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Abstract: The urban heat island (UHI) effect accelerates the accumulation of atmospheric pollutants,
which has a strong impact on the climate of cities, circulation of material, and health of citizens.
Therefore, it is of great significance to conduct quantitative monitoring and accurate governance of
UHI by calculating the index rapidly and expressing spatial distribution accurately. In this paper,
we proposed a model that integrates UHI information with the GeoSOT (Geographic Coordinate
Subdividing Grid with One-Dimension Integer Coding on 2n Tree) grid and subsequently designed
the calculation method of UHI indices and expression method of UHI spatial distribution. The
UHI indices were calculated on Dongcheng and Xicheng District, Beijing, in the Summer of 2014 to
2019. Experimental results showed that the proposed method has higher calculation efficiency, and
achieved a more detailed description of the spatial distribution of the urban thermal environment
compared with the Gaussian surface fitting method. This method can be used for large-scale and
high-frequency monitoring the level of UHI and expressing complicated spatial distribution of UHI
inside the city, thus supporting accurate governance of UHI.

Keywords: UHI footprint; UHI capacity; GeoSOT; calculation; expression

1. Introduction

Rapid urbanization has significantly increased the impervious surface of urban areas
and affected the urban thermal cycle. At the same time, the population agglomeration,
the growth of traffic volume, prosperous commercial activities, and industrial activities
have thus caused the heat accumulation in urban areas, which leads to the urban heat
island (UHI) effect [1,2]. This phenomenon has significantly influenced the climate, hy-
drology, material circulation, and energy metabolism of urban areas, and aggravated the
accumulation of urban air pollutants, which adversely affect the lives and health of urban
dwellers [3,4]. Therefore, it is of great significance to improve urban management and
sustainable development by using quantitative monitoring and governing the urban heat
island effect.

Traditional UHI monitoring methods use indices such as UHI intensity, UHI footprint,
UHI capacity, and heat island proportion index to describe the level of the UHI, and the spatial
distribution is usually expressed by the UHI intensity surface [5–10]. Streutker [11,12] fitted
the Gaussian temperature surface to express the UHI intensity, UHI footprint, UHI centroid
and visualized the temperature surface of Houston. The method was adopted by some urban
heat island researches. Rajasekar [13] proposed a non-parametric model to compute the range,
position, diffusion, and growth of UHI footprint. Tran [14] used the UHI signal function based
on Gaussian fit to calculate the UHI capacity, then analyzed diurnal variations and seasonal
variations. The radius method is used by Qiao [15] to identify the UHI footprint, calculate the
UHI capacity and analyze the spatiotemporal variation characteristics. Zhan & Yang [16,17]
used the supported vector machine method to calculate the UHI capacity and make a visual
expression to the UHI intensity surface.
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Since the thermal radiation energy of land surface targets can be detected by thermal
infrared remote sensing technology, the remote sensing images are widely used to invert
the UHI distribution of the land surface. With the development of satellite remote sensing
technology in recent decades, abundant images with long time series, wide coverage, and
high spatial resolution has been acquired to support monitoring of the urban thermal
environment [18]. However, the large-scale and high-frequency calculation on both the
UHI intensity and volume raises a higher requirement on efficiency, whereas the current
functional models cannot support. On the other hand, previous studies mostly focus on
the urban scale [19,20], and few dives inside the city to make a detailed UHI description.
Moreover, the elaborate implications caused by the multi-scale urban spatial structure [21],
building material [22], ventilation condition [23], and urban green index [24] result in
multi-peak temperature surface, which is too complex to be represented by conventional
surface fitting methods, thus the spatial distribution details of the thermal environment
inside the city cannot be precisely described.

Discrete field model [25,26] has been proved to greatly improve the efficiency of
spatial calculation and indexing by expressing certain unclear boundaries spatial objects or
geographic phenomena that occupy continuous space by discrete spatial sampling. The
rainfall process and pollution diffusion would be two good examples of applying this
model. Therefore, the discrete field model is expected to solve the problems such as rapid
calculation and detailed expression analysis of UHI indices. Common discrete field models
include Regular grid cell, Regular grid point, Irregular divided point, Isoline, Irregular
polygon, and Triangulated irregular network [27]. With the attention to global and regional
large scene issues, the global subdivision grid has also received more and more attention
in recent decades. A variety of subdivision modes have emerged, such as Cubed-Sphere
Grid [28], Yin-Yang Grid [29], Adaptive-Mesh Refinement [30]. Among them, the global
subdivision model based on GeoSOT (Geographic Coordinate Subdividing Grid with
One-Dimension Integer Coding on 2n Tree) uniformly dissects geospatial into grid cells of
different scales, identifies and expresses them according to the geospatial grid encoding
rule, becomes a reference framework for meshing spatial data [31–35]. The Geospatial Grid
Encoding Rule has been promulgated as the Chinese national standard [36], and it has been
applied in different fields of data management and representation [37–42].

