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Abstract: On the basis of the available gray models, a new fractional gray Bernoulli model (GFGBM
(1,1,tα)) is proposed to predict the per capita primary energy consumption (PPEC) of major economies
in the world. First, this paper introduces the modeling mechanism and characteristics of the GFGBM
(1,1,tα). The new model can be converted to other gray models through parameter changes, so the
new model has strong adaptability. Second, the predictive performance of the GFGBM (1,1,tα) is
assessed by the four groups of PPEC. The optimal parameters of the model are solved by the moth
flame optimization and gray wolf optimization algorithms, and the prediction results of the models
are evaluated by two error metrics. The results show that the GFGBM (1,1,tα) is more feasible and
effective than the other tested gray models. Third, the GFGBM (1,1,tα) is applied to forecast the PPEC
of India, the world, the Organization for Economic Cooperation and Development (OECD) countries,
and non-OECD countries over the next 5 years. The forecasting results indicate that the PPEC of the
four economies will increase by 5.36 GJ, 42.09 GJ, 5.75 GJ, and 29.22 GJ, respectively, an increase of
51.53%, 55.61%, 3.22%, and 53.41%, respectively.

Keywords: per capita primary energy consumption; gray Bernoulli model; moth flame optimizer; forecasting

1. Introduction

Energy consumption and CO2 emissions have always been the two major issues of
greatest concern to the international community [1–3]. The per capita primary energy
consumption (PPEC) is the average amount of primary energy consumed per person per
year in a country or region. According to the PPEC, the energy demand of a country or
region can be predicted, and the development degree of a country or region can also be
measured. With the economic development, the PPEC levels of all countries in the world
continue to grow, but the gap between those of developed and developing countries is
still obvious. According to the BP Statistical Review of World Energy 2020 [4], the world’s
PPEC increased from 70.2346 GJ in 2009 to 75.6834 GJ in 2019, with an annualization rate of
0.78%. The PPEC of Organization for Economic Co-operation and Development (OECD)
countries decreased from 182.3469 GJ in 2009 to 178.5049 GJ in 2019, basically fluctuating at
approximately 180 GJ in recent years. The PPEC of non-OECD countries increased from
45.7504 GJ in 2009 to 54.6977 GJ in 2019, with an annualization rate of 1.96%. The PPEC
of India increased from 17.6759 GJ in 2009 to 24.9261 GJ in 2019, with an annualization
rate of 4.1%. This rate is 5.287 times the growth rate of the world’s PPEC and 2.097 times
that of the growth rate of the PPEC of non-OECD countries during the same period. The
main reason for this phenomenon may be that India is a large developing country with
rapid economic development in the world. Among the major energy-consuming countries
in the world, India is one of the countries with the fastest PPEC growth rates. The PPEC
in India, the whole world, OECD countries, and non-OECD countries from 2009 to 2019
are listed in Table 1. In 2019, fossil energy consumption such as coal, oil, and natural
gas consumption accounted for 84.33% of the world’s primary energy consumption, and
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fossil energy consumption is the main source of global carbon emissions [4]. The rapid
increase in primary energy consumption will not only cause serious air pollution but also
inevitably result in the sustained growth of global CO2 emissions, which is contrary to
the carbon emission reduction required by the sustainable development goal (SDG) [5–7].
Therefore, the accurate prediction of the PPEC of major economies around the world will
help decision-makers formulate more scientific and reasonable carbon emission reduction
policies, so as to achieve the predetermined SDG.

Table 1. PPEC of the four types of economies (GJ) (Adapted from ref. [4]).

Year India Total World OECD Non-OECD

2009 17.6759 70.2346 182.3469 45.7504
2010 18.2736 72.7214 187.8195 47.7449
2011 19.1000 73.5948 184.6489 49.6531
2012 19.8403 73.6576 181.4992 50.5636
2013 20.3592 74.1683 182.0335 51.2263
2014 21.5048 73.9022 179.4084 51.6154
2015 21.9599 73.5879 178.7073 51.5342
2016 22.7007 73.7523 178.3820 51.9503
2017 23.4071 74.2340 179.0919 52.5323
2018 24.6198 75.4954 180.8786 53.8343
2019 24.9261 75.6834 178.5049 54.6977

Energy consumption prediction has always been a research hotspot for many scholars.
Many factors affect energy consumption, such as the industry structure, urbanization,
energy consumption structure, technology level, energy price, carbon emissions, economic
growth, and environmental policy of a region [8–10]. Therefore, it is difficult to accurately
predict energy consumption. To solve this problem, scholars have proposed many predic-
tion models. The models developed for predicting energy consumption can be classified
into three types. The first includes statistical analysis models, such as time series anal-
ysis [11], linear regression models [12], nonlinear region models [13], smooth transition
autoregressive (STAR) models [14], and parametric and nonparametric approaches [15]. To
obtain an ideal prediction effect, large numbers of sample datasets and multiple complex
variables are often needed. The second category consists of intelligent learning models,
which mainly include artificial neural networks [16,17], gradient boosting machines [18],
support vector machines [19], and sequence-to-sequence deep learning models [20]. The
number of training samples has a significant impact on the performance of the utilized
intelligent learning model, which often requires a sufficiently large sample size to obtain
the ideal training effect. Due to the influence of China’s national conditions and statistical
technology, China’s annual energy consumption data are relatively limited. In addition,
the available sample energy consumption data cannot satisfactorily meet the statistical
distribution requirements of modeling [21]. The last type includes gray prediction models.
The original gray prediction model (GM (1,1)) was first proposed by Deng [22]. It does not
require a large dataset and meets statistical distribution requirements. Therefore, it can be
used to predict data in various fields, such as population growth, traffic flow, landslides,
and CO2 emissions [23–27]. Furthermore, the gray model has also made many achieve-
ments in predicting short-term energy consumption. For example, Wu et al. [28] proposed
a new fractional gray model with optimization (FAGMO (1,1,k)) to forecast the nuclear
energy consumption in China. Ding et al. [29] proposed a gray model combined with new
initial conditions and a rolling mechanism to forecast the power consumption in China.
Wu et al. [30] put forward the fractional nonlinear gray Bernoulli model (FANGBM (1,1))
based on fractional-order accumulation to predict China’s short-term renewable energy
consumption. Liu et al. [31] proposed the fractional gray polynomial model with time
power term (FPGM (1,1,tα)) to predict the power consumption levels of China and India.
Liu et al. [32] proposed the discrete fractional gray model with time power term (DFGM
(1,1,tα)) to forecast the natural gas consumption in China. Wu et al. [33] established the
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seasonal fractional nonhomogeneous discrete gray model (SFNDGM) by introducing sea-
sonal indicators into the fractional cumulative generation operator and predicted the power
consumption in Hubei Province, China. Zeng [34] established the time delay gray model
with fractional order accumulation (NGM (1,1,τ, r)) and predicted the primary energy
consumption in Guangdong Province, China.

