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Abstract: Concrete is the most commonly used construction material. The physical properties
of concrete vary with the type of concrete, such as high and ultra-high-strength concrete, fibre-
reinforced concrete, polymer-modified concrete, and lightweight concrete. The precise prediction
of the properties of concrete is a problem due to the design code, which typically requires specific
characteristics. The emergence of a new category of technology has motivated researchers to develop
mechanical strength prediction models using Artificial Intelligence (AI). Empirical and statistical
models have been extensively used. These models require a huge amount of laboratory data and still
provide inaccurate results. Sometimes, these models cannot predict the properties of concrete due to
complexity in the concrete mix design and curing conditions. To conquer such issues, AI models have
been introduced as another approach for predicting the compressive strength and other properties of
concrete. This article discusses machine learning algorithms, such as Gaussian Progress Regression
(GPR), Support Vector Machine Regression (SVMR), Ensemble Learning (EL), and optimized GPR,
SVMR, and EL, to predict the compressive strength of Lightweight Concrete (LWC). The simulation
approaches of these trained models indicate that AI can provide accurate prediction models without
undertaking extensive laboratory trials. Each model’s applicability and performance were rigorously
reviewed and assessed. The findings revealed that the optimized GPR model (R = 0.9803) used in
this study had the greatest accuracy. In addition, the optimized SVMR and GPR model showed
good performance, with R-values 0.9777 and 0.9740, respectively. The proposed model is economic
and efficient, and can be adopted by researchers and engineers to predict the compressive strength
of LWC.

Keywords: lightweight concrete; lightweight aggregate; GPR; SVMR; Ensemble Learning; compres-
sive strength; machine leaning

1. Introduction

Concrete is the world’s most popular artificial building material and comprises four
simple ingredients: cement, water, coarse and fine aggregates. Fine and coarse aggregates
make approximately 60−75% of the concrete volume, and significantly impact the con-
crete’s newly mixed and cured characteristics, mixing proportions, and economy. The
majority of the present research work has focused on using waste material in concrete

Sustainability 2022, 14, 2404. https://doi.org/10.3390/su14042404 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14042404
https://doi.org/10.3390/su14042404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4721-3332
https://orcid.org/0000-0001-9030-8102
https://orcid.org/0000-0002-7196-0792
https://orcid.org/0000-0002-1664-0059
https://doi.org/10.3390/su14042404
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14042404?type=check_update&version=1


Sustainability 2022, 14, 2404 2 of 22

production and improving the performance of the existing concrete mix considering the
cost-effectiveness [1–3]. The commonly used concretes are of two types, normal concrete
and polymer-modified concrete, as shown in Figure 1. The normal type of concrete contains
normal-strength concrete, plain concrete, reinforced concrete, lightweight concrete, and
air-entrained concrete, among other types, used in normal construction, such as small
building. Polymer-modified concrete contains high-performance concrete, pervious con-
crete, self-consolidated concrete, and rapid-strength concrete, among other types, used
in dams, tall chimneys, bridges, and multi-storey buildings. Lightweight concrete is ex-
tremely important for new construction, as well as repair and rehabilitation projects, among
all kinds of concrete. The conventional technique ‘concrete jacketing’ is mainly used to
strengthen/retrofit the concrete structures. However, increasing the weight, as well as
a cross-section of the section, limit the use of this technique. Therefore, replacing the
ordinary concrete with lightweight concrete with the same compressive strength can be an
alternative solution.
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Lightweight concrete is not a current concrete technology achievement. However,
lightweight concrete was first used over 2000 years ago, and its innovation is still under-
way [4]. The “Port of Cosa, the Pantheon Dome, and the Coliseum” are three of the most
prominent lightweight concrete buildings in the Mediterranean area [5]. They were all
erected during the early Roman Empire. According to ACI 213, the term “lightweight
aggregates (LWA) and lightweight concrete (LWC)” is defined “as the concrete which made
up of lightweight coarse aggregates and normal weight fine aggregates with possibly some
lightweight fine aggregates” [5]. Ordinary concrete is highly heavy self-weighted, with a
total deadweight of around 2400–2500 kg/m3. LWC is 23–80% lighter than regular weight
concrete, with a dry density ranging from 320 kg/m3 to 1920 kg/m3 [5]. Based on the
density and strength parameters, the types of LWC are categorized in Table 1. Low-density
lightweight concrete has a variety of advantages in construction, including a reduced
density, low thermal conductivity, low shrinkage, and excellent heat resistance, as well as a
decrease in dead load, cheaper transportation costs, and a faster construction pace [6].
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Table 1. Types of lightweight concrete.

