a technique
for accelerating gas production with a depressurization scheme. The formation of gas phase due
to the NGH dissociation should reduce the thermal conductivity of the NGH reservoir, while the
water phase that dropped out from the dissociation should increase the thermal conductivity. The
resultant effect should be investigated in the future in laboratories and/or numerical simulation of
the dynamic water-gas two-phase flow coupled with a heat–transfer mechanism.

Keywords: subsea; gas hydrate; production; geothermal method; mathematical modeling

1. Introduction

Natural gas hydrates (NGH) trap a tremendous amount of natural gas in on shore
and offshore reservoirs worldwide. The global stocks of a gas hydrates range account for
at least 10 times the supply of conventional natural gas deposits, with between 100,000
and 300,000,000 trillion cubic feet of gas yet to be discovered, and twice as much carbon as
Earth’s other fossil fuels combined [1]. If these sources of natural gas could be efficiently
developed, NGH could potentially displace coal and oil as the top sources of the world’s
energy [2].

Compared to traditional liquid fossil fuels, the natural gas stored in the NGH is
favored even more with its ecologically friendly nature owing to its low-carbon content.
The global initiative to restore a low-carbon planet has made NGH more attractive than
other energy sources. The tremendous amount of reverse NGH and its cleanness have
accounted for its increasing attractiveness to be a promising energy source for the next
generations of humankind [3].

Research on NGH has gone a transition from scientific studies [4] through investiga-
tions of petrophysical properties and geological characterization of reservoirs [5] to field
pilot studies [6]. Field pilots test gas well productivity in NGH reservoirs [7,8]. While
these studies continue to deepen people’s understanding of properties of NGH reservoirs
and challenges in field operations during natural gas extraction from the NGH sediments,
efforts are shifting from being stagnant with the documented huge reserve amount [9]
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to more relevant technical and economic studies on NGH pay zone potentials, gas well
productivity, and gas well construction techniques [10–13].

Recently, Japan, China, and India have carried out well testing and gas production from
NGH [7,14]. The currently tested methods for exploration and production of natural gas
from oceanic NGH include (1) depressurization, (2) thermal stimulation, (3) thermodynamic
inhibitor injection, and (4) combination of some of these methods.

The depressurization method decreases the pressure in NGH deposits below the hy-
drate dissociation pressure [15,16]. The thermal stimulation method uses surface-provided
hot water/brine/steam to heat the NGH deposit above hydrate dissociation tempera-
ture [17–19]. The thermodynamic inhibitor injection method involves the injection of
chemicals, such as salts and alcohols, to change the hydrate pressure–temperature equi-
librium conditions [20,21]. The one example of trials using the combined method was
reported by Moridis and Reagan [22,23].

The depressurization-based methods are commonly used due to their simplicity, tech-
nical effectiveness, and lower cost. However, due to the strong endothermic effect of the
dissociation and the Joule–Thompson cooling effect due to the rapidity depressurization,
the NGH zone can experience steep local temperature drop and zone-wide temperature
decline as the NGH dissociation takes place [3,24]. The work of Kurihara [5] shows that
a steep local temperature drop can cause formation of secondary hydrate and ice near
the producing wellbore. This would undermine well productivity due to flow restric-
tion/choking the well. The zone-wide temperature decline due to gas expansion can
reduce long-term productivity of the well as the in situ temperature deviates from the three-
phase equilibrium. Based on computer simulation, Hong and Pooladi-Darvish [25] also
reported that the NGH zone can experience a significant decline in temperature because of
reservoir cooling due to the endothermic dissociation. Results of their study suggest that
heat transfer is the dominant mechanism controlling the NGH dissociation process. This
phenomenon was investigated by Moridis and Reagan [22] and verified in field testing by
Qin et al. [26]. Therefore, the depressurization-based method requires a slow and graduate
change of pressure and temperature to maintain long-term production. Without external
heat supply to the NGH zone, it is difficult for the depressurization method to be efficient.
Moridis et al. [27] experimented with gas production from 55-ft thick NGH zone by cir-
culating warm water and obtained an increased gas production peaked at 53 Mscfd. The
results confirmed that the replenishment of heat into active producing NGH reservoirs can
facilitate a longer production life span for the NGH zone.