There are two common univariate gray prediction models. One is the first-order
gray differential model (GM (1,1)) proposed by Deng [22]. Its whitening transformation
is dx(1)(t)/dt + ax(1)(t) = b, in which a is the development coefficient and b is the ash
action. The predictive performance of the gray model can be improved by selecting the
appropriate amount of ash. For example, Cui [35] put forward the novel gray model (NGM
(1,1,k)) with an ash action of bt. Chen and Yu [36] proposed the NGM (1,1,k,c) with an
ash action of bt + c. Qian et al. [37] proposed the gray model with time power GM (1,1,tα)
with an ash action of btα + c. Luo and Wei [38] proposed the gray model with polyno-
mial term (GMP (1,1,N)) with an ash action of β0 + β1t + · · ·+ βNtN . Ma and Liu [39]
proposed the time-delayed polynomial gray model (TDPGM (1,1)) with an ash action of

b
t

∑
τ=1

τ2 + c
t

∑
τ=1

τ + d. Liu et al. [31] designed the FPGM (1,1,tα) with a time exponential term

of
α

∑
i=α−[α]

b[i]ti + c. The other is the gray Bernoulli model (GBM (1,1)). A power exponent

was introduced into the Bernoulli differential equation to construct the GBM (1,1), whose
whitening transformation is dx(1)(t)/dt + ax(1)(t) = b[x(1)(t)]

α
. When α = 2, this model

is also called the gray Verhurst model. On this basis, Chen [40] proposed the nonlinear gray
Bernoulli model (NGBM (1,1)), which can better present the nonlinear growth trends of the
data series. After that, many researchers improved the NGBM (1,1) from many different
perspectives. For instance, Wu et al. [30] proposed the fractional nonlinear gray Bernoulli
model (FANGBM (1,1)) by introducing a fractional-order accumulation. Şahin [41] incorpo-
rated seasonal factors into the FANGBM (1,1) and put forward the genetic algorithm-based
seasonal fractional gray model (OFANGBM (1,1)). Jiang et al. [42] established the seasonal
nonlinear gray Bernoulli model with fractional order accumulation (FASNGBM (1,1)) by
adding seasonal factors on the basis of the FANGBM (1,1). Ma and Liu [43] combined
the GMC (1,n) with convolution and the Bernoulli model to establish a multivariate gray
Bernoulli model (NGBMC (1,n)). Liu and Xie [44] proposed a Weibull Bernoulli gray pre-
diction model (WBGM (1,1)) with a Weibull cumulative distribution, which expanded the
development coefficient of the gray prediction model into a variable. Xie et al. [45] pro-
posed the conformable fractional nonlinear gray Bernoulli model (CFNGBM (1,1)) model
by introducing conformable fractional accumulation. Zheng et al. [46] further extended
the CFNGBM (1,1) model and proposed the nonhomogeneous CFNHGBM (1,1,k). Wu
et al. [47] combined the non-homogeneous gray model (NGM (1,1,k,c)) with the NGBM (1,1)
and proposed a new gray prediction model (NGBM (1,1,k,c)). Xiao et al. [48] established
a gray Riccati Bernoulli model (GRBM (1,1)) based on economic theory, which provides
economic meaning for the model parameters. Xu et al. [49] designed the nonlinear gray
Bernoulli model (ONGBM (1,1)) by optimizing its background value.

Existing research on the gray model still has some shortcomings. For example, the
adaptability of a gray model is limited, and its accuracy is still not sufficiently high. In
addition, most models use a single optimization algorithm to search for the optimal param-
eters, which may cause the obtained parameters to not be the optimal values. Therefore,
in order to further improve the prediction accuracy of the gray model and predict the
PPEC more accurately, a new gray fractional-order Bernoulli model (GFBGM (1,1,tα)) is
proposed based on the advantages of NGBM (1,1) and FPGM (1,1,tα). To make better use of
the new model to fit and predict data, based on the widely used gray wolf optimization
(GWO) algorithm, this paper adds the moth flame optimization (MFO) algorithm to find the
structural parameters of the model [50]. Four groups of PPEC, fir India, the world, OECD
countries, and non-OECD countries, are applied to assess the prediction performance of the
GFBGM (1,1,tα). Finally, the GFBGM (1,1,tα) is applied to forecast the PPEC of India, the
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world, OECD countries, and non-OECD countries over the next 5 years. This can provide a
scientific basis for the governments to formulate energy policy.

The organizational structure of this paper is as follows. The methodology of the
GFGBM (1,1,tα) is given in Section 2. The results and discussion are presented in Section 3.
Section 4 is the conclusion.

2. Methodology
2.1. Gray Bernoulli Models: NGBM (1,1) and FAGM (1,1,tα)

The gray Bernoulli models NGBM (1,1) and FAGM (1,1,tα) are introduced as follows.

Definition 1. Given a nonnegative sequence X(0) =
{

x(0)(1), x(0)(2), · · · , x(0)(n)
}

,

X(1) =
{

x(1)(1), x(1)(2), . . . , x(1)(n)
}

is called the first-order generating sequence of X(0), where

x(1)(k) =
k
∑

i=1
x(0)(i), k = 1, 2, · · · n.

Based on the work of Chen et al. [40], NGBM (1,1) is expressed as:

dx(1)(t)
dt

+ ax(1)(t) = b(x(1)(t))
γ

(1)

This is a nonlinear equation, and the exponent γ can be any real number.
The parameters a, b in the NGBM (1,1) can be obtained from the following formula:

(a, b)T = (BT B)
−1

BTY (2)

B =


−z(1)(2)

(
z(1)(2)

)γ

−z(1)(3)
(

z(1)(3)
)γ

...
...

−z(1)(n)
(

z(1)(n)
)γ

, Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

 (3)

where Z(1) =
(

z(1)(2), z(1)(3), . . . , z(1)(n)
)

and z(1)(k) are expressed as follows:

z(1)(k) = 0.5x(1)(k− 1) + 0.5x(1)(k), k = 2, 3, · · · , n (4)

where n is the number of samples in the modeling sequence.
By solving the following equation, the time response function of the NGBM (1,1) can

be obtained:

x̂(1)(k) =
{
[(x(0)(1)

1−γ
− b

a
] · e−a(1−γ)(k−1) +

b
a

} 1
1−γ

, k = 2, 3, · · · , n (5)

The predicted values of the model are as follows:

x(0)(k) = x(1)(k)− x(1)(k− 1), k = 2, 3, · · · n (6)

Definition 2. Given a nonnegative sequence X(0) =
{

x(0)(1), x(0)(2), · · · , x(0)(n)
}

, r ∈ R+,

and its r− th order accumulation sequence is X(r) =
{

x(r)(1), x(r)(2), . . . , x(r)(n)
}

.
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Denoted by Ar, the accumulated generating operation (r-AGO) matrix that satisfies
X(r) = ArX(0) is:

Ar =



[
r
0

]
0 0 · · · 0[

r
1

] [
r
0

]
0 · · · 0[

r
2

] [
r
1

] [
r
0

]
· · · 0

...
...

...
. . .

...[
r

n− 1

] [
r

n− 2

] [
r

n− 3

]
· · ·

[
r
0

]


n×n

(7)

with
[

r
i

]
= r(r+1)···(r+i−1)

i! =

(
r + i− 1

i

)
= (r+i−1)!

i!(r−1)! ,
[

0
i

]
= 0,

[
0
0

]
=

(
0
0

)
= 1

Denoted by Dr, the r-IAGO matrix that satisfies X(0) = DrX(r) is

Dr =



[
−r
0

]
0 0 · · · 0[

−r
1

] [
−r
0

]
0 · · · 0[

−r
2

] [
−r
1

] [
−r
0

]
· · · 0

...
...

...
. . .