To address the problems of low efficiency of UHI indices calculation and imprecise
in expressing complex spatial distribution of urban internal thermal environment, in this
paper, we propose a model that integrates UHI information with GeoSOT grid, based on
which an efficient calculation, analysis and expression method is designed for UHI indices
and 3D UHI spatial distribution. By using the summer Landsat7/8 data from 2014 to
2019, evaluation and analysis are conducted on Dongcheng District and Xicheng District,
Beijing, China, and the experimental results show that the proposed method has obvious
advantages compared with the conventional method.

2. Study Area and Data Preprocessing
2.1. Study Area

As the core area of the capital of China [43], Dongcheng District and Xicheng Dis-
trict are the political, cultural, and international intercourse centers of the country, which
occupies 92.49 km2 of Beijing, as shown in Figure 1. Owing to the high aggregation of pop-
ulation, frequent commercial activities, high-density residential areas, and the significance
of the UHI phenomenon, Dongcheng District and Xicheng District were selected to be the
experimental area.
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Figure 1. Location of the study area.

2.2. Land Surface Temperature (LST) Data Preprocessing

Landsat ETM+ and Landsat TIR images with no cloud cover were used to inverse
the LST. The images of June, July, and August 2014–2019 were selected with the spatial
resolution of 30 m (after spatial resampling). Subsequently, we fused the inversion results
from June to August of each year to represent the LST for that summer.

The mono-window algorithm [44] was utilized to inverse the LST and obtained
125,780 points of LST for each year. Through the grid level selection method in Section 3.1,
the 21st-level of GeoSOT grid with the size of 32 × 32 m was chosen, because the grid cell
size of this level match well with the spatial resolution of LST points.

3. The UHI Information Model Based on GeoSOT Grid

Targeting at integrating UHI information with geospatial grids, two steps should be
conducted, i.e., the determination of LST for grid cell, and the integration model of UHI
information with GeoSOT grid.

3.1. The Determination of LST for Grid Cell

GeoSOT subdivides the Earth into a 32-level multi-scale grid through quadtree recur-
sive subdivision [45], the largest subdivision grid in the highest level (Level 0) can represent
the entire Earth surface, while the smallest subdivision grid in the lowest level (Level 32).
With the grid level corresponding to the grid scale. Each grid cell has a globally unique
code by adopting the spatial Z-order coding method, as shown in Figures 2 and 3.

Figure 2. Multi-level subdivision schematic of GeoSOT. An adaptation based on sources: (a) 0th
subdivision of global; (b) First subdivision of global; (c) Multi subdivision of global.
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Figure 3. The GeoSOT encoding model.

The LST at the pixel center is obtained from the inversion of remote sensing images [44,46–49],
which spatial resolution is consistent with the images used. The selected GeoSOT grid-level needs
approximating to the spatial resolution of the images, for facilitating the calculation and ensuring
the accuracy of calculation and expression of UHI indices. Therefore, the rules for grid-level
selection are given by Equations (1) and (2).

Define the spatial resolution of the LST as δ, the total level of GeoSOT as K, n as a level
in K. We have scale(n) as the grid size of the n level, and N is the recommended grid-level
corresponding to the spatial resolution of the LST, then

i f δ = scale(n), n ∈ K, then N = n (1)

i f scale(n + 1) < δ < scale(n), n ∈ K, then N = n (2)

There will be multiple LST points falling into the same grid when scale(N) is incon-
sistent with δ. In this paper, the LST that falls into the grid is calculated by the distance-
weighted method, through which we can obtain the LST of the corresponding grid cell.
The calculating Equations (3) and (4) and schematic (Figure 4) have shown in follows:

DSUM = d1 + d2 + d3 + d4 (3)

TG =
d1

DSUM
TA +

d2

DSUM
TB +

d3

DSUM
TC +

d4

DSUM
TD (4)

where M denotes the center point of grid G, and points A, B, C and D indicate the LST points
falling into the grid G, respectively. TG, TA, TB, TC, TD represent the LST of point M, A, B, C,
D. Specifically, di is used to measure the distance from point A, B, C and D to point M.