The currently tested thermal stimulation methods involve heat energy provided by
warm water or electricity from the surface. The hydrate dissociation that solely relies on
conventional thermal stimulation has been proven not adequate to be sustainable because
it is slow, inefficient, and excessively energy demanding. Introducing warm water into the
NGH zone could also have adverse effects on the relative permeability to the gas phase.
Electrical heating of the NGH zone is even a slower and less efficient process than the
water-heating. The use of inhibitors for producing gas from NGH is limited owing to their
high cost, short-term effectiveness, and risks of formation damage [20,21].

In summary, none of these methods have been demonstrated to be economical due
to low productivity of wells. Other factors affecting the NGH reservoir development
include wellbore collapse and excessive sand production. These two issues arose because
of reducing wellbore pressure in depressurization and thermal stimulation for improving
well productivity. Although some novel ideas have been proposed to solve these problems,
including the use of radial lateral wells [28], frac-packed wells [13] and horizontal snake
wells [10,12], they have not been tested in the field.

Apparently, the thermal stimulation is the most promising method if the problems of
excessive energy-demand and adverse effect of water on the gas relative permeability are
solved. Fu et al. [29] proposed a new idea for thermal stimulation using geothermal energy.
It involves using y-shaped well couples to transfer the heat in a geothermal reservoir at
a deeper depth to the NGH zone through a non-water contacting horizontal lateral hole.
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Results of their mathematical modeling show that the temperature in the heating lateral
hole can be significantly higher than the dissociation temperature of NGH. However, there
is a gap between their mathematical model and well production forecast because the heat
transfer efficiency to the NGH zone is not known. This study fills the gap by developing an
analytical model for heat transfer into the NGH zone. The analytical model was verified by
a numerical model for its correctness.

2. System Description

Figure 1 shows a schematic diagram of a y-shaped well couple proposed by Fu et al. [29]
for producing natural gas from a subsea NGH reservoir. Seawater is injected by pump 1
through flexible hose 2 into the water injection well 3 along the inner casing 4 reaching
the geothermal zone 8. The water is heated up to a temperature of the geothermal zone,
which is dependent on the depth of geothermal zone. The hot seawater in the heat absorber
wellbore 9 travels through the annulus area and arrives at the heat dissipator wellbore 10
located in the gas hydrate zone 12. The heat of water in the wellbore transfers into the gas
hydrate zone. When the temperature in the gas hydrate zone rises to a hydrate dissociation
temperature, the dissociated natural gas and liquid flow into the horizontal production
wellbore 11. The natural gas and liquid steam are produced through gas production well
14. The produced gas and water are collected and released through flexible hose 15 to
separator 16. The liquid stream, which is mainly water, is disposed to the sea. The produced
natural gas is compressed by a gas compressor 17 and stored in gas tank 18, which is later
transported to pipeline network 19 or shipped for sale directly. After the heat in the warm
water is dissipated into the hydrate formation, the seawater becomes less warm and flows
into the annulus of the production well 14, and is then circulated by pump 1. Now, the
injection seawater has completed a utilization cycle. The connections between the ship and
the wellheads are flexible to account for the movement of the ship.
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Figure 1. Schematic diagram of a y-shaped well couple for transferring heat from a geothermal zone 
to a gas hydrate reservoir. 

Figure 1. Schematic diagram of a y-shaped well couple for transferring heat from a geothermal zone
to a gas hydrate reservoir.

3. Mathematical Models

The system depicted in Figure 1 presents a technique of utilizing geothermal energy
through a y-shaped wellbore couple to facilitate the production of natural gas from the
NGH reservoir, which eliminates the need to burn fossil fuels or use electricity to heat the
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injection fluid. This process not only saves energy but also reduces carbon footprint. The gas
well productivity depends on the heat transfer efficiency from the heat dissipator wellbore
deep into the NGH reservoir where the horizontal production wellbore is placed. An
analytical model was developed in the study to quantitively predict the temperature rise in
the NGH reservoir. The analytical model verified by a numerical model for its correctness.

Analytical Model. Consider the horizontal heat dissipator wellbore 10 shown in
Figure 1. The following assumptions are made for modeling the heat transfer process:

The reservoir is homogeneous and isotropic with constant density, thermal conductiv-
ity, and specific heat.