...[
−r

n− 1

] [
−r

n− 2

] [
−r

n− 3

]
· · ·

[
−r
0

]


n×n

(8)

with
[
−r
i

]
= −r(−r+1)···(−r+i−1)

i! = (−1)i r(r−1)···(r−i+1)
i! ,

[
−r
i

]
= 0, i > r

The matrix Ar and matrix Dr satisfy ArDr = In.
Based on the work of Liu et al. [31], the whitening differential equation of the FPGM

(1,1,tα) is
dx(r)(t)

dt + ax(r)(t) =
α

∑
i=α−[α]

b[i]ti + c

= b0tα−[α] + b1tα−[α]+1 + · · ·+ b[α]tα + c
(9)

where a and
α

∑
i=α−[α]

b[i]ti + c express the development coefficient and gray action quantity,

respectively. [α] is the largest integer that is less than α, where 0 ≤ α ≤ 3.
Then, the following equation

x(r)(t)− x(r)(t− 1) + az(r)(t)

=
∑α

i=α−[α] b[i]t
i+1−∑α

i=α−[α] b[i](t−1)i+1

i+1 + c
(10)

is called the basic form of the FPGM (1,1,tα), where

z(r)(k) =
x(r)(k) + x(r)(k− 1)

2
, k = 2, 3, . . . , n (11)

is the background value of the FPGM (1,1,tα).
Then, the parameters can be computed by the least-squares method.

ρ = (a, b0, b[α], c)T = (BT B)
−1

BTY (12)
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B =


−Z(r)(2) 21+α−[α]−1

1+α−[α] · · · 21+α−1
1+α 1

−Z(r)(3) 31+α−[α]−21+α−[α]

1+α−[α] · · · 31+α−21+α

1+α 1
...

...
. . .

...
...

−Z(r)(n) n1+α−[α]−(n−1)1+α−[α]

1+α−[α] · · · n1+α−(n−1)1+α

1+α 1

 (13)

Y =


x(r)(2)− x(r)(1)
x(r)(3)− x(r)(2)

...
x(r)(n)− x(r)(n− 1)

 (14)

The time response of the FPGM (1,1,tα) is given as:

x̂(r)(k) =
(

x(0)(1)− c
a

)
e−a(k−1)

+ c
a +

b0e−a(k−1)

2

k−1
∑

i=1

(
iα−[α]ea(i−1) + (i + 1)α−[α]eai

)
+ b1e−a(k−1)

2

k−1
∑

i=1

(
iα−[α]+1ea(i−1) + (i + 1)α−[α]+1eai

)
+ · · ·

+
b[α]e

−a(k−1)

2

k−1
∑

i=1

(
iαea(i−1) + (i + 1)αeai

)
(15)

and the restored value of x̂(0)(k), k = 2, 3, . . . , n is given by: X̂(0) = DrX̂(r)

2.2. Description of the GFGBM (1,1,tα)

Based on the characteristics of NGBM (1,1) and FPGM (1,1,tα), a novel gray Bernoulli
model GFGBM (1,1,tα) is proposed. The expression of the GFGBM (1,1,tα) is as follows:

dx(r)(t)
dt

+ ax(r)(t) = (
α

∑
i=α−[α]

c[i]t
i + b)[x(r)(t)]

ξ
(16)

where 0 ≤ r ≤ 1, 0 ≤ α ≤ 3, 0 ≤ ξ ≤ 3, ξ 6= 1

Theorem 1. The time response function of the GFGBM (1,1,tα) is derived as

x(r)(t) =
{
([x(0)(1)]

1−ξ − b′
a′ )e
−a′(t−1) + b′

a′

+e−a′(t−1)
∫ t

1 (c
′
0τα−[α] + c′1τα−[α]+1 + · · ·+ c′[α]τ

α)ea′(τ−1)dτ
} 1

1−ξ
(17)

where a(1− ξ) = a′, b(1− ξ) = b′, c0(1− ξ) = c′0, and c1(1− ξ) = c′1, . . . , c[α](1− ξ) = c′[α]
The reduced value of x̂(r)(k) is x̂(0)(k):

x̂(0)(k) = Dr x̂(r)(k), k = 1, 2, 3, · · · , n (18)

Proof of Theorem 1. Both sides of Equation (16) are multiplied by x(r)(t)−ξ . Letting

y(r) = [x(r)(t)]
1−ξ

, one can obtain

d[y(r)(t)]
dt

+ a(1− ξ)y(r)(t) = (1− ξ)(
α

∑
i=α−[α]

c[i]t
i + b) (19)
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Letting the left side of Equation (16) be 0, a(1− ξ) = a′, b(1− ξ) = b′, c0(1− ξ) = c′0,
and c1(1− ξ) = c′1, . . . , c[α](1− ξ) = c′[α], we can obtain:

d[y(r)(t)]
dt

+ a(1− ξ)y(r)(t) =
d[y(r)(t)]

dt
+ a′y(r)(t) = 0 (20)

Then the general solution expression of the equation is:

y(r)(t) = Ce−a′t (21)

dC(t)
dt

= ea′t(1− ξ)(
α

∑
i=α−[α]

c[i]t
i + b) = ea′t(

α

∑
i=α−[α]

c′[i]τ
i + b′) (22)

To perform the definite integral operation on the interval [1, t], we know that:

C(t) =
∫
(b′ +

α

∑
i=α−[α]

c′[i]t
i)ea′tdt =C(1) +

∫ t
1 (b
′ +

α

∑
i=α−[α]

c′[i]τ
i)ea′τdτ

= C(1) +
∫ t

1 (c
′
0τα−[α] + c′1τα−[α]+1 + · · ·+ c′[α]τ

α)ea′τdτ + b′
a′ (e

a′t − ea′)
(23)

When t = 1,
C(1) = y(r)(1)ea′ = y(0)(1)ea′ (24)

Therefore, the general solution of the equation can be rewritten as:

y(r)(t) = e−a′t[y(0)(1)ea′ +
∫ t

1 (c
′
0τα−[α] + c′1τα−[α]+1 + · · ·+ c′[α]τ

α)ea′τdτ + b′
a′ (e

a′t − ea′)]

= (y(r)(t)− b′
a′ )e
−a′(t−1) + b′

a′ + e−a′(t−1)
∫ t

1 (c
′
0τα−[α] + c′1τα−[α]+1 + · · ·+ c′[α]τ

α)ea′(τ−1)dτ
(25)

Because y(r)(t) = [x(r)(t)]
1−ξ

and y(r)(1) = [x(r)(1)]
1−ξ

= [x(0)(1)]
1−ξ

, the time
response function is:

x(r)(t) =
{
([x(0)(1)]

1−ξ − b′
a′ )e
−a′(t−1) + b′

a′

+e−a′(t−1)
∫ t

1 (c
′
0τα−[α] + c′1τα−[α]+1 + · · ·+ c′[α]τ

α)ea′(τ−1)dτ
} 1

1−ξ
(26)

Although α is not an integer,
∫ k

1 ταea′(τ−1)dτ can be integrated by the numerical
integration method to obtain a real number.