Type of LWC Compressive Strength (N/mm2) Density (kg/m3)

Low-density concrete 0.7–2.0 300–800
Moderate-strength concrete 7–14 800–1350

Structural concrete 17–63 1350–1920

Several forms of LWA are now utilized to produce concrete lightweight, such as pumice
perlite, expanded clays, shales, and other wastes, such as blended waste, agricultural waste,
plastic or rubber, clay brick sintered fly ash aggregate, and oil palm shell. The commonly
used methods are not considered in this study, as they are less efficient and consume more
time to yield an output. In this manuscript, the most popular and efficient methods are
used to determine the more accurate prediction in less time.

Compressive strength in concrete design, manufacture, and construction is regarded to
be a basic performance criterion [7], and the 28-day compressive strength has been the most
often utilized metric in many classical studies. The use of machine learning on laboratory
data to estimate the 28-day compressive strength and other concrete parameters began in
the early 2000s [8]. The prediction using ML models reduced the laboratory time, waste of
constituents of concrete, and the cost. The various studies that have used ML to predict the
compressive strength of a variety of concretes are described below.

Asteris et al. [9] used GPR, linear and non-linear multivariate adaptive regression
splines (MARS-L and MARS-C), neural network (NN), and minimax probability machine
regression (MPMR) to predict the compressive strength of concrete. The new hybrid model,
called the hybrid ensemble model (HENSM), was used to compare the performance of
four conventional models. Based on the experimental results, the HENSM model has
the potential to be a new option for dealing with Conventional Machine Learning (CML)
model overfitting difficulties and, therefore, may be used to forecast concrete compressive
strength in a sustainable manner. Alshihri et al. [10] forecasted the compressive strength
of concrete using an artificial neural network (ANN). In the ANN, two methods were
utilized, called the feed-forward backpropagation (FFBP) and cascade correlation (CC)
methods. Eight input variables—cement, water, w/c ratio, lightweight fine aggregate, sand,
lightweight coarse aggregate, silica fume as a solution, superplasticizer, replacement of
cement with silica fume, and curing period—were used to predict the compressive strength.
The correlation coefficient of training and testing were 0.972 and 0.977 for BP, and 0.974
and 0.982 for CC. Compared to the BP technique, the CC neural network model predicted
marginally more accurate outcomes and learned much faster.

Omran et al. [11] compared the data mining techniques to predict the compressive
strength of environmentally friendly concrete. Four regression tree models and two ensem-
ble methods were used in his study. The individual GPR model and its associated ensemble
models had the greatest prediction accuracy in the comparison groups. Yaseen et al. [12]
used four machine learning models, namely extreme learning machine (ELM), MARS, M5
Tree models, and SVR, to estimate the compressive strength of lightweight foamed concrete.
Cement content, w/c ratio, oven-dry density, and foamed volume of aggregates were input
factors for the prediction models. The findings demonstrated that the suggested ELM
model improved the SVR, M5 Tree, and MARS models in terms of prediction accuracy. The
ELM model may be used as an accurate data-driven method for forecasting the compressive
strength of foamed concrete, avoiding the need for time-consuming trial batches to achieve
the desired product quality.

Kandiri et al. [13] predicted the compressive strength of recycled aggregates using a
modified ANN. The results of the ANN model were optimized with the help of the salp
swarm algorithm (SSA), genetic algorithm (GA), and grasshopper optimization algorithm
(GOA) techniques. The SSA-ANN model showed better accuracy compared to other
models. Bui et al. [14] used a hybrid whale optimization algorithm (WOA)-ANN to estimate
the compressive strength of concrete. Two other benchmark techniques, the dragonfly
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algorithm (DA) and ant colony optimization (ACO), were used to validate the accuracy
of the model. The findings showed that the WOA-ANN outperformed the DA-ANN and
ACO-ANN models. The accuracy of the WOA-ANN, GA-ANN, and ACO-ANN models
were 89.76%, 82.09%, and 80%, respectively.