The reservoir is considered infinitely large as compared to the wellbore size.
The governing equation of temperature is the commonly known diffusivity equation

expressed as
1
r

∂

∂r

(
r

∂T
∂r

)
=

1
β

∂T
∂t

(1)

where T is temperature in ◦C, r is distance from the wellbore center line in meter, t is time
in second, and b is thermal diffusivity constant defined by

β =
K

ρsCps
(2)

where K is rock thermal conductivity in W/m-◦C, rs is rock density in kg/m3, and Cps is
rock heat capacity at constant pressure (specific heat) in J/kg-◦C.

The initial condition is expressed as

T = Ti at t = 0 for all r (3)

where Ti is initial reservoir temperature. The boundary condition at the wellbore is ex-
pressed as

qrw = −K
[

dT
dr

]
r=rw

for all t. (4)

where qrw is rate of flow of heat per unit time per unit area of wellbore in J/s-m2. For a
circular wellbore with radius rw and length L, the following relation holds true:

qrw =
Qrw

2πrwL
(5)

where Qrw is rate of flow of heat per unit time in J/s. Substituting Equation (5) into
Equation (4) and rearranging the latter gives

Qrw

2πLK
= −rw

[
dT
dr

]
r=rw

for all t. (6)

The solution of Equation (1) takes the following form (see Appendix A for derivation):

T = Ti +
Qrw

4πLK
Ei(s) (7)

where Ei(s) is exponential integral and

s =
r2

4βt
(8)

The heat flow rate from wellbore to reservoir can be calculated by

Qrw = Cpl
.

mp(Tin − Tout) (9)
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where Cpl is the heat capacity of the fluid inside the wellbore in J/(kg·◦C),
.

mp is the mass
flow rate inside the wellbore in kg/s, and Tin and Tout are fluid temperatures in ◦C at the
inlet and outlet of the wellbore, respectively.

Numerical Model. A two-dimensional numerical model was built in the finite element
software COMSOL Multiphysics. Considering the symmetry of the system, the numerical
model was set up with the cylindrical coordinates (r-z coordinates) with the horizontal
wellbore set in z-direction and heat transfer in the radial r-direction. The governing equation
for heat transfer is as follows:

ρCps
∂T
∂t

+ ρCpsu · ∇T +∇ · q = Q (10)

where r is solid density in kg/m3, Cps is the heat capacity of the solid in J/(kg·◦C), T is
temperature in ◦C, t is time in seconds, u is velocity field in m/s, q = −K∇T, and Q is the
heat source in W/m3.

Figure 2 shows a radial cross-section of a two-dimensional discrete grid system built in
the numerical model. The formation rock was assumed to be homogeneous and isotropic.
The dimensions of the domain are 10 m of height in the z-direction, 400 m of outer boundary
in the r-direction, and 0.3 m of inner boundary in the r-direction (rw). The initial condition
is given by Equation (3) and the inner boundary condition is described by Equation (4).
The mesh type of the domain is linear triangular with a minimum element size of 0.02 m
and a maximum size of 10 m. The time step size is not defined by the user of COMSOL.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 14 

 

𝑠 = 𝑟ଶ4𝛽𝑡 (8)

The heat flow rate from wellbore to reservoir can be calculated by 𝑄௥௪ = 𝐶௣௟𝑚ሶ ௣(𝑇௜௡ − 𝑇௢௨௧) (9)

where Cpl is the heat capacity of the fluid inside the wellbore in 𝐽/(𝑘𝑔 ∙ ℃), 𝑚ሶ ௣ is the mass 
flow rate inside the wellbore in kg/s, and Tin and Tout are fluid temperatures in ℃ at the 
inlet and outlet of the wellbore, respectively. 

Numerical Model. A two-dimensional numerical model was built in the finite ele-
ment software COMSOL Multiphysics. Considering the symmetry of the system, the nu-
merical model was set up with the cylindrical coordinates (r-z coordinates) with the hori-
zontal wellbore set in z-direction and heat transfer in the radial r-direction. The governing 
equation for heat transfer is as follows: 𝜌𝐶௣௦ 𝜕𝑇𝜕𝑡 + 𝜌𝐶௣௦𝐮 ⋅ ∇𝑇 + ∇ ⋅ 𝐪 = Q (10)

where r is solid density in kg/m3, Cps is the heat capacity of the solid in J/(kg ∙ ℃), T is 
temperature in °C, t is time in seconds, u is velocity field in m/s, 𝐪 = −𝐾∇𝑇, and Q is the 
heat source in W/ m3.  

