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Abstract: In this study, a new bio-adsorbent (NASIF) was successfully prepared via chemical ac-
tivation of Solanum incanum (SI) with hydrogen peroxide and sodium hydroxide reagents as an
inexpensive and effective adsorbent for the removal of methylene blue (MB) from aqueous media.
The morphology of the NASIF adsorbent surface and the nature of the potential MB interactions were
examined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM)
micrograph. FTIR results suggested that carboxyl, carbonyl, and hydroxyl groups were involved in
MB adsorption on the NASIF surface. EDX analysis confirmed the successful increase of oxygen-
containing functional groups during the chemical activation. The influence of important factors was
studied using the batch method. The results revealed that the maximum removal efficiency was 98%
at contact time: 120 min; pH: 6.5, adsorbent dose: 40 mg; and temperature-25 ◦C. Isothermal behavior
was evaluated using three non-linear isotherm models, Langmuir, Freundlich, and D–R isotherm. MB
adsorption onto NASIF adsorbent followed the Langmuir isotherm model with maximum monolayer
capacity (mg/g) at 25 ◦C. Meanwhile, the PSO kinetics model was found to be better than PFO kinetic
model for describing the adsorption process using kinetic models. Based on the D–R model, the free
energy (E, kJ mol−1) values were in the range of 0.090–0.1812 kJ mol−1, which indicated that the
MB adsorption onto NASIF may belong to physical adsorption. The adsorption mechanism of MB
onto NASIF adsorbent mainly includes electrostatic attraction, π-π interaction, n-π interaction, and
H-bonding. The thermodynamic parameters revealed that the adsorption process was a feasibility,
spontaneous and exothermic process. Finally, the result of the present work could provide strong
evidence of the potential of NASIF adsorbent for eliminating MB from aqueous media.

Keywords: Solanum incanum; isotherm; adsorption; mechanism; methylene blue; exothermic

1. Introduction

Synthetic dyes are colored organic compounds released in wastewater from different
industries such as cosmetics, textiles, rubber, printing, leather, plastics, paper, printing,
and pharmaceutical, which cause a series of serious hazards to our water resources [1–3].
Methylene blue (MB), Rhodamine B (RB), Malachite green (MG), crystal violet (CV), etc.,
are water-soluble dyes and have stable physical and chemical properties, and are difficult
to degrade [4]. Methylene blue (MB), known as methyl thioninium chloride, is a cationic
thiazine dye with the molecular formula [C16H18N3SCl] [5]. It was widely used in many
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industries, as mentioned above. Excessive release of MB dye causes abnormal colorization
of surface water, hinders sunlight penetration, and reduces oxygen dissolution, which
affects the photosynthesis of aquatic plants [6]. Therefore, dye molecules cause serious
threats to the environmental system and health of humans that include carcinogenicity,
dysfunction of the brain, kidneys, and liver [7–9]. A large amount of MB (more than
7.0 mg kg−1) can lead to mental disorders, high blood pressure, abdominal pain, and
nausea [10]. Even low concentrations are very hazardous to the environment aquatic. Due
to its harmfulness, it is important to remove these pollutants before their discharge into
the environment.

Various approaches include photocatalytic degradation [11], ozone-based processes [12],
membrane separation [13], free radical degradation [14], coagulation [15], chemical oxi-
dation [16], and adsorption [17,18], etc. Among these approaches, adsorption has been
considered as one of the most efficient methods for the removal of pollutants due to its low
cost, high specific adsorption performance, economic method with efficient performance,
high efficiency, and non-toxic adsorbents [19–21].

Various materials, either synthetic or natural, have been used for the elimination of
MB dye from aqueous media. Materials with good adsorption performance, low cost, and
natural affinity to pollutants are desired in the choice of adsorption materials, therefore,
all these characteristics are found in bio-adsorbents. Additionally, biosorbents have nu-
merous important characteristics such as eco-friendliness, biocompatibility, availability,
and feasibility: hence their potential adsorption capacity to remove toxic pollutants from
wastewater. Various biosorbents such as sugarcane Bagasse [22], Terminalia catappa (TC)
shells [23], Guava leaves [24], phoenix tree leaf powder [25], Platanus orientalis leaves [26],
Rhus Coriaria L [27], Casuarina equisetifolia pine [5], have been employed in the removal of
methylene blue from aqueous solutions.