The predicted values x̂(0)(k) can be obtained by:

x̂(0)(k) = Dr x̂(r)(k), k = 1, 2, 3, · · · , n (27)

�

2.3. Parameter Estimation for the GFGBM (1,1,tα)

By integrating over [k− 1, k] on both sides of Equation (17) simultaneously, the follow-
ing conclusion can be obtained:

y(r)(k)− y(r)(k− 1) + a′
∫ k

k−1
y(r)(t)dt =

∫ k

k−1
b′ +

α

∑
i=α−[α]

c′ [i]t
idt (28)

According to the integral median theorem, we can obtain:

∫ k

k−1
y(r)(t)dt = λy(r)(k) + (1− λ)y(r)(k− 1) (29)
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k∫
k−1

b′ +
α

∑
i=α−[α]

c′[i]t
idt = b′ + c′0

kα−[α]+1−(k−1)α−[α]+1

α−[α]+1

+c′1
kα−[α]+2−(k−1)α−[α]+2

α−[α]+2 + . . . + c′[α]
kα+1−(k−1)α+1

α+1

(30)

Therefore, by introducing Equation (29) and Equation (30) into Equation (28), we
can get:

y(r)(k)− y(r)(k− 1) + a′[λy(r)(k) + (1− λ)y(r)(k− 1)]

= b′ + c′0
kα−[α]+1−(k−1)α−[α]+1

α−[α]+1 + c′1
kα−[α]+2−(k−1)α−[α]+2

α−[α]+2 + . . . + c′[α]
kα+1−(k−1)α+1

α+1
(31)

According to the commonly used method for solving the parameters of gray prediction
models, the least-squares criterion of the GFGBM (1,1,tα) is as follows:

min
a′ ,b′ ,c0

′ ,...,c[α] ′

n
∑

t=2
[y(r)(k)− y(r)(k− 1) + a′[λy(r)(k) + (1− λ)y(r)(k− 1)]− b′

−c′0
kα−[α]+1−(k−1)α−[α]+1

α−[α]+1 − c′1
kα−[α]+2−(k−1)α−[α]+2

α−[α]+2 − . . .− c′[α]
kα+1−(k−1)α+1

α+1 ]2
(32)

The solution of this optimization question is

[â′, b̂′, ĉ0
′, . . . , ĉ[α]

′]
T
=
(

BT B
)−1

BTY (33)

where

B =


−[λy(r)(2) + (1− λ)y(r)(1)] 21+α−[α]−1

1+α−[α] · · · 21+α−1
1+α 1

−[λy(r)(3) + (1− λ)y(r)(2)] 31+α−[α]−21+α−[α]

1+α−[α] · · · 31+α−21+α

1+α 1
...

...
...

...
...

−[λy(r)(n) + (1− λ)y(r)(n− 1)] n1+α−[α]−(n−1)1+α−[α]

1+α−[α] · · · n1+α−(n−1)1+α

1+α 1

 (34)

Y =


y(r)(2)− y(r)(1)
y(r)(3)− y(r)(2)

...
y(r)(n)− y(r)(n− 1)

 (35)

In order to facilitate readers to understand the solution process of the GFGBM (1,1,tα),
Figure 1 shows the algorithm implementation process of the GFGBM (1,1,tα).
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Figure 1. Algorithm implementation process of GFGBM (1,1,tα).

2.4. The Properties of the GFGBM (1,1,tα)

It can be seen from the expression of the GFGBM (1,1,tα) that when the parameters
change, the GFGBM (1,1,tα) can be converted to other gray models.

Scenario 1: For ξ = 0, α = 0, r = 1, and b = 0 or c = 0, the GFGBM (1,1,tα) can be converted
into the GM (1,1) [22].
Scenario 2: For ξ = 0, α = 0, r ∈ (0, 1), the GFGBM (1,1,tα) can be converted into the FGM
(1,1) [51].
Scenario 3: For ξ = 0, α = 1, r = 1, the GFGBM (1,1,tα) can be converted into the NGM
(1,1,k,c) [52].
Scenario 4: For ξ = 0, α = 1, the GFGBM (1,1,tα) can be converted into the FNGM [27].
Scenario 5: For ξ = 0, r = 1, α ∈ N∗, the GFGBM (1,1,tα) can be converted into the GMP
(1,1,N) [38].
Scenario 6: For r ∈ (0, 1), α = 0, b = 0 or c = 0, the GFGBM (1,1,tα) can be converted into
the FANGBM (1,1) [30].
Scenario 7: For r = 1, α = 1, the GFGBM (1,1,tα) can be converted into the NGBM
(1,1,k,c) [47].
Scenario 8: For ξ = 0, the GFGBM (1,1,tα) can be converted into the FGPM (1,1,tα) [31].
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To minimize the model error, the optimal values of the parameters r, λ, α, ξ should be
determined. The mean absolute percentage error (MAPE) is adopted as the main criterion
for solving the optimal parameters, as shown below.

min
r,λ,α,ξ

f (r, λ, α, ξ) =
1

n− 1

n

∑
t=2
| x

(0)(t)− x̂(0)(t)
x(0)(t)

| × 100% (36)

St.



0 ≤ r ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ α ≤ 3, 0 ≤ ξ ≤ 3, ξ 6= 1

[â′, b̂′, ĉ′]
T
=
(

BT B
)−1BTY

B =


−Z(r)(2) 21+α−[α]−1

1+α−[α] · · · 21+α−1
1+α 1

−Z(r)(3) 31+α−[α]−21+α−[α]

1+α−[α] · · · 31+α−21+α

1+α 1
...

...
. . .

...
...

−Z(r)(n) n1+α−[α]−(n−1)1+α−[α]

1+α−[α] · · · n1+α−(n−1)1+α

1+α 1

, Y =


y(r)(2)− y(r)(1)
y(r)(3)− y(r)(2)

...
y(r)(n)− y(r)(n− 1)


x(r)(t) =

{
([x(0)(1)]

1−ξ − b′
a′ )e
−a′(t−1) + b′

a′ + e−a′(t−1) ∫ t
1 (c
′
0τα−[α] + c′1τα−[α]+1 + · · ·+ c′[α]τ

α)ea′(τ−1)dτ
} 1

1−ξ

x̂(0)(t) = (x̂(r))
(−r)

, t = 1, 2, 3, · · · , n

(37)

The above optimization question can usually be solved by intelligent optimization
algorithms or heuristic algorithms. In this paper, the MFO and GWO algorithms are used
to solve the parameters.

2.5. Error Metric

In this paper, two error metrics are used to assess the forecasting performance: mean
absolute percentage error and mean absolute error, as shown in Table 2.

Table 2. Error metric.

Name Abbreviation Formulation

Mean absolute percentage error MAPE 1
n−1

n
∑

k=2
| x

(0)(k)−x̂(0)(k)
x(0)(k) | × 100%

Mean absolute error MAE 1
n−1

n
∑

k=2
|x̂(0)(k)− x(0)(k)|

2.6. Validation of the GFGBM (1,1,tα)

The PPEC data of four types of economies are used to verify the accuracy of the
GFGBM (1,1,tα), and the forecasting results are compared to those obtained with other
gray models, such as the FGM, NGM, GMP (1,1,2), GM (1,1,t2), NGBM, and FANGBM. In
Sections 3.1.1–3.1.4, the raw data in Table 1 and the above seven gray models are employed
to simulate and predict the PPEC in India, the world, OECD countries, and non-OECD
countries. The original time series data from 2009 to 2016 are used to build the FGM, NGM,
GMP (1,1,2), GM (1,1,t2), NGBM, FANGBM, and GFGBM (1,1,tα), and the data from 2017
to 2019 are used to assess the forecasting performance of the above gray prediction models.

3. Results and Discussion
3.1. Model Comparison Results of Four Economies

This section uses the method described in Section 2.6 to assess whether the GFGBM
(1,1,tα) performs better than the competitive models in fitting and predicting the PPEC of
India, the world, OECD countries, and non-OECD countries.