Figure 2 shows a radial cross-section of a two-dimensional discrete grid system built 
in the numerical model. The formation rock was assumed to be homogeneous and iso-
tropic. The dimensions of the domain are 10 m of height in the z-direction, 400 m of outer 
boundary in the r-direction, and 0.3 m of inner boundary in the r-direction (rw). The initial 
condition is given by Equation (3) and the inner boundary condition is described by Equa-
tion (4). The mesh type of the domain is linear triangular with a minimum element size of 
0.02 m and a maximum size of 10 m. The time step size is not defined by the user of COM-
SOL.  

 

Figure 2. A two-dimensional discrete grid system built in the numerical model 

Model Validation. The analytical model was validated by a comparison of its result 
and the result given by the numerical model for an arbitrary data set shown in Table 1. A 
comparison of temperature profiles given by the analytical and numerical models are pre-
sented in Figure 3. This comparison indicates that the results given by the two models are 
identical, which implies the correctness of the analytical model. Figure 4 presents the 

Figure 2. A two-dimensional discrete grid system built in the numerical model.

Model Validation. The analytical model was validated by a comparison of its result
and the result given by the numerical model for an arbitrary data set shown in Table 1.
A comparison of temperature profiles given by the analytical and numerical models are
presented in Figure 3. This comparison indicates that the results given by the two models
are identical, which implies the correctness of the analytical model. Figure 4 presents the
temperature raise at different radial distances given by the numerical model. It indicates
that the rate of temperature increase slows down with time.
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Table 1. An input data set for model comparison.

Model Parameter Value Unit

Solid density (rs) 2600 kg/m3

Solid thermal conductivity (K) 1 W/m-◦C

Solid heat capacity (Cps) 1 J/kg-◦C

Solid initial temperature (Ti) 20 ◦C

Liquid density (rL) 1000 kg/m3

Liquid heat capacity (Cpl) 1 J/kg-◦C

Borehole length (L) 10 m

Borehole radius (rw) 0.3 m

Liquid flow rate (Qf) 0.01 m3/s

Borehole inlet temperature (Tin) 100 ◦C

Borehole outlet temperature (Tout) 30 ◦C
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4. Applications

The mathematical models were employed to predict the temperature increase of
an NGH reservoir in the South China Sea in a scenario of using geothermal energy for
producing natural gas. The example NGH reservoir is in the Shenhu area, Northern South
China Sea. The pay zone is about 1180 m below sea level and 155 m to 177 m under
the mud line [30]. The average reservoir pressure and temperature are estimated to be
approximately 14 MPa and 6◦, respectively. The NGH reservoir is composed of clayey
silt in three intervals [31]. The NGH layer in interval “a” has a mean effective porosity
0.35, mean hydrate saturation about 34%, and mean permeability 2.9 md. The layer in
interval “b” has a mean effective porosity 0.33, mean hydrate saturation 31%, and mean
permeability 1.5 md. The layer in interval “c” has a mean effective porosity 0.32, mean gas
saturation 7.8%, and mean permeability 7.4 md.

Assuming that the major component of the natural gas in the Shenhu area is methane,
the dissociation temperature of the NGH at 14 MPa is about 15◦ [32]. Fu et al.’s [29] study
shows that, if the heat energy in a geothermal zone (60◦) at a vertical depth of 2500 m is
brought to the NGH layer with a water circulation rate of 10 kg/s, the temperature of water
at the inlet and outlet of a 2000 m long heat dissipator wellbore is predicted to be 47.5◦ and
36.5◦, respectively. To predict the temperature change in the NGH layer with the analytical
model, Table 2 was prepared for input data.

Table 2. Input data to the analytical model for the Shenhu NGH reservoir.