Solanum incanum is a perennial that grows naturally in southern Saudi Arabia and
other countries (Tanzania, Kenya, Uganda, Australia, India, and Madagascar) [28]. The
leaves and stems are yellowish-brown in color when ripe and they have small thorns,
and the fruits are often 2–3 cm in diameter. Solanum incanum is used as medicine for
managing hepatitis and reducing the risk of high blood pressure. Solanum incanum presents
itself as a potential bio-adsorbent, owing to its wide availability in nature and with the
objective of adding value to biomass in the polluted water treatment sector. To the best of
our knowledge, there is no evidence from many studies on the potential use of activated
Solanum incanum with H2O2 as a bio-adsorbent in the treatment of wastewater.

The aim of the present work was to activate Solanum incanum leaves and flowers by
chemical activation with H2O2 and NaOH reagent to increase oxygen-containing functional
groups on their surface and thus enhance the adsorptive properties. The activated adsor-
bents were characterized by SEM, EDX, elemental mapping, and FTIR. To the best of our
knowledge, NASIF adsorbent has not been used yet for dye removal from aqueous media.
The effects of contact time, adsorbent dose, initial MB concentration, and temperature on
the removal of MB dye were achieved through the batch method. The kinetics and isotherm
of MB adsorption on NASIF were investigated. The thermodynamic parameters have also
been calculated. Additionally, the possible mechanisms for MB dye adsorption onto NASIF
adsorbent were discussed.

2. Experiment
2.1. Chemicals and Instrumentation

All chemicals were used as received. Methylene blue (MB) and Rhodamine B (RB)
dyes were obtained from Sigma Aldrich. Sodium hydroxide (NaOH), hydrochloric acid
(HCl), and nitric acid (HNO3) were obtained from BDH, England. Deionized water was
used in this work. The analysis of functional groups of UTSIF, NASIF, and MB-saturated
NASIF were performed using Fourier transform infrared spectroscopy (Nicolet iS50 FTIR,
Thermo Scientific). The surface morphological features of UTSIF, NASIF, and MB-saturated
NASIF were analyzed with scanning electron microscopy, and Energy-dispersive X-ray
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spectroscopy (Model JEM-2100F, JEOL, Japan). The MB and RB concentrations in the
solutions were determined using a UV–Vis spectrophotometer (Perkin Elmer, 900T).

2.2. Chemical Treatment

For the present study, Solanum incanum leaves (SIL) and Solanum incanum flowers (SIF)
were collected from Albaha region in Saudi Arabia. SIL and SIF materials were washed
several times with deionized water to remove any adhering dirt. Then, the washed SIL
and SIF were oven-dried at 100 ◦C for 24 h. Next, the dried SIL and SIF were crushed
separately in the grinder to obtain fine powder. Chemical surface oxidation was carried
out by immersing the SIF and SIL separately in 200 mL of 10% H2O2 under stirring for
24 h at room temperature, which developed surface functionalities and enhanced the
adsorptive properties [29,30]. After that, SIF and SIL powders were washed several times
with deionized water and then filtered. The SIL and SIF were activated separately with a
1 M NaOH (200 mL) solution for 24 h. They were then washed off with deionized water,
filtered, and dried in an oven at 50 ◦C for 24 h to obtain NaOH-activated Solanum incanum
leaves (NASIL) adsorbent and NaOH-activated Solanum incanum leaves (NASIF) adsorbent.

2.3. Batch Adsorption Studies

Initial evaluation of the Solanum incanum flower (SIF), Solanum incanum leaves (SIL),
NaOH-activated Solanum incanum flower (NASIF), NaOH-activated Solanum incanum flower
(NASIL) adsorbent for adsorption of MB and RB dyes was conducted via batch adsorp-
tion experiments. The MB dye adsorption experiment performed was achieved under
different operating parameters such as concentration (50–300 mg/L), various temperatures
(25, 35, and 45 ◦C), reaction time (5–210 min), and adsorbent dosage (5–100 mg). A stock
MB solution for the adsorption tests was prepared by dissolving MB in certain deionized
water and then diluted to the desired MB concentrations. The original pH of the MB
dye stock solution was approximately 6.5. All experimental solutions in this study were
performed at pH 6.5 without any adjustments. A 40 mg sample of NASIF was charged into
a conical flask containing 50 mL of MB (50 mg/L) and then the suspension was allowed to
equilibrate using a shaker at room temperature for 100 min. After that, the suspension was
separated by centrifuging at 5000 rpm for 10 min. Finally, the concentrations of MB and
RB were measured using UV–Vis spectrophotometer at 663 nm and 556 nm, respectively.
The removal efficiency of dyes and adsorption capacity of adsorbents were calculated by
Equations (1) and (2), respectively.