3.1.1. PPEC of India

According to the Statistics Review of World Energy 2020 [4], the PPEC of India in-
creased rapidly from 2009 to 2019. This is mainly because, in recent years, the gross domestic
product (GDP) growth of India has been maintained at a high level, so the demand for
primary energy has remained high. Therefore, this section takes India as a case to assess the
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forecasting performance of the GFGBM (1,1,tα). The parameters and MAPEs of the GFGBM
(1,1,tα) computed by the MFO and GWO optimization algorithms are shown in Table 3.
The fitting error obtained by the MFO optimization algorithm is small, but the prediction
error is large, and the model exhibits overfitting. The MAPE and MAPEtest values obtained
by the GWO algorithm are 0.3441% and 0.6849%, respectively, so the GWO algorithm is
selected to solve the parameters. Then, the structural parameters of the GFGBM (1,1,tα) can
be obtained according to Equation (23): a = −0.1618, b = 31.7284, c0 = −32.2997. Figure 2
shows the number of iterations of the two optimization algorithms and the relationships
between the MAPEs and parameters. The simulation and prediction results of the seven
models are presented in Figure 3 and Table 4. The error metrics are presented in Figure 4
and Table 5. It can be seen that the MAPE values of simulation and prediction of the
GFGBM (1,1,tα) are 0.3441% and 0.6849%, respectively, and the MAE values are 0.0717 and
0.1686, respectively. The error metrics are lower than those of the other six models, which
means that the proposed model has the best prediction performance. This also shows that
the GFGBM (1,1,tα) can better simulate and predict the trend of the PPEC in India.

Table 3. Parameters and MAPEs of the GFGBM (1,1,tα) based on different optimization algorithms
(Case 1).

Algorithm r
(Parameter 1)

λ
(Parameter 2)

α
(Parameter 3)

ξ
(Parameter 4)

MAPE
(%)

MAPEtest
(%)

MFO 0.6352 0.5162 0.0002 0.0000 0.3258 0.9084
GWO 0.0783 0.5151 0.0180 0.2049 0.3441 0.6849

Figure 2. Iterations, MAPE, and parameters of the two optimization algorithms (a): MFO; (b): GWO.

Figure 3. Results of PPEC in India.
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Table 4. Simulation results and prediction results of PPEC in India.

Year Data FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

2009 17.6759 17.6759 17.6759 17.6759 17.6759 17.6759 17.6759 17.6759
2010 18.2736 18.2736 18.2856 18.2688 18.3237 18.2467 18.2734 18.2737
2011 19.1000 19.0785 19.0594 19.0347 19.1243 19.0942 19.0785 19.0712
2012 19.8403 19.8250 19.8186 19.7903 19.9131 19.8403 19.8251 19.8443
2013 20.3592 20.5507 20.5634 20.5332 20.6896 20.5546 20.5508 20.5816
2014 21.5048 21.2718 21.2941 21.2601 21.4530 21.2651 21.2719 21.2942
2015 21.9599 21.9967 22.0109 21.9671 22.2028 21.9866 21.9967 21.9958
2016 22.7007 22.7303 22.7142 22.6492 22.9383 22.7288 22.7302 22.7003

Year data FGM NGM GMP GM
(1,1,t2)

NGBM
(1,1,k,c) FANGBM GFGBM

2017 23.4071 23.4762 23.4042 23.3002 23.6587 23.4986 23.4759 23.4215
2018 24.6198 24.2366 24.0810 23.9123 24.3634 24.3017 24.2363 24.1735
2019 24.9261 25.0136 24.7451 24.4759 25.0516 25.1429 25.0131 24.9711

Figure 4. Error metrics of PPEC in India (a): MAPE; (b): MAE.

Table 5. Error metrics of PPEC in India.

Simulation FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 0.3588 0.3803 0.4103 0.6835 0.3568 0.3588 0.3441
MAE 0.0754 0.0791 0.0854 0.1443 0.0747 0.0754 0.0717

Prediction FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 0.7342 0.9757 1.7122 0.8733 0.8509 0.7335 0.6849
MAE 0.1799 0.2409 0.4215 0.2112 0.2088 0.1798 0.1686

3.1.2. PPEC of the World

According to the Statistics Review of World Energy 2020 [4], the global PPEC fluctuated
slightly from 2009 to 2019. Therefore, this section takes the global PPEC as a case to assess
the forecasting performance of the GFGBM (1,1,tα). The parameters and MAPE values of
the GFGBM (1,1,tα) computed by the MFO and GWO optimization algorithms are shown
in Table 6. The MAPE and MAPEtest values of the MFO algorithm are 0.135% and 0.5997%,
respectively, which are better than those of the GWO algorithm. Therefore, the MFO
algorithm is used to obtain the model parameters. Then, the structural parameters of the
GFGBM (1,1,tα) can be obtained according to Equation (23): a = 1.5553, b = 2.8476× 10−4,
c0 = −2.1348× 10−5. Figure 5 shows the number of iterations of the two optimization
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algorithms and the relationships between the MAPEs and parameters. The simulation
and prediction results of the seven models are presented in Figure 6 and Table 7. The
error metrics are presented in Figure 7 and Table 8. It can be seen that the MAPE values
of simulation and prediction of the GFGBM (1,1,tα) are 0.135% and 0.5997%, respectively,
and the MAE values are 0.0996 and 0.4517, respectively. The error metrics are lower than
those of the other six models, which means that the proposed model has the best prediction
performance. This also shows that the GFGBM (1,1,tα) can better simulate and predict the
trend of the global PPEC.

Table 6. Parameters and MAPEs of the GFGBM (1,1,tα) based on different optimization algorithms
(Case 2).

Algorithm r
(Parameter 1)

λ
(Parameter 2)

α
(Parameter 3)

ξ
(Parameter 4)

MAPE
(%)

MAPEtest
(%)

MFO 0.0459 0.5903 3.0000 3.0000 0.1350 0.5997
GWO 0.0000 0.5976 0.9993 0.0046 0.1503 2.1902

Figure 5. Iterations, MAPE, and parameters of the two optimization algorithms: (a): MFO; (b): GWO.

Figure 6. Results of PPEC in the total world.
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Table 7. Simulation results and prediction results of PPEC in the total world.

Year Data FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

2009 70.2346 70.2346 70.2346 70.2346 70.2346 70.2346 70.2346 70.2346
2010 72.7214 72.7214 72.8466 72.7743 72.9985 72.7214 72.5807 72.7214
2011 73.5948 73.5127 73.5392 73.5224 73.6122 73.5397 73.4698 73.6288
2012 73.6576 73.8498 73.7551 73.8429 74.0659 73.8448 73.7706 73.9435
2013 74.1683 73.9573 73.8224 73.9299 74.3576 73.9252 73.8444 73.9909
2014 73.9022 73.9263 73.8434 73.8893 74.4851 73.8892 73.8347 73.8971
2015 73.5879 73.8030 73.8499 73.7792 74.4462 73.7888 73.7970 73.7761
2016 73.7523 73.6143 73.8520 73.6310 74.2389 73.6525 73.7523 73.7587

Year Data FGM NGM GMP GM
(1,1,t2)

NGBM
(1,1,k,c) FANGBM GFGBM

2017 74.2340 73.3769 73.8526 73.4620 73.8609 73.4972 73.7082 73.9941
2018 75.4954 73.1023 73.8528 73.2817 73.3100 73.3336 73.6670 74.6553
2019 75.6834 72.7983 73.8529 73.0952 72.5839 73.1683 73.6291 75.9585

Figure 7. Error metrics of PPEC in the total world (a): MAPE; (b): MAE.

Table 8. Error metrics of PPEC in the total world.