Wellbore Length (L) 2000 m

Thermal conductivity of rock (K) 3.06 W/m-◦C
Density of rock (rs) 2600 kg/m3

Heat capacity of hydrate zone (cps) 878 J/kg-◦C
Initial rock temperature (Ti) 6 ◦C
Thermal fluid density (rL) 1030 kg/m3

Thermal fluid flow rate (Qf) 0.1 m3/s
Heat capacity of thermal fluid (Cpl) 4184 J/kg-◦C
Fluid temperature at inlet of wellbore (Tin) 47.5 ◦C
Fluid temperature at outlet of wellbore (Tout) 36.5 ◦C

Figure 5 presents model-calculated temperature profiles at 10 days, 20 days, and
30 days of water circulation. It indicates that the temperature should increase quickly in the
vicinity of wellbore in the first month of water circulation. This is expected for the radial
heat flow system.
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Figure 6 shows model-calculated temperature changes with time of water circulation
at fixed radial distances. It implies that the temperature at a given radial distance should
increase linearly with time after a while of water circulation. This is an indication of an
efficient heat transfer process.
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Figure 6. Temperature change with time of water circulation at fixed radial distances.

Figure 7 illustrates the model-calculated propagation of a temperature front of 15 ◦C
(NGH dissociation temperature at the initial reservoir pressure) as a function of time of
water circulation. It indicates a nonlinear trend with a declining rate of propagation as the
slope of curve drops with time. This again is expected for the radial system of heat flow.
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5. Discussion

The data presented in Figures 5–7 reveal that the temperature would increase quickly at any
heat-affected point, but it would propagate slowly in the radial direction. It would take more
than two years to dissociate NGH within 20 m of the heat dissipator wellbore due to only thermal
stimulation. This is consistent with the observations by other researchers [20,21] showing
that the hydrate dissociation solely relying on thermal stimulation is not adequate to be
sustainable because it involves a slow and inefficient heat transfer process in the reservoir
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rock. Therefore, the geo-thermal stimulation method should be used as a technique for
accelerating gas production with a depressurization scheme.

Because real gas law demands that the increase in temperature will increase the
pressure of free gas behind the 15 ◦C front, there is a tendency of reformation of NGH if the
pressure fluctuates [32]. This suggests that the natural gas released from the NGH should
be produced in time through the gas production wellbore to reduce pressure.

Results presented in this work are from using the data in Table 2. Equations (7) and (9)
show that, for a given system, the heat transfer is proportional to the mass flow rate

.
mp and

the temperature difference (Tin − Tout). However, this temperature difference is affected
by the mass flow rate through the fluid retention time in the heat dissipator wellbore and
the heat losses in other sections of the y-shaped well couple. An optimum mass flow rate
may be found to maximize the heat transfer into the NGH layer. This issue should be
investigated in future studies.

The presented model does not consider the heat of phase transformation of the sub-
stance under reduced pressure conditions. In addition, the formation of gas phase due
to NGH dissociation and gas production should reduce the thermal conductivity K of
the reservoir, while the water phase dropped out from the dissociation may increase the
thermal conductivity. The resultant effect should be investigated in laboratories and/or nu-
merical simulation of the dynamic water-gas two-phase flow coupled with a heat–transfer
mechanism. A fully coupled model for mass transfer and heat transfer should be developed
in future studies.

6. Conclusions

An analytical model was developed in this study to describe the heat transfer process
from wellbore to NGH reservoir for enhancing gas well productivity in NGH reservoirs.
The following conclusions are drawn:

1. The analytical model was validated by a comparison of its result and the result given
by a numerical model for an arbitrary data set. A comparison of temperature profiles
given by the analytical and numerical models indicates that the results given by the
two models are identical, which proves the correctness of the analytical model.

2. Applying the analytical model to the NGH reservoir in the Shenhu area, Northern
South China Sea, allowed for predicting temperature profiles both in spatial and
time domains. Model results reveal that the NGH reservoir temperature should
increase quickly at any heat-affected point, but it should propagate slowly in the
radial direction.

3. It should take more than two years to dissociate NGH within 20 m of the heat dissipa-
tor wellbore due to only thermal stimulation. Therefore, the geo-thermal stimulation
method should be used as a technique for accelerating gas production with a depres-
surization scheme.

4. Because the real gas law demands that the increase in temperature will increase the
pressure of free gas behind the NGH dissociation temperature (15 ◦C) front, it is
expected that reformation of NGH may occur if the pressure fluctuates. This suggests
that the natural gas released from the NGH should be produced in time through the
gas production wellbore to reduce pressure.