% adsorption =
Co −Ce

Co
× 100 (1)

qe = (Co −Ce)
V
m

(2)

where Co is the concentration of the initial dyes; Ce (mg/L) is the equilibrium dye concen-
tration; m (g) is the adsorbent mass and V (L) is the dye solution volume.

3. Results and Discussion
3.1. Bio-Adsorbent Characterization

The FTIR technique is an effective technique to identify functional groups of adsor-
bents. The FTIR spectra of UTSIF, NASIF, and MB-saturated NASIF are presented in
Figure 1. The FTIR spectra of UTSIF powder show distinct peaks at 3438, 3013, 2931, 2852,
1741, 1624, 1459, 1375, 1265, 1157, and 1105 cm−1. In detail, the broad peak at 3438 cm−1 is
due to –OH stretching vibration of carboxylic acids and phenols in lignin, cellulose, and
hemicellulose, suggesting the existence of hydroxyl and carboxylic acid on the surface of
UTSIF and NASIF. This band increased in intensity with a small shift to 3443 cm−1 after
chemical activation [23,26,31]. The peaks at 3013, 2931, and 2852 cm−1 were attributed to
the stretching vibration of =C-H aromatic, asymmetric, and symmetric –C-H in methylene
groups, respectively [32]. The strong peaks at 1741 and 1624 cm−1 were due to the C=O (car-
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bonyl, carboxyl) extending vibrations of keto-carbonyl gatherings and C=C bond [2,33,34].
After chemical modification (NASIF) the intensity of this peak increased. The peaks at
1454 cm−1 were due to bending vibrations of the aliphatic C–H bonds or carboxylate asym-
metric. This peak sharply increased in intensity and shifted to 1462 cm−1. In addition, a
new peak appeared at 1520 cm−1 due to an increase in the oxygen-containing functionalities
on the surface of NASIF. The peaks at 1375 cm−1, 1265 cm−1, and (1157–1105 cm−1) were
assigned to C-N, C-O, C-O-C bonds [33,35]. A new peak that was observed at 874 cm−1

and 812 cm−1 (after chemical activation) was due to the out-of-plane bending of aromatic
C–H [36,37]. Characteristic changes observed in the FTIR spectrum of NASIF after MB
adsorption indicated that some peaks increased/decreased in intensity and shifted or
disappeared. In detail, the intensity of the –OH and C=O groups shifted to 3424 cm−1

and 1735 cm−1 due to bending of –OH and C=O groups on the surface of NASIF with
R(CH3)2N+ sites of MB by electrostatic interactions and H-bonding [35]. In addition, the
intensity at 1658 cm−1 increased and shifted to 1606 cm−1, which indicates π-π interactions
between the aromatic ring molecule in the NASIF adsorbent and the benzene ring in the
MB molecule. Also, a peak of 1520 cm−1 disappeared after MB adsorption onto NASIF
surface adsorbent. Furthermore, the peak at 874 cm−1 was increased in intensity and
shifted to 869 cm−1 due to H-bond formation between the N atoms of MB and H atoms of
NASIF [38]. The observation supports interaction of MB with functional groups of NASIF
via electrostatic, H-bonding, n-π interactions, and π-π interactions.
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Figure 1. FTIR spectra of UTSIF, NASIF, and MB-saturated NASIF.