Simulation FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 0.1670 0.2025 0.1694 0.5470 0.1547 0.1898 0.1350
MAE 0.1232 0.1492 0.1249 0.4028 0.1142 0.1399 0.0996

Prediction FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 2.7122 1.7027 2.4640 2.4976 2.3931 1.9482 0.5997
MAE 2.0451 1.2848 1.8580 1.8860 1.8046 1.4695 0.4517

3.1.3. PPEC of OECD Countries

According to the Statistics Review of World Energy 2020 [4], the PPEC of the OECD
fluctuated slightly from 2009 to 2019. However, the OECD countries still consist of the
economies with the largest PPEC in the world. Therefore, this section takes the PPEC of the
OECD countries as examples to assess the forecasting performance of the GFGBM (1,1,tα).
The parameters and MAPE values of the GFGBM (1,1,tα) computed by the MFO and GWO
optimization algorithms are shown in Table 9. The MAPE and MAPEtest of the MFO
algorithm are 0.1983% and 0.6735%, respectively, which are better than those of the GWO
algorithm. Therefore, the MFO algorithm is used to obtain the model parameters. Then,
the structural parameters of the GFGBM (1,1,tα) can be obtained according to Equation (23):
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a = −0.0201, b = 7297.2578, c0 = −7237.8325. Figure 8 shows the number of iterations of
the two optimization algorithms and the relationships between the MAPEs and parameters.
The simulation and prediction results of the seven models are presented in Figure 9 and
Table 10. The error metrics are presented in Figure 10 and Table 11. It can be seen that the
MAPE values of simulation and prediction of the GFGBM (1,1,tα) are 0.1983% and 0.6735%,
respectively, and the MAE values are 0.3614 and 1.2134, respectively. The error metrics are
lower than those of the other six models, which means that the proposed model has the
best prediction performance. This also shows that the GFGBM (1,1,tα) can better simulate
and predict the trend of the PPEC of OECD countries.

Table 9. Parameters and MAPEs of the GFGBM (1,1,tα) based on different optimization algorithms
(Case 3).

Algorithm r
(Parameter 1)

λ
(Parameter 2)

α
(Parameter 3)

ξ
(Parameter 4)

MAPE
(%)

MAPEtest
(%)

MFO 1.0000 0.5325 0.0018 0.1797 0.1983 0.6735
GWO 0.0004 0.6381 1.0004 0.0300 0.2582 0.6132

Figure 8. Iterations, MAPE, and parameters of the two optimization algorithms (a): MFO; (b): GWO.

Figure 9. Results of PPEC in OECD.
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Table 10. Simulation results and prediction results of PPEC in OECD.

Year Data FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

2009 182.3469 182.3469 182.3469 182.3469 182.3469 182.3469 182.3469 182.3469
2010 187.8195 186.3057 187.6371 187.6585 187.1542 187.6202 186.3057 187.5961
2011 184.6489 184.5967 184.5695 184.4182 184.2045 184.5846 184.5967 184.6489
2012 181.4992 182.6416 182.3844 182.3552 181.7614 182.3867 182.6416 182.3105
2013 182.0335 181.0489 180.8279 180.9338 179.8145 180.8185 181.0489 180.6097
2014 179.4084 179.7673 179.7191 179.8620 178.3535 179.7081 179.7673 179.4396
2015 178.7073 178.7073 178.9293 178.9809 177.3686 178.9271 178.7073 178.7073
2016 178.3820 177.8061 178.3667 178.2036 176.8499 178.3820 177.8061 178.3421

Year Data FGM NGM GMP GM
(1,1,t2)

NGBM
(1,1,k,c) FANGBM GFGBM

2017 179.0919 177.0231 177.9659 177.4829 176.7879 178.0051 177.0230 178.2911
2018 180.8786 176.3312 177.6804 176.7930 177.1731 177.7478 176.3312 178.5140
2019 178.5049 175.7117 177.4771 176.1200 177.9965 177.5754 175.7117 178.9798

Figure 10. Error metrics of PPEC in OECD (a): MAPE; (b): MAE.

Table 11. Error metrics of PPEC in OECD.

Simulation FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 0.3611 0.2280 0.2560 0.5935 0.2268 0.3611 0.1983
MAE 0.6611 0.4144 0.4647 1.0738 0.4122 0.6611 0.3614

Prediction FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 1.7447 0.9909 1.4977 1.2066 0.9528 1.7447 0.6735
MAE 3.1365 1.7840 2.6932 2.1726 1.7157 3.1365 1.2134

3.1.4. PPEC of Non-OECD

According to the Statistics Review of World Energy 2020 [4], the PPEC of non-OECD
countries increased rapidly from 2009 to 2019. The developing countries, represented
by China, India, and Russia, are still the countries with the largest primary energy con-
sumption levels in the world. With rapid economic development, the demand for primary
energy in these countries will remain high. Therefore, this section takes the PPEC levels
of non-OECD countries as examples to assess the forecasting performance of the GFGBM
(1,1,tα). The parameters and MAPE values of the GFGBM (1,1,tα) computed by the MFO
and GWO optimization algorithms are shown in Table 12. The MAPE and MAPEtest of the
GWO algorithm are 0.1228% and 0.6720%, respectively, which are better than those of the
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MFO algorithm. Therefore, the GWO algorithm is used to obtain the model parameters.
Then, the structural parameters of the model can be obtained according to Equation (23):
a = −9.2800× 10−4, b = 0.1012, c0 = −0.0689, c1 = 0.0024. Figure 11 shows the relation-
ships between the number of iterations, MAPEs, and parameters. The simulation and
prediction results of the seven models are presented in Figure 12 and Table 13. The error
metrics are presented in Figure 13 and Table 14. It can be seen that the MAPE values of
simulation and prediction of the GFGBM (1,1,tα) are 0.1228% and 0.6720%, respectively,
and the MAE values are 0.0627 and 0.3662, respectively. The error metrics are lower than
those of the other six models, which means that the proposed model has the best prediction
performance. This also shows that the GFGBM (1,1,tα) can better simulate and predict the
trend of the PPEC of non-OECD countries.

Table 12. Parameters and MAPEs of the GFGBM (1,1,tα) based on different optimization algorithms
(Case 4).

Algorithm r
(Parameter 1)

λ
(Parameter 2)

α
(Parameter 3)

ξ
(Parameter 4)

MAPE
(%)

MAPEtest
(%)

MFO 0.0803 0.5399 1.1355 2.1142 0.1253 0.8079
GWO 0.1011 0.4817 1.3275 0.8717 0.1228 0.6720

Figure 11. Iterations, MAPE, and parameters of the two optimization algorithms (a): MFO; (b): GWO.

Figure 12. Results of PPEC in non-OECD.
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Table 13. Simulation results and prediction results of PPEC in non-OECD.

Year Data FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

2009 45.7504 45.7504 45.7504 45.7504 45.7504 45.7504 45.7504 45.7504
2010 47.7449 47.7611 47.8463 47.8451 48.2771 47.7449 47.7449 47.7450
2011 49.6531 49.5618 49.6050 49.6342 49.8152 49.6220 49.4309 49.5993
2012 50.5636 50.6043 50.6119 50.6102 51.0844 50.6061 50.5528 50.6956
2013 51.2263 51.2263 51.1883 51.1614 52.0725 51.1741 51.2374 51.2266
2014 51.6154 51.5828 51.5183 51.4906 52.7665 51.5160 51.6149 51.4548
2015 51.5342 51.7571 51.7072 51.7039 53.1530 51.7264 51.7849 51.6244
2016 51.9503 51.7991 51.8153 51.8565 53.2177 51.8581 51.8180 51.9486

Year Data FGM NGM GMP GM
(1,1,t2)

NGBM
(1,1,k,c) FANGBM GFGBM

2017 52.5323 51.7411 51.8773 51.9775 52.9461 51.9429 51.7631 52.6159
2018 53.8343 51.6055 51.9127 52.0820 52.3226 52.0006 51.6534 53.8011
2019 54.6977 51.4083 51.9330 52.1778 51.3310 52.0440 51.5113 55.6796

Figure 13. Error metrics of PPEC in non-OECD (a): MAPE; (b): MAE.

Table 14. Error metrics of PPEC in non-OECD.