3.2. The Integration Model of UHI Information Based on GeoSOT Grid

The grid and LST association model is designed for the management and calculation
of UHI information, as shown in Figure 5. GeoSOT code as the primary key in the model
is used to achieve the correspondence between the gird and corresponding TG which
calculate from the previous section. This association is a one-to-many relationship, i.e., a
grid corresponds to multiple LST from different phases and different sources. Owing to the
multi-level trait of the grid, the LST corresponding to the large-scale level grid are averaged
from the LST of the grid at the level below it.
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Figure 4. Calculation of the LST corresponding to the grid.

Figure 5. The grid and LST association model.
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Table 1 shows the grid data structure. As the primary key of the data Table, the
GeoSOT code is used to identify the geospatial grid and correspond to the location and
size of that grid, while recording the correlation information such as LST and sensors for
each grid center data to provide support for UHI indices calculation and expression.

Table 1. The attribute table of the GeoSOT grid.

Field Name Field Description Constraint Data Type

GeoCode-2D the GeoSOT-2D grid
codes Primary Key Varchar(30)

These attribute Tables are designed by the above model for the storage and manage-
ment of data. Among them, Table 1 is the basic attribute Table of the GeoSOT grid, by
decoding the grid code can obtain the position and size which are corresponding to the
grid. Table 2 is the LST attribute table for each GeoSOT grid, mainly including LST, date,
time, etc. Table 3 is an attribute Table of UHI indices, which is used to store the UHI indices
calculated based on Table 2.

Table 2. The LST attribute table based on the GeoSOT grid.

Field Name Field Description Constraint Data Type

GeoCode-2D the GeoSOT-2D grid codes Primary Key Varchar(30)

Land Surface
Temperature

The land surface temperature
for grid center point Double(8,6)

Date Image date DATE

Time Image time DATE

Data Source Satellite ID Varchar(10)

Table 3. The UHI indices attribute table based on the GeoSOT grid.

Field Name Field Description Constraint Data Type

GeoCode-2D the GeoSOT-2D grid codes Primary Key Varchar(30)

Date Image date DATE

Time Image time DATE

UHI Intensity The urban heat island intensity
for grid center point Double(8,6)

UHI Footprint The urban heat island
footprint for grid center point Double(8,6)

UHI capacity The urban heat island capacity
for grid center point Double(10,6)

4. Calculation and Expression of the UHI Indices Based on GeoSOT Grid
4.1. Calculation of the UHI Intensity

UHI intensity is generally defined as the difference between the surface temperature in
the urban center and the surface temperature in the countryside [50]. The study refers to the
size-based method [51], where the area outside the urban boundary with the same area as the
urban area is taken as the background temperature field region, and the average LST within
this region is taken as the background temperature Trural. Accordingly, the UHI intensity of
grid G (UHIIG) is defined by the difference between the LST on gird (TG) and Trural:

UHIIG = TG − Trural G = 1, 2 . . . n (5)
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where the calculation of Trural is as follows:

Trural =
k

∑
i=1

Ti/k (6)

Among them, k is the number of LST in the region of the background temperature field.

4.2. Calculation of the UHI Footprint

The UHI footprint is the area where the urban heat island effect is generated [15], the
spatial extent at which the UHI effect occurs.

The area with UHI intensity greater than 0 is defined as the UHI footprint, then the
UHI footprint is obtained by summarizing the area of the grids with UHI intensity greater
than 0. The calculating equation is as follows:

FPSUM =
m

∑
G=1

FPG (7)

where FPG is the UHI footprint of a grid cell i.e., the area of a grid cell, FPSUM is the total
UHI footprint of the study area, and m is the number of grids in the study area with UHI
intensity greater than 0.

4.3. Calculation of the UHI Capacity

The UHI capacity is the amount of UHI intensity accommodated within the UHI
footprint and is the product of the UHI footprint and the UHI intensity [7,15]. It enables
quantifying the significant degree for the occurrence of the UHI effect.