Figure 2 shows the morphology of UTSIF, NASIF, and MB-saturated NASIF. The
surface of UTSIF shows a rough surface with pores and cracks (Figure 2a). After chemical
activation, the porosity of NASIF surface increased (Figure 2b). After MB-saturated NASIF,
the surface is covered and looks like a multilayered structure (Figure 2c). Thus, the SEM
images of NASIF before and after MB-saturated NASIF display the differences in surface
morphologies of these two adsorbents. The EDX of UTSIF adsorbent showed the existence
of elements, mainly C (63.32%) and O (34.48%), with very trace elements of K and Ca
(Table 1). The elemental mapping was carried out to identify the elements present in
UTSIF, NASIF, and MB-saturated NASIF; therefore, the elemental mapping analysis in
(Figure 3a) supports the presence of C, O, and other elements on the surface of the UTSIF
adsorbent. After the chemical activation of UTSIF with H2O2 and NaOH (Table 1), it was
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observed that the weight% of oxygen increased to 44.08% while the weight% of carbon was
reduced to 54.32%, indicating improved oxygen-containing functionalities on the surface
of NASIF. The elemental mapping analysis confirms the distribution of elements after
chemical activation; it was seen that the distribution of oxygen increased on the surface of
the NASIF adsorbent (Figure 3b). After MB dye-saturated NASIF (Figure 4, a new peak
of sulfide and nitrogen appeared with 0.81% and 0.02%, respectively (Table 1), indicating
successful MB dye adsorption on NASIF adsorbent. The mapping results indicated the
distribution of new elements (sulfide and nitrogen) over the NASIF surface (Figure 3c).
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Table 1. Elemental analysis data.

Sample
Elemental Content (Wt.%)

C O Ca K Cl S N

UTSIF 63.14 34.48 0.76 1.36 0.25 - -
NASIF 54.32 44.08 1.50 0.02 - - -

MB-saturated NASIF 66.97 32.14 - - 0.07 0.81 0.02
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3.2. Adsorption Studies
3.2.1. Selectivity Studies of Adsorbent

Four adsorbents—UTSIF, UTSIL, NASIF, and NASIL—for the adsorption of cationic
dyes (MB and RB dyes) from aqueous solutions were tested under specific condition
parameters (dose: Co: 50 mg L−1; m: 40 mg; T: 25 ◦C; t: 24 h; pH: 6.5), as shown in Figure 5.
The outcomes revealed that the four adsorbents show greater adsorption ability toward
MB dye (95.6–99.0%) compared to RB dye (1.99–17.78%). In addition, the performance
of NASIF and NASIL adsorbent was better than untreated UTSIF and UTSIL adsorbents
toward the adsorption of MB dye. The high removal efficiencies of MB dye onto NASIF
and NASIL adsorbents owes to the use of H2O2 and NaOH as activation agents [39,40].
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3.2.2. Effect of Adsorbent Dose

The influence of adsorbent amount in the range from 0.05 mg to 0.1 mg on the adsorp-
tion process of MB using NASIF adsorbent has been examined as presented in Figure 6a.
The result exhibited that the removal efficiency of MB dye increases significantly from
46.04% to 93.62% when the NASIF adsorbent mass rises from 0.01 g to 0.04 g. By improving
the adsorbent amount, more adsorption active sites are available on the NASIF surface for
interaction with MB molecules [9]. After this dose, no significant improvement in removal
efficiency was observed. Oppositely, the adsorption capacity of NASIF adsorbent reduced
significantly to 57.07 mg/g with the amount of NASIF adsorbent increasing to 0.04 g, due
to the adsorption capacity being inversely proportional to the mass as per Equation (2) [41].
In addition, the rise in the amount of NASIF adsorbent may result in the aggregation of
adsorbent and lead to some of the adsorption active sites overlapping, decreasing the
adsorption capacity. These findings were similar to previous studies [2,42]. Thus, 40 mg of
NASIF adsorbent was the optimum adsorbent dose in the subsequent studies.
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3.2.3. Effect of Contact Time

The time-dependent adsorption capacity of NASIF was studied under different contact
times (up to 210 min) and different MB concentrations (50, 75, 100, and 125 mg/L) as
presented in Figure 6b (pH: 6.5; T: 25 ◦C; m: 0.04g). There is a rapid removal efficiency of
MB dye (47.72%) within 5 min of the adsorption process due to the availability of abundant
active sites on the surface of NASIF adsorbent. The adsorption capacities increased from
29.82 mg/g to 51.83 mg/g at 50 mg/L, 38.14 mg/g to 78.90 mg/g at 75 mg/L, 46.35 mg/g
to 99.66 mg/g at 100 mg/L, and 43.92mg/g to 111.63 mg/g at 125 mg/L as the contact
time increased from 5 min to 120 min, respectively. After 120 min, the adsorption capacity
became almost constant. Therefore, an optimum time of 120 min for MB was selected in
the subsequent studies. A similar result has been detected in the adsorption of MB dye by
different bio-adsorption materials [43,44].