Simulation FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 0.1550 0.1804 0.1741 1.7049 0.1417 0.1761 0.1228
MAE 0.0793 0.0916 0.0884 0.8712 0.0728 0.0897 0.0627

Prediction FGM NGM GMP GM (1,1,t2)
NGBM
(1,1,k,c) FANGBM GFGBM

MAPE (%) 3.8867 3.2903 2.9727 3.2503 3.1266 3.7803 0.6720
MAE 2.1031 1.7804 1.6090 1.7641 1.6923 2.0455 0.3662

3.2. Forecasting the PPEC over the Next 5 Years

In this section, we use the GFGBM (1,1,tα) to forecast the PPEC of India, the world,
OECD countries, and non-OECD countries over the next 5 years (2020–2024). The prediction
results are presented in Table 15 and Figure 14. The forecasting results indicate that the
PPEC of India, the world, the OECD countries, and the non-OECD countries will increase to
a certain extent over the next 5 years. Notably, the PPEC of India is expected to increase by
5.36 GJ, an increase of 51.53%; the PPEC of the world is expected to increase by 42.09 GJ, an
increase of 55.61%; the PPEC of the OECD countries is expected to increase by 5.75 GJ, an
increase of 3.22%; the PPEC of the non-OECD countries is expected to increase by 29.22 GJ,
an increase of 53.41%. India’s economy has been growing steadily in the past decade,
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and its energy demand is increasing day by day. It can be predicted that the PPEC will
gradually increase over the next 5 years. The global PPEC will grow rapidly, and most of
the growth comes from non-OECD countries. This is because non-OECD includes many
emerging economies whose economies are in the stage of rapid development. The demand
for primary energy remains high, but the utilization of renewable energy is insufficient.
OECD countries have better green and clean energy alternatives and financial support,
which can prevent the sharp rise of PPEC. In the past ten years, the overall trend of PPEC is
downward, and the volatility has occasionally increased. The prediction results show that
it will grow slowly over the next 5 years, which is within the reasonable prediction range.

Table 15. Predictions for the PPEC over the next 5 years (GJ).

Year India Total World OECD Non-OECD

2020 25.8305 78.2057 179.6642 58.4434
2021 26.7699 78.2057 180.5480 62.3191
2022 27.8101 87.8733 181.6158 67.5903
2023 28.9750 98.0839 182.8551 74.6253
2024 30.2928 117.7758 184.2557 83.9136

Figure 14. Predictions for the PPEC over the next 5 years of the (a): India; (b): The word; (c): OECD;
(d): Non-OECD.

4. Conclusions

To more accurately predict the future PPEC of India, the world, OECD countries, and
non-OECD countries, we propose a new gray model (GFGBM (1,1,tα)) based on the NGBM
(1,1) and FPGM (1,1,tα) and use the numerical integration method to obtain exact solutions
for the model. At the same time, the MFO and GWO optimization algorithms are used to
solve the parameters. Through parameter changes, the GFGBM (1,1,tα) can be transformed
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into other gray models, so the new model has strong adaptability. The results of data
fitting and forecasting for the four types of tested economies show that the error metrics
of the GFGBM (1,1,tα) are lower than those of the existing FGM, NGM, GMP (1,1,2), GM
(1,1,t2), NGBM (1,1,k,c), and FANGBM, which means that the GFGBM (1,1,tα) has the best
prediction performance. The proposed model can be used for the prediction of other data
due to its high adaptability.

Furthermore, we use the GFGBM (1,1,tα) to predict the PPEC of India, the world,
OECD countries, and non-OECD countries over the next 5 years. The forecasting results
show that from 2020 to 2024, the PPEC of all these regions will gradually rise. Notably,
the PPEC of India is expected to increase by 5.36 GJ, an increase of 51.53%; the PPEC
of the world is expected to increase by 42.09 GJ, an increase of 55.61%; the PPEC of the
OECD countries is expected to increase by 5.75 GJ, an increase of 3.22%; the PPEC of the
non-OECD countries is expected to increase by 29.22 GJ, an increase of 53.41%.

According to the prediction results of this paper, the growth rate of PPEC in the world
will still be high over the next 5 years, especially in the new economy represented by India.
This will inevitably lead to the continuous increase of global carbon emissions, which is
contrary to the carbon emission reduction required in the SDG. Therefore, governments
all over the world, especially those countries with large primary energy consumption,
should attach great importance to the rapid growth of primary energy consumption. The
governments should vigorously develop clean and green energy and reduce the proportion
of primary energy consumption. The governments should encourage enterprises to reduce
fossil energy consumption and increase the proportion of new energy consumption through
environmental regulation, financial subsidies, taxation, and other measures, to gradually
optimize the energy consumption structure and achieve the SDG.

Some suggestions are provided for future research. First, the existing reverse fractional-
order accumulation and subtraction methods can be improved to better reflect the priority
of new information. Second, a new method can be found to calculate the area of the curve
trapezoid, so as to further optimize the background value to reduce the error of the gray
prediction model. Third, artificial neural networks, support vector machines, and other
models can be combined with GFGBM (1,1,tα) to build a more accurate prediction model.
Fourth, other optimization algorithms can be used to solve the parameters of the model.
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Nomenclature

PPEC Per capita primary energy consumption
FOA Fractional order (r-order) accumulation
IFOA Inverse fractional order (r-order) accumulation
X(0) Original series
X(1) First-order accumulated series
GM (1,1) Basic gray model
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FGM (1,1) Fractional gray model
NGM (1,1) Nonlinear gray model
GMP (1,1,2) Gray model with polynomial term
GM (1,1,tα) Gray model with time power
NGBM (1,1) Nonlinear gray Bernoulli model
FANGBM (1,1) Fractional nonlinear gray Bernoulli model
FPGM(1,1,tα) Fractional gray polynomial model with time power term
GFGBM (1,1,tα) Fractional gray Bernoulli model with time power term
GWO Gray wolf optimization
MFO Moth flame optimization
MAPE Mean absolute percentage error
MAE Mean absolute percentage error

References
1. Ceglia, F.; Macaluso, A.; Marrasso, E.; Roselli, C.; Vanoli, L. Energy, Environmental, and Economic Analyses of Geothermal

Polygeneration System Using Dynamic Simulations. Energies 2020, 13, 4603. [CrossRef]
2. Ceglia, F.; Marrasso, E.; Roselli, C.; Sasso, M. An innovative environmental parameter: Expanded total equivalent warming

impact. Int. J. Refrig. 2021, 131, 980–989. [CrossRef]
3. Cellura, M.; Fichera, A.; Guarino, F.; Volpe, R. Sustainable development goals and performance measurement of positive energy

district: A methodological approach. In Sustainability in Energy and Buildings; Springer: Singapore, 2021; pp. 519–527.
4. British Petroleum. BP Statistical Review of World Energy. Available online: https://www.bp.com/ (accessed on 11 October 2021).
5. Merino, I.; Herrera, I.; Valdés, H. Environmental assessment of energy scenarios for a low-carbon electrical network in Chile.

Sustainability 2019, 11, 5066. [CrossRef]
6. Chen, H.; He, L.; Chen, J.; Yuan, B.; Huang, T.; Cui, Q. Impacts of clean energy substitution for polluting fossil-fuels in terminal

energy consumption on the economy and environment in China. Sustainability 2019, 11, 6419. [CrossRef]
7. Shen, N.; Wang, Y.; Peng, H.; Hou, Z. Renewable energy green innovation, fossil energy consumption, and air pollution: Spatial

empirical analysis based on China. Sustainability 2020, 12, 6397. [CrossRef]
8. Li, Z.; Li, Y.B.; Shao, S.S. Analysis of influencing factors and trend forecast of carbon emission from energy consumption in China

based on expanded STIRPAT model. Energies 2019, 12, 3054. [CrossRef]
9. Harsh, P.; Manan, S. Energy consumption and price forecasting through data-driven analysis methods: A review. SN Comput. Sci.