Sharafati et al. [15] predicted the compressive strength of hollow concrete prism with
a bagging ensemble model. Three modelling scenarios based on distinct data divisions (i.e.,
80–20%, 75–25%, and 70–30%) were used for the training and testing stages. The bagging
regression (BGR) results were compared with the SVR and decision tree regression (DTR)
models. The BGR model achieved a low root mean square error (RMSE = 1.51 MPa) in the
testing phase while employing the 80–20% data division scenario, whereas the DTR and
SVR models achieved RMSE = 2.55 and 2.33 MPa, respectively. Xu et al. [16] used ML to
forecast the compressive strength of ready-mix concrete. Random forest (RF) was used as
the modelling technique to predict the compressive strength from the selected influential
elements after GA was used to find the most relevant influential factors for compressive
strength modeming. A case study was used to assess the efficiency of the suggested model,
and the highest R-value was 0.9821 and lowest MAPE and delta values were 0.0394 and
0.395, respectively, showing that the model can produce precise and dependable outcomes.

The work in this research article is categorized into five parts. Section 2 provides a
detailed overview of the formation of lightweight concrete and defines the lightweight
aggregate. Section 3 is related to the collection of lightweight aggregate from the literature
and the processing of the raw data. Section 4 describes the overview of the selected
machine learning algorithms. The results and discussions are mentioned in Section 5, and
the conclusion of the article is explained in Section 5.

2. Formation of Lightweight Concrete
2.1. Lightweight Aggregate (LWA)

Lightweight concrete is mainly formed using lightweight aggregates, as shown in
Figure 2. The ASTM standard covers two types of lightweight aggregate specifications:
(i) aggregates manufacturing by pelletizing, expanding, or sintering such as shale, diatomite,
etc., and (ii) aggregates manufacturing processing natural materials such as tuff, pumice,
etc., as shown in Figure 2. Furthermore, the ASTM C331M lists lightweight “aggregates
made out of final coal or coke products” [17]. Details on the various LWA classes, their
characteristics, and the normal production procedures for additional study are provided
in the literature [18–20]. To differentiate between standard weight aggregate and LWA,
the specification of aggregate characteristics, particularly density, is the crucial parameter.
Upper limitations for the loose bulk density are given by ASTM C330M and ASTM C331M,
which are 1120 kg/m3 for fine lightweight aggregate, 880 kg/m3 for coarse lightweight
aggregate, and 1040 kg/m3 for a mix of fine and coarse lightweight aggregate. According
to the ASTM, the compressive strength and split tensile requirements for lightweight
aggregate are shown in Figure 3.
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2.2. Lightweight Concrete (LWC)

The structural designer appreciates a reduction in concrete density since concrete
weight typically accounts for more than half of the dead load in a structure. “The lightweight
structural concrete made with the aggregates defined in ASTM C 330. The concrete has
a minimum 28-day compressive strength of 17 N/mm2, an equilibrium density between
1120 and 1920 kg/m3, and consists entirely of lightweight aggregate or a combination of
lightweight and normal-density aggregate”. The use of LWC is generally justified by a
desire to save money on a project, enhance functionality, or a combination of the two. When
contemplating lightweight concrete, estimating the overall cost of a project is important
because the cost of a cubic meter is generally more than a comparable unit of regular
concrete, as mentioned in ACI 213.

Manufacturing companies manufacture structural-grade lightweight aggregates from
raw materials such as appropriate fly ash, shales, slates, clays, or blast-furnace slag. The
growing usage of processed lightweight aggregates is a good example of environmental
planning and sustainability. These products reduce construction industry demands on
scarce natural gravel, stone, and sands resources by requiring less transportation and the
use of minerals that have limited structural uses in their natural condition.

3. Collection of LWC Data

To build the models for predicting compressive strength in this study, a complete
database of 194 different experimental records of concretes was compiled from the lit-
erature [21–40]. In this study, only one target parameter was considered, that is, the
compressive strength of concrete (fck). The input parameters used in this article are the
basic constituents of the concrete mix, such as cement (C), water content (W), fine aggregate
(FA), normal weight coarse aggregate (NWCA), lightweight coarse aggregate (LWCA), and
water-cement ratio (w/c). The only one output parameter is considered that is compressive
strength (fck) of LWC. The ranges of these parameters are from 208.57 to 640 Kg/m3, from
93.86 to 251 Kg/m3, from 150 to 1096 Kg/m3, from 0 to 1083 Kg/m3, from 0 to 730 Kg/m3,
from 0.25 to 0.55, and from 19 to 96 N/mm2, respectively, as shown in Table 2.
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Table 2. The input and output parameters needed to predict the compressive strength of LWC are
described using descriptive statistics.