3.2.4. Effect of Initial MB Concentration

The influence of various concentrations of MB dye (50 to 300 mg/L) on the adsorp-
tion process at various temperatures (25 to 45 ◦C) were investigated (pH: 6.5; m: 0.04 g;
t: 120 min), as indicated in Figure 7a. According to Figure 6a, with the initial MB concentra-
tion increasing from 50 to 300 mg/L, adsorption capacities of NASIF adsorbent improved
from 55.38 mg/g to 127.46 mg/g at 25 ◦C, 51.76 mg/g to 121.30 mg/g at 35 ◦C, and
46.54 mg/g to 112.90 mg/g at 45 ◦C. The increase in adsorption capacity with increasing
initial MB concentrations was attributed to the driving force increases [45].
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3.2.5. Effect of Temperatures

The effect of various temperature (25, 35, 45 ◦C) on the adsorption process of MB using
NASIF at various concentrations (50, 75, and 100 mg/L) under fixed condition parameters
(pH: 6.5; T: 25 ◦C; m: 0.04 g; t: 120 min) adsorbent was studied as shown in Figure 7b.
The results show that the adsorption ability of MB dye was reduced from 55.38 mg/g to
46.64 mg/g by increasing the test solution temperature from 25 ◦C to 45 ◦C at 50 mg/L,
which shows that the adsorption of MB onto NASIF adsorbent is an exothermic process.
This may be due to the destruction of binding sites between MB dye and NASIF adsorbent
at 45 ◦C. This outcome is consistent with the literature reported in [41].

3.3. Adsorption Modeling
3.3.1. Isotherm Modeling

To study the adsorption behaviors of NASIF toward MB dye and mechanism adsorption,
three nonlinear isotherm models (Langmuir Equation (3) [46], Freundlich Equation (4) [47],
and D–R (Equations (5)–(7)) [48] isotherm models) were applied. The model parameters at
different temperatures are presented in Table 2.

Table 2. Nonlinear isotherm models for MB adsorption on NASIF adsorbent.

Model
Temperature (K)

298 308 318

Langmuir
qm, mg/g 135.24 132.35 124.11
KL (L/mg) 0.1262 0.0885 0.0266

R2 0.98328 0.9484 0.94235
Freundlich

Kf, (mg/g) (L/mg)1/n 52.38 45.26136 36.03004
n 5.524 5.019 4.434

R2 0.8073 0.7598 0.8016
Dubinin–R

qs, mg/g 120.14 117.34 109.47
KD-R (mol2 kJ−2) 15.235 33.422 61.739

E (kJ mol−1) 0.1812 0.1223 0.0900
R2 0.8312 0.8988 0.96173
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qe =
qmKLCe

1 + KLCe
(3)

qe = KF Ce
1/n (4)

qe = qs e−KD−R ε2
(5)

ε = RTln
(

1 +
1

Ce

)
(6)

E =
1√

2KD−R
(7)

where, qe (mg/g); qm (mg/g); Ce (mg/L) represent the equilibrium adsorption capacity,
maximum adsorption capacity at monolayer adsorption, and MB molecule concentration at
equilibrium, respectively. KL (L/mg); KF (mg/g) (L/mg)1/n; KDR (mol2/kJ2) represent the
Langmuir constant, Freundlich constant, and D–R constant related to the adsorption energy,
respectively. Variables n; E; E(kJ/mol) represent the Freundlich isotherm intensity, Polanyi
potential, and free energy, respectively. From Table 2 and Figure 8a–c and based on R2,
the adsorption data were observed to fit the Langmuir isotherm (R2 = 0.98328) compared
to the other models (D–R (R2 = 0.8312), and Freundlich (R2 = 0.8073)), indicating that the
adsorption process can be described as monolayer adsorption and homogeneous surface
with maximum monolayer capacity (135.24 mg/g). Based on Langmuir, the qm values
decreased with rising temperature, which emphasized that MB adsorption by NASIF is
an exothermic reaction. Based on the D–R model, the adsorption free energy (E, kJ mol−1)
values were in the range of 0.090–0.1812 kJ mol−1, which indicated that MB adsorption
onto NASIF may belong to physical adsorption [49]. Based on the Freundlich isotherm,
the n values were in the range at different temperatures, which indicates a favorable
adsorption process [50].