5. The analytical model shows that, for a given system, the heat transfer is proportional
to the mass flow rate and the temperature drop along the heat dissipator wellbore.
Because this temperature drop is affected by the mass flow rate through fluid retention
time in the heat dissipator wellbore and heat losses in other sections of the y-shaped
well couple, an optimum mass flow rate may be found to maximize the heat transfer
into the NGH layer. This needs further investigations in the future.
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Appendix A Mathematical Modeling of Heat Transfer into Gas Hydrate Reservoirs

Assumptions. Consider the horizontal heat dissipator wellbore shown in Figure 1.
The following assumptions are made for modeling the heat transfer process:

- The reservoir is homogeneous and isotropic with constant density, thermal conductiv-
ity, and specific heat.

- The reservoir is considered infinitely large as compared to the wellbore size.

Governing Equation. The governing equation of temperature is the commonly known
diffusivity equation expressed as

1
r

∂

∂r

(
r

∂T
∂r

)
=

1
β

∂T
∂t

(A1)

where T is temperature in ◦C, r is distance from the wellbore center line in meter, t is time
in second, and b is thermal diffusivity constant defined by

β =
K

ρsCps
(A2)

where K is thermal conductivity in W/m-◦C, r is density in kg/m3, and Cps is specific heat
in J/kg-◦C.

Boundary Conditions. The initial condition is expressed as

T = Ti at t = 0 for all r. (A3)

where Ti is initial reservoir temperature. The boundary condition at the wellbore is ex-
pressed as

qrw = −K
[

dT
dr

]
r=rw

for all t, (A4)

where qrw is the rate of flow of heat per unit time per unit area of wellbore in J/s-m2. For a
circular wellbore with radius rw and length L, the following relation holds true:

qrw =
Qrw

2πrwL
(A5)

where Qrw is rate of flow of heat per unit time in J/s. Substituting Equation (A5) into
Equation (A4) and rearranging the latter gives

Qrw

2πLK
= −rw

[
dT
dr

]
r=rw

for all t. (A6)
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Solution
The solution of Equation (A1) is sought by Boltzmann’s transformation:

s =
r2

4βt
(A7)

so that
∂s
∂r

=
r

2βt
(A8)

and
∂s
∂t

= − r2

4βt2 (A9)

Substituting Equations (A7) through (A9) into Equation (A1) and rearranging the latter give

dT
ds

+ s
d
ds

(
dT
ds

)
= −s

dT
ds

. (A10)

Let
dT
ds

= T′. (A11)

Then, Equation (A10) becomes

T′ + s
dT′

ds
= −sT′ (A12)

or
dT′

T′
= − s + 1

s
ds (A13)

which is integrated to obtain
lnT′ = −lns− s + c1 (A14)

where c1 is an integration constant. This equation is rearranged to give

T′ = c2
e−s

s
(A15)

where c2 is a constant.
Chain rule gives

r
dT
dr

= r
dT
ds

ds
dr

(A16)

Chain rule gives

r
dT
dr

= r
dT
ds

ds
dr

= r
dT
ds

(
r

2βt

)
=

dT
ds

(
r2

2βt

)
= 2s

dT
ds

(A17)

Substituting Equation (A15) into Equation (A17) gives

r
dT
dr

= 2c2e−s (A18)

At a wellbore where s approaches 0, this relation becomes

rw

[
dT
dr

]
r=rw

= 2c2 (A19)

Applying boundary condition Equation (A6) to Equation (A19) yields

Qrw

2πLK
= −2c2 (A20)
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which gives

c2 = − Qrw

4πLK
(A21)

Substituting Equation (A21) into Equation (A15) gives

dT
ds

= − Qrw

4πLK
e−s

s
(A22)

which is integrated over time:

T∫
Ti

dT = − Qrw

4πLK

s∫
∞

e−s

s
ds (A23)

or

T = Ti −
Qrw

4πLK

s∫
∞

e−s

s
ds = Ti +

Qrw

4πLK

∞∫
s

e−s

s
ds (A24)

i.e.,

T = Ti +
Qrw

4πLK
Ei(s) (A25)

The heat flow rate from wellbore to reservoir can be calculated by

Qrw = Cpl
.

mp(Tin − Tout) (A26)

where Cpl is the heat capacity of the fluid inside the wellbore in J/(kg·◦C),
.

mp is the mass
flow rate inside the wellbore in kg/s, and Tin and Tout are fluid temperatures in ◦C at the
inlet and outlet of the wellbore, respectively.
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