The UHI capacity VUHIG for grid cell is calculated by using the UHI footprint FPG and
the corresponding UHI intensity UHIIG, then aggregated to the UHI capacity of the entire
study area VUHISUM , which is calculated as follows:

VUHIG = FPG ×UHIIG (8)

VUHISUM =
m

∑
i=1

VUHIG (9)

4.4. Expression of the UHI Spatial for Distribution Based on GeoSOT Grid

An expression method is proposed for the 3D spatial distribution of UHI using the
discrete subdivision characteristic of the GeoSOT grid. Specifically, the LST of grid cells
are set as height components, then constructing an LST column based on the 2D spatial
distribution of the grid to portray the spatial distribution details of the urban thermal
environment (as shown in Figure 6).

Figure 6. Schematic expression of the 3D spatial distribution of UHI.
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The expression of UHI intensity involves the classification of the UHI intensity category.
Ge [52] used the quorum classification method to classify UHI as low intensity, sub-low
intensity, medium intensity, sub-high intensity, and high intensity, then analyzed the spatial
and temporal characteristics of UHI accordingly.

Due to the expression method can provide a more detailed description of UHI intensity,
and to reflect the characteristics of its spatial distribution, this paper adds an extra-high
intensity category based on Ge’s [52] UHI intensity category classification, as shown
in Table 4.

Table 4. UHI intensity classification.

UHI Intensity Zone Division UHI Intensity Levels

Non-UHI area UHIIPi ≤ 0 ◦C 0
Sub-low intensity UHI area 0 ◦C < UHIIPi ≤ 0.5 ◦C 1
Medium intensity UHI area 0.5 ◦C < UHIIPi ≤ 2.0 ◦C 2
Sub-high intensity UHI area 2.0 ◦C < UHIIPi ≤ 3.5 ◦C 3

High intensity UHI area 3.5 ◦C < UHIIPi ≤ 6.5 ◦C 4
Extra-high intensity UHI area UHIIPi > 6.5 ◦C 5

5. Experiments Results and Analysis
5.1. Calculation of the Background Temperature

In this paper, we referred to the method proposed by li [53], employed the nighttime
light data and the impervious surface data which proved to be valuable remote sensing
data sources of detecting urban growth for extracting complete urban areas (Figure 7),
among them, the nighttime light data was downloaded from NCEI National Centers
for Environmental Information, and the impervious surface data was obtained from the
team of Liu [54] named GLC_FCS-2015. Refers to the size-based method [51], where the
buffer outside the urban boundary with the same area as the urban area was taken as the
background temperature field region, and the background temperature of summer from
2014–2019 was calculated according to the method in Section 4.1, as shown in Table 5.

Figure 7. The background temperature field region.
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Table 5. The background temperature of Beijing from 2014 to 2019.

Data The Background Temperature

Summer of 2014 33.66 ◦C
Summer of 2015 34.37 ◦C
Summer of 2016 30.24 ◦C
Summer of 2017 34.35 ◦C
Summer of 2018 34.28 ◦C
Summer of 2019 35.04 ◦C

5.2. Calculation and Expression of the UHI Indices

UHI footprint and capacity in the summer of 2014–2019 were calculated and expressed
by using the methods designed in Chapter 3. The calculation results and changing trend of
UHI footprint and capacity were shown in Table 6 and Figure 8a respectively.

Table 6. The UHI parameters and rate of change in Beijing from 2014 to 2019 summer.

Year
Uhi Index UHI Footprint

(km2)
UHI Capacity

(km2·◦C)
The Growth Rate of UHI Footprint FPGR

(km2/Year)
The Growth Rate of UHI Capacity CGR

(km2·◦C/Year)

2014 86.13 323.21 - -
2015 89.86 553.62 3.73 230.41
2016 89.53 483.77 −0.33 −69.85
2017 91.35 784.94 1.82 301.17
2018 91.86 980.85 0.51 195.91
2019 87.95 430.31 −3.91 −550.54

Figure 8. The changing trend of UHI indices and traffic index from 2014 to 2019. (a) The changing
trend of UHI indices; (b) The changing trend of traffic index.