3.3.2. Kinetics Modeling

To understand the mechanism of MB adsorption onto NASIF and estimate the efficiency
of the NASIF, two nonlinear kinetics models (pseudo-first-order (PFO) Equation (8) [51], and
pseudo-second-order (PSO) Equation (9)) were applied.

qt = qe

(
1− e(−k1t)

)
(8)

qt =
q2

ek2t
1 + qe k2 t

(9)

where, k1 (1/min) and k2 (g/mg*min) represent the PFO and PSO constant, respectively.
The parameters with coefficient of determination (R2) values at various MB concentrations
(50, 75, 100, and 125 mg/L) are summarized in Table 3. Based on R2 (Table 3 & Figure 8d),
the MB adsorption onto NASIF was found to be more suited to the PSO kinetic model
compared to PFO kinetic model at different MB concentrations (50, 75, 100, and 125 mg/L),
which suggests the effect of chemical interactions in the adsorption process. In addition,
the value of experimental qe (qeexp) for NASIF toward MB dye adsorption was 53.06 mg/g,
which, being close to the calculated qe (qecal) = 53.74 mg/g at initial MB concentration
(50 mg/L), confirmed the adsorption process followed by the PSO kinetics.
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Table 3. Nonlinear kinetics model for MB adsorption on NASIF adsorbent.

Co
(mg/L)

qe,exp
(mg/g)

Pseudo-First-Order Pseudo-Second-Order

qe1,cal.
(mg/g)

K1
(1/min) R2 qe2,cal.

(mg/g)
K2

(g/mg-min) R2

50 53.06 50.1621 0.10976 0.93103 53.747 0.00319 0.9797
75 81.120 77.211 0.09167 0.95806 83.703 0.00161 0.9932

100 101.95 97.422 0.07849 0.95888 106.51 0.00106 0.9906
125 113.65 109.799 0.05836 0.96728 122.28 0.00065 0.9903

3.3.3. Thermodynamics Modeling

The thermodynamic analysis provides important insights into the adsorption nature
and mechanism of adsorption. Therefore, the effect of solution temperature on MB ad-
sorption onto NASIF was achieved through thermodynamic properties, as summarized
in Table 4. Thermodynamic parameters including enthalpy change (∆H◦, kJ/mol) and
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entropy change (∆S◦, kJ/mol·K) were calculated using van’t Hoff equation Equation (11),
while the free energy change (∆G◦, kJ/mol), was calculated using Equation (10) as follows:

∆G◦ = −RT lnKc (10)

lnKc = −∆H
◦

RT
+

∆S
◦

R
(Van’t Hoff equation) (11)

where T is the solution temperature (K); R is the universal gas constant (8.314 J/mol·K);
Kc = qe/ce (L.g−1) represents the thermodynamic equilibrium constant [52]. Figure 9
demonstrates the relevant van’t Hoff plots. From Table 4, a negative ∆H◦ suggests that
the interaction of MB dye adsorbed by NASIF is exothermic, which is supported by the
reducing adsorption of MB onto NASIF with the temperature rise. The values of ∆H◦ were
lower than 40 kJ mol−1, further confirming that the MB adsorption onto NASIF belongs to
the physisorption process [53]. The ∆S value was negative, which indicates the decrease in
randomness at the solid-solution interface between NASIF and MB solution. Negative ∆G◦

under different temperatures (25, 35, 45 ◦C) indicates a spontaneous adsorption process.

Table 4. Thermodynamics parameters for the adsorption of MB on NASIF adsorbent.