2021, 2, 315.
10. Kongbuamai, N.; Bui, Q.; Nimsai, S. The effects of renewable and nonrenewable energy consumption on the ecological footprint:

The role of environmental policy in BRICS countries. Environ. Sci. Pollut. Res. 2021, 28, 27885–27899. [CrossRef]
11. Sen, P.; Roy, M.; Pal, P. Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian

pig iron manufacturing organization. Energy 2016, 116, 1031–1038. [CrossRef]
12. Bianco, V.; Manca, O.; Nardini, S. Electricity consumption forecasting in Italy using linear regression models. Energy 2009, 34,

1413–1421. [CrossRef]
13. Zhang, K.; Feng, W.B. Prediction of China’s total energy consumption based on bayesian arima-nonlinear regression model. In

IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 657, p. 012056.
14. Nawaz, S.; Iqbal, N.; Anwar, S. Modelling electricity demand using the STAR (smooth transition auto-regressive) model in

Pakistan. Energy 2014, 78, 535–542. [CrossRef]
15. Cheong, C.W. Parametric and non-parametric approaches in evaluating martingale hypothesis of energy spot markets.

Math. Comput. Model. 2011, 54, 1499–1509. [CrossRef]
16. Karimi, H.; Dastranj, J. Artificial neural network-based genetic algorithm to predict natural gas con sumption. Energy Syst. 2014,

5, 571–581. [CrossRef]
17. Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs Neurons: Comparison between random forest and ANN for high-resolution

prediction of building energy consumption. Energy Build. 2017, 147, 77–89. [CrossRef]
18. Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial

buildings. Energy Build. 2018, 158, 1533–1543. [CrossRef]
19. Wang, X.; Luo, D.; Zhao, X.; Sun, Z. Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based

support vector machine with rolling cross-validation. Energy 2018, 152, 539–548. [CrossRef]
20. Kim, C.H.; Kim, M.; Song, Y.J. Sequence-to-sequence deep learning model for building energy consumption prediction with

dynamic simulation modeling. J. Build. Eng. 2021, 43, 102577. [CrossRef]
21. Lee, Y.S.; Tong, L.I. Forecasting energy consumption using a Grey model improved by incorporating genetic programming.

Energy Convers. Manag. 2011, 52, 147–152. [CrossRef]
22. Deng, J. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294.
23. Ma, X.J.; Jiang, P.; Jiang, Q.C. Research and application of association rule algorithm and an optimized grey model in carbon

emissions forecasting. Technol. Forecast. Soc. Change 2020, 158, 120159. [CrossRef]

http://doi.org/10.3390/en13184603
http://doi.org/10.1016/j.ijrefrig.2021.08.019
https://www.bp.com/
http://doi.org/10.3390/su11185066
http://doi.org/10.3390/su11226419
http://doi.org/10.3390/su12166397
http://doi.org/10.3390/en12163054
http://doi.org/10.1007/s11356-021-12551-3
http://doi.org/10.1016/j.energy.2016.10.068
http://doi.org/10.1016/j.energy.2009.06.034
http://doi.org/10.1016/j.energy.2014.10.040
http://doi.org/10.1016/j.mcm.2011.04.022
http://doi.org/10.1007/s12667-014-0128-2
http://doi.org/10.1016/j.enbuild.2017.04.038
http://doi.org/10.1016/j.enbuild.2017.11.039
http://doi.org/10.1016/j.energy.2018.03.120
http://doi.org/10.1016/j.jobe.2021.102577
http://doi.org/10.1016/j.enconman.2010.06.053
http://doi.org/10.1016/j.techfore.2020.120159


Sustainability 2022, 14, 2431 22 of 22

24. Tong, Y.; Yan, Z.; Chao, L. Research on a grey prediction model of population growth based on a logistic approach. Discret. Dyn.
Nat. Soc. 2020, 2020, 2416840. [CrossRef]

25. Wang, Z.X.; Jv, Y.Q. A non-linear systematic grey model for forecasting the industrial economy-energy-environment system.
Technol. Forecast. Soc. Change 2021, 167, 120707. [CrossRef]

26. Liu, C.; Xie, W.L.; Wu, W.Z.; Zhu, H.G. Predicting Chinese total retail sales of consumer goods by employing an extended discrete
grey polynomial model. Eng. Appl. Artif. Intell. 2021, 102, 104261. [CrossRef]

27. Xie, W.L.; Wu, W.Z.; Liu, C.; Zhang, T.; Dong, Z.J. Forecasting fuel combustion-related CO2 emissions by a novel continuous
fractional nonlinear grey Bernoulli model with grey wolf optimizer. Environ. Sci. Pollut. Res. 2021, 28, 38128–38144. [CrossRef]

28. Wu, W.Q.; Ma, X.; Zeng, B.; Wang, Y.; Cai, W. Application of the novel fractional grey model FAGMO(1,1,k) to predict China’s
nuclear energy consumption. Energy 2018, 165, 223–234. [CrossRef]

29. Ding, S.; Hipel, K.W.; Dang, Y.G. Forecasting China’s electricity consumption using a new grey prediction model. Energy 2018,
149, 314–328. [CrossRef]

30. Wu, W.Q.; Ma, X.; Zeng, B.; Wang, Y.; Cai, W. Forecasting short-term renewable energy consumption of China using a novel
fractional nonlinear grey Bernoulli model. Renew. Energy 2019, 140, 70–87. [CrossRef]

31. Liu, C.; Wu, W.Z.; Xie, W.L.; Zhang, J. Application of a novel fractional grey prediction model with time power term to predict the
electricity consumption of India and China. Chaos Soliton. Fract. 2020, 141, 110429. [CrossRef]

32. Liu, C.; Wu, W.Z.; Xie, W.L.; Zhang, T.; Zhang, J. Forecasting natural gas consumption of China by using a novel fractional grey
model with time power term. Energy Rep. 2021, 7, 788–797. [CrossRef]

33. Wu, W.Z.; Pang, H.D.; Zheng, C.L.; Xie, W.L.; Liu, C. Predictive analysis of quarterly electricity consumption via a novel seasonal
fractional nonhomogeneous discrete grey model: A case of Hubei in China. Energy 2021, 229, 120714. [CrossRef]

34. Zeng, L. Forecasting the primary energy consumption using a time delay grey model with fractional order accumulation.
Math. Comp. Model. Dyn. Syst. 2021, 27, 31–49. [CrossRef]

35. Cui, J.; Liu, S.F.; Zeng, B.; Xie, N.M. A novel grey forecasting model and its optimization. Appl. Math. Model. 2013, 37, 4399–4406.
[CrossRef]

36. Chen, P.Y.; Yu, H.M. Foundation settlement prediction based on a novel NGM model. Math. Probl. Eng. 2014, 2014, 242809.
[CrossRef]

37. Qian, W.Y.; Dang, Y.G.; Liu, S.F. Grey GM(1,1,) model with time power and its application. Syst. Eng. Theory Pract. 2012, 32,
2247–2252.

38. Luo, D.; Wei, B. Grey forecasting model with polynomial term and its optimization. J. Grey Syst. 2017, 29, 58–69.
39. Ma, X.; Liu, Z.B. Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China.

J. Comput. Appl. Math. 2017, 324, 17–24. [CrossRef]
40. Chen, C.I. Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate. Chaos Soliton. Fract. 2008,

37, 278–287. [CrossRef]
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