According to the result, both UHI footprint and capacity increased in stages, FPGR (the
growth rate of UHI footprint) was 0.3 km2/year and CGR (the growth rate of capacity) was
17.85 km2·◦C/year from 2014–2019. Among them, FPGR from 2014 to 2015 was the largest,
which was 3.73 km2/year, and UHI capacity also increased by 230.41 km2· ◦C on this basis.
From 2016 to 2017, FPGR and CGR were 1.82 km2/year and 301.17 km2· ◦C/year, respec-
tively. Compared with the last period, under the condition of low FPGR, CGR increased
by about 70 km2· ◦C/year, it can be seen that UHI intensity changes the most during this
period. The UHI footprint and capacity were increased by 0.51 km2 and 195.91 km2·◦C
from 2017 to 2018, UHI intensity further strengthened and became the most significant
year of the UHI effect in these six years. In 2019, the UHI effect was alleviated, and UHI
footprint and capacity decreased by 3.91 km2 and 550.54 km2·◦C respectively.

Overall, the UHI effect in the experimental area gradually increased from 2014 to 2018.
As the functional core area of the capital, the experimental area aggregate multiple urban
functions which are driven to many problems such as increased traffic congestion [43],
high building density and atmospheric pollution [55], these phenomena correspond to the
influencing factors of UHI. In recent years, Beijing has formulated a series of measures,
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including improving the ventilation environment and reducing air pollution, to alleviate
the urban heat island effect [56], which had achieved initial results at the end of 2018.
According to the <2014–2019 Beijing Ecological Environment Status Bulletin> [57–61], the
air quality and ecological environment index in 2019 were significantly improved compared
with the previous year, among which PM2.5, nitrogen dioxide (NO2), inhalable particle
(PM10); it reached the national secondary standard for the first time, and the annual average
concentration of sulfur dioxide (SO2) reached single digits [61].This situation corresponds
to the significant decrease in the UHI indices in 2019. Figure 8b shows the change of the
traffic index during the same period, which is similar to the change trend of the UHI indices,
it reflects the correlation between traffic congestion and the UHI effect to a certain extent.

Figure 9 shows the results of spatial distribution expression of UHI from 2014 to 2019.
This expression method refined temperature fluctuations on each mesh, and more clearly
expressed the details of the spatial and temporal distribution of UHI intensity inside the city.
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Figure 9. The meshing expression of UHI spatial distribution based on cesium platform (Note: This
figure exaggerated the temperature difference according to Tvisualize = Ti ∗ 2000− 800). (a) Summer
of 2014; (b) Summer of 2015; (c) Summer of 2016; (d) Summer of 2017; (e) Summer of 2018; (f) Summer
of 2019.

The expression method in this paper can express the UHI intensity distribution not
only in the entire study area but also in the designated area or street. The UHI indices
of different streets in Xicheng District in 2015 were shown in Table 7. Among them, the
UHI footprint in Dashilan Street accounts for 100%, and the extra-high intensity UHI area
accounts for a large proportion. The UHI distribution information and the land cover vector
diagram of the same area (Figure 10), it was shown that this block is a hutong residential
area in the old city with high building density and low ventilation rate, which results
in a high UHI intensity state in this area. Inversely, there is a park covering 0.57 km2 in
Taoranting street with the large water body [62] and vegetation [63] has a mitigating effect
on the UHI effect in this area, thus the UHI footprint of this street has a relatively low
percentage, and most of the areas are medium and sub-low intensity heat island state.

Table 7. The UHI indices of different streets in Xicheng District in 2015 summer.

Street
UHI Index UHI Footprint

(km2)
UHI Capacity

(km2·◦C) Street
UHI Index UHI Footprint

(km2)
UHI Capacity

(km2·◦C)

West Chang’an Street 3.58 21.49 Tianqiao Street 2.11 14.70
Xinjiekou Street 3.62 26.41 Chunshu Street 1.02 6.69

Yuetan Street 4.02 21.17 Taoranting Street 1.78 9.61
Zhanlanlu Street 5.53 34.22 Guang’anmennei Street 2.46 16.13
Desheng Street 3.97 23.84 Niujie Street 1.43 8.65
Jinrongjie Street 3.99 22.76 Baizhifang Street 3.10 18.34
Shichahai Street 5.17 35.85 Guang’anmenwai Street 5.37 29.39
Dashilan Street 1.28 12.78
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Figure 10. The UHI distribution information and the land cover vector diagram in Xicheng District
in 2015.

6. Comparison and Discussion

In this section, the proposed method is compared with the widely-used Gaussian
surface fitting method [7,11,12] regarding the performance in calculation efficiency and
UHI spatial distribution expression.

According to the Gaussian surface model [7,11], UHI(x, y) is defined to be the LST
increment caused by the UHI effect and obtained by fitting the key parameters in the
Gaussian fit equation. Define the ellipse when U = 1 as the UHI footprint, and calculate
it according to key parameters, then calculate the UHI capacity by the double integral
method, finally fit the temperature surface by using the UHI(x, y).