Parameters Symbol Unit Mean Min. Max. Std. Skewness Kurtosis Type

Concrete
Parameters

w/c - 0.39 0.25 0.55 0.073 0.3971 2.67

Input

C Kg/m3 460.35 208.57 640 73.36 −0.0889 4.31
W Kg/m3 184.63 93.86 251 26.88 0.0849 3.41
FA Kg/m3 661.76 150 1096 280.46 −0.4924 2.29

LWCA Kg/m3 366.04 0 730 221.25 −0.3627 2.12
NWCA Kg/m3 298.23 0 1083 404.24 0.7953 1.89

fck N/mm2 39.43 16 96 14.38 1.75 6.95 Output

The original test database was filtered according to the following principles to increase
the database’s dependability: (a) One test dataset should be removed from a dataset with
the same test parameters if the goal value compressive strength differs by more than
15% from the other test data and the other test data points differ by less than 15%. (b) If
the difference between any two test data points in a set of data under the identical test
conditions is greater than 15%, the entire data group must be discarded. The 194 test data
points were eventually reduced to 120 remaining data points using the aforementioned
data filtering procedures. Table 2 shows the descriptive statistics of the collected database.

Data normalization was performed before processing the data in the machine learning
algorithms. The normalization process reduces the undesired feature scaling effects and
provides higher computational stability. All parameters were normalized in the range from
0 to 0.9 using Equation (1) [41].

y∗ = 0.9× (y− ymin)

ymax − ymin
(1)

where y* is the value to be normalized, y is the original value in the dataset, ymax is the max-
imum value in the desired dataset, and ymin is the minimum value in the desired dataset.

Six frequently used performance indices such as correlation coefficient (R), root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE) [42], a20-index [43], and Nash-Sutcliffe (NS) efficiency index [44]—are used to
analyse the performance of selected machine learning models. R and NS values closer to
one indicate a better relationship between the desired result, but R values greater than
0.85 indicate a substantial relationship. The lower the values of MAPE, RMSE, and MAE,
the greater the performance of the selected models. Equations (2)–(7) [42–44] show the
relevant expressions of the R, MAE, MAPE, RMSE, NS, and a20-index, respectively. These
indices’ relevant expressions are given in Equations (2)–(7). The scatterplot matrix of the
collected data is shown in Figure 4. Figure 4 shows the correlation coefficient of each input
and output value, as well as the correlation with each variable. A probability (p-value)
is assigned to the correlation coefficients, indicating the likelihood that the link between
the two variables is zero (null hypotheses; no relationship). Strong correlations have low
p-values because the chances of the correlations not being related are exceedingly small.

R =
∑N

i=1(Ei − x)
(

Pi − P
)√

∑N
i=1
(
Ei − E

)2(Pi − P
)2

(2)

MAE =
1
N

N

∑
i=1
|Ei − Pi| (3)

MAPE =
1
N

N

∑
I=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100 (4)
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RMSE =

√
∑N

i=1(Ei − Pi)
2

N
(5)

NS = 1− ∑N
i=1(Ei − Pi)

2

∑N
i=1
(
Ei − Pi

)2 (6)

a20− index =
m20

N
(7)

where N is the number of samples in the datasets, Ei is the experimental value at the
ith level, E is the mean of experimental values, Pi is the predicted value at the ith level,
and P is the mean of predicted values. m20 is the number of samples with values rate
measured/predicted values (range between 0.8 and 1.2).
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Figure 5 shows the distribution of the input and output parameters for each dataset.
Figure 5a shows the distribution of cement content with the number of samples in the
dataset, Figure 5b shows the distribution of water content with the number of samples in
the dataset, Figure 5c shows the distribution of fine aggregate with the number of samples
in the dataset, Figure 5d shows the distribution of normal weight coarse aggregate with the
number of samples in the dataset, Figure 5e shows the distribution of lightweight coarse
aggregate with the number of samples in the dataset, Figure 5f shows the distribution of
the water-cement ratio with the number of samples in the dataset, and Figure 5g shows
the distribution of the compressive strength of concrete with the number of samples in
the dataset.
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4. Overview of Machine Learning Methods