Concentration of CV
Dye (mg/L)

(−)∆H◦

(kJ/mol)
(−)∆S◦

(J/mol.K)
(−)∆G◦ (kJ/mol)

298 K 308 K 318 K

50 38.34 109.68 5.63 4.59 3.44
75 22.97 61.80 4.59 3.86 3.37

100 17.13 44.30 3.910 3.52 3.02
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3.4. Comparison with Other Adsorbents

The adsorption capacity of NASIF adsorbent toward the elimination of MB dye from aque-
ous solutions was compared to other bio-adsorbents, as presented in Table 5 [1,5,23,26,54–57].
The comparison indicates that the adsorption capacities of NASIF adsorbent were higher
than those reported in many studies, due to increasing the oxygen-containing functionalities
on the surface of NASIF by chemical activation with H2O2/NaOH reagents.
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Table 5. Comparison of the maximum bio-adsorption capacities (qm) of NASIF for MB adsorption
from different biomaterials.

Adsorbent qm (mg/g) Ref.

Salix babylonica 42.74 [1]
Casuarina equisetifolia pines 41.35 [5]

Terminalia catappa (TC) shells 88.62 [23]
Platanus orientalis leaves 114.94 [26]

Ficus carica bast 47.6 [54]
Carica papaya wood 32.25 [55]
Pinus durangensis 102 [56]

Casuarina equisetifolia pine/H2SO4 42.19 [57]
NASIF 135.24 This study

3.5. Adsorption Mechanism

The mechanism of MB dye adsorption onto NASIF was shown in Figure 1. To support
the hypothesis given in Figure 1, FTIR analysis of the NASIF-loaded MB was conducted
which suggest that the adsorption mechanism of MB on NASIF adsorbent mainly includes
electrostatic attraction, n-π interaction, π-π interaction, and hydrogen bonding. There
were distinctive changes observed in the FTIR spectrum of NASIF after MB adsorption
indicated that some peaks increased/decreased in intensity and shifted or disappeared.
In detail, the intensity of the –OH and C=O groups shifted from (3438 to 3424 cm−1) and
from (1741 to 1735 cm−1), respectively. This shifting is due to the interactions of –OH
and C=O groups on the surface of NASIF with R(CH3)2N+ sites of MB by electrostatic
interactions and H-bonding [35]. In addition, the intensity at 1658 cm−1 increased and
shifted to 1606 cm−1, which indicates π-π interactions between the aromatic ring molecule
in the NASIF adsorbent and the benzene ring in the MB molecule. Further, the peak at
874 cm−1 increased in intensity and shifted to 869 cm−1 due to H-bond formation between
the N atoms of MB and H atoms of NASIF [38]. Also, a peak at 1520 cm−1 disappeared
after MB adsorption onto NASIF surface adsorbent, which suggests the formation of a n-π
type interaction through donation of electron(s) from the oxygen in the carbonyl group
present in the NASIF surface to the electron acceptors’ aromatic rings in the MB dye [58,59].
These changes observed in the spectrum suggest interactions of MB dye with the functional
groups of the NASIF in the adsorption process [21].

4. Conclusions

A new adsorbent, NaOH-activated Solanum incanum flower powder (NASIF), was
successfully prepared by chemical activation method (H2O2/NaOH) as an inexpensive
and effective adsorbent for the removal of methylene blue (MB) from aqueous media.
The characterization of NASIF adsorbent was evaluated using FTIR and SEM, EDX, and
elemental mapping. These technical results confirmed the adsorption of MB onto the
NASIF adsorbent surface. The isothermal parameters indicated that the Langmuir model
fit better than the Freundlich and D–R models, which confirmed the monolayer adsorption
capacity of MB onto NASIF adsorbent. The MB adsorption onto NASIF adsorbent obeys
the PSO kinetic model. The optimum conditions for NASIF adsorption of MB were contact
time: 120 min; pH: 6.5, adsorbent dose: 40 mg; temperature-25 ◦C, with a maximum
monolayer capacity of 135.24 mg/g. The D–R model revealed that the adsorption free
energy (E, kJ mol−1) values were in the range of 0.090–0.1812 kJ mol−1, which indicated
that MB adsorption onto NASIF may belong to physical adsorption. The adsorption of
MB onto the NASIF adsorbent surface occurred by electrostatic attraction, π-π interaction,
n-π interaction, and H-bonding. Negative ∆H and ∆G values indicate that the adsorption
process was exothermic in nature and spontaneous.
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