6.1. The Comparison of Calculation Efficiency

The GeoSOT grid method (the method proposed in this paper) and the Gaussian
surface fitting method were utilized to calculate the UHI footprint and capacity, meanwhile,
the point-by-point calculation result based on original inversion data was used to be the
reference. The calculation results are shown in Tables 8 and 9. The UHI indices calculation
result shows the similar trend as those of previous researchers [64,65]. The errors of the
Gaussian surface fitting method and the GeoSOT grid method are obtained respectively,
using the point-by-point calculation result based on original inversion data as the true
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values (Table 10). Using the same device to perform calculations on the same data, the
results demonstrate that the efficiency of the GeoSOT grid method is significantly improved
when the accuracy in the similar level.

Table 8. The calculation results of UHI footprint based on different methods from 2014 to 2019.

Year

UHI Footprint (km2)
The GeoSOT
Grid Method

The Gaussian
Surface Fitting

Method

The
Point-by-Point

Method

2014 86.13 92.49 85.75
2015 89.86 92.49 89.43
2016 89.53 92.49 89.14
2017 91.35 92.49 90.95
2018 91.86 92.49 91.46
2019 87.95 92.49 89.96

Table 9. The calculation results of UHI capacity based on different methods from 2014 to 2019.

Year

UHI Capacity(km2·◦C)
The GeoSOT
Grid Method

The Gaussian
Surface Fitting

Method

The
Point-by-Point

Method

2014 323.21 325.33 321.84
2015 553.62 557.00 551.17
2016 483.77 489.74 481.44
2017 784.94 790.02 781.43
2018 980.85 979.88 976.48
2019 430.31 429.10 429.69

Table 10. The errors and computing time of UHI indices.

Method Data
The Average Error
of UHI Footprint

(km2)

The Average Error
of UHI Capacity

(km2·◦C)

Average Time
Cost (ms)

the point-by-point
method

The UHI footprint,
capacity from 2014

to 2019 summer
- - 4952

the GeoSOT grid
method

The UHI footprint,
capacity from 2014

to 2019 summer
0.67 2.44 2569

the Gaussian
surface fitting

method

The UHI footprint,
capacity from 2014

to 2019 summer
3.04 5.03 213

It should be noted that the calculation methods proposed in this paper depend on the
resolution and quality of the remote sensing images. When the data is missing, there will
be some difficulties in the calculation.

6.2. The Comparison of the UHI Spatial Distribution Expression

The grid method has even more significant advantages in the fine expression of the
UHI spatial distribution. The spatial distributions of urban thermal environment in 2016
were expressed by the GeoSOT grid method and the Gaussian surface fitting method
respectively, as shown in Figure 11a,b. The temperature surface fitted by the Gaussian
model weakens the fluctuation of the LST, and can hardly reflect the spatial distribution
characteristics of the thermal environment in the study area. While the GeoSOT grid
method can reflect the fluctuations of the LST and the intensity distribution of the UHI
visually and meticulously.
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Figure 11. The expression of the UHI spatial distribution based on different methods. (a) The GeoSOT
grid method (2016); (b) The Gaussian surface fitting method (2016).

7. Conclusions

In this paper, we proposed a model that integrates UHI information with the GeoSOT
grid, then designed the calculation method of UHI indices and expression method of UHI
spatial distribution on this basis. Experimental results showed that compared with the
Gaussian surface fitting method, the method proposed in this paper has higher efficiency of
calculation, meanwhile, breaking the constraints of complex surface fitting and achieving
the detailed description of the urban thermal environment spatial distribution by using the
discrete subdivision way. The method supports a large range and high-frequency calcula-
tion of rapid calculation of UHI indices and accurate expression of spatial distribution, it is
significant for accurate monitoring the changes of UHI, for analysis of connections between
urban heat environment and complicated spatial distribution of cities, further to support
accurate governance of UHI.

Future work will focus on the diversity of UHI spatial distribution, embedding multi-
scale characteristics into the construction of multi-layer calculation models with GeoSOT
grids, and solving limitations in data. Quantitative analysis of various influencing factors
will also be applied, with the UHI information model based on the GeoSOT grid, among
urban climate, urban distribution characteristics, urban spatial distribution, vegetation,
and urban thermal environment.
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