This section provides an overview of the methods used to construct the prediction
models for the compressive strength of concrete incorporating machine learning algorithms.
Artificial intelligence (AI) is subdivided into machine learning (ML), which focuses on the
creation of prediction algorithms. This branch of artificial intelligence enables computers to
carry out difficult and sophisticated tasks that were previously inaccessible to machines.
These algorithms developed the capacity to learn patterns from data rather than relying
on people to train them. These algorithms are built on training, allowing the computer
to learn the properties/features that ideally compose the dataset for the given problem.
Then, the computer interprets this knowledge to create more accessible datasets. Three ML
algorithms, namely GPR, SVMR, and EL, are described below.

4.1. Gaussian Processes Regression

The concept of the GPR model is named after Carl Friedrich Gauss, as it is based
on the notion of Gaussian distribution (normal distribution) [42]. GPR is a real-valued
variable-based approach on Bayesian inference [45]. It is a non-parametric prediction model
for a given dataset function. GPR is defined as D = {(xi, ti), i = 1, 2,..., N}, where xi is an
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input variable and ti is a target variable [41]. A distribution function, called “Gaussian
process regression,” can be as expressed as shown in Equation (8), used for the Bayesian
regression.

P( f |D) =
p( f )p(d| f )

p(D)
(8)

The primary function in GPR, called k(x, x′), is the covariance function. The covariance
function can be performed best, as shown in Equation (9).

k
(

x, x′
)
= σ2

f exp
{
−1

2

( xi − xj

l2

)}
(9)

where l is the scale length and σ2
f is the maximum permissible variance. Equation (10)

shows the output of the latent function.

y = f (x) + ε (10)

where ε is the Gaussian noise and (x) is the latent function. In GPR, the latent function
is regarded as a random variable. For the aforementioned covariance function, if the
difference between x and x′ approaches zero, the (x) function is close to the actual function
(x)′. The above equation may be rewritten as follows by adding the noise values.

k
(
x, x′

)
= σ2

f exp
{
−1

2

( xi − xj

l2

)}
+ σ2

n δ
(
x, x′

)
(11)

where, δ(x, x′) is Kronecker delta function and σ2
n is the variance of n observations. The

forecasted function can be written as:

y = f (x) + N
(

0, σ2
n

)
(12)

The covariance or kernel function (x,′) is expressed in Equation (13).

K =


k(x1, x2) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

...
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (13)

4.2. Support Vector Machines Regression

Vapnik et al. [46] created SVM, a supervised machine learning model for solving
high-dimensional problems. Depending on the data, this approach may be used to solve
regression or classification issues [47,48]. “A hyperplane is used in SVM to map a set of
training samples representing points in space to a multidimensional feature space”. SVM
offers several benefits, including the capacity to “handle high-dimensional space data,”
“situations with a greater number of dimensions than sample count,” “memory efficiency,”
and the flexibility to model the decision function using a variety of kernel functions. The
goal of applying this technique is to predict the target variables using the input data, which
include K-dimensional xi patterns and yi findings, as well as training and test data. When
combined with core functions, SVM is quite effective. As a result, a nonlinear optimal
boundary in the input space corresponds to the extreme plane defining SVM.

The SVM is a well-known approach based on the statistical learning theory that takes
full use of the notion of structural risk reduction rather than the standard empirical risk
minimization employed in older methods to assure the generalization capacity of the
regression model [49]. The cubic SVM method was proven to be more accurate than the
other techniques in the experiments using all sub-methods (linear and quadratic SVM) of
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SVM. As a result, in the current work, a cubic SVM was utilized to forecast the compressive
strength of lightweight concrete. The SVM model’s sketch map is shown in Figure 6.
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The following regression function may be used to define the nonlinear input-output
connection in the SVM model if the ith sample contains a D-dimensional input vector xi ε
RD and a scalar output yi ε R.

f (xi) = ωT∅(xi) + b, i = 1, 2, . . . i (14)

where f (xi) represents the forecasted values, ∅(xi) is the nonlinear mapping function, and
the optimized parameters are ω and b.

For the training dataset with l samples, the ϑ-SVM optimization model can be ex-
pressed as follows:

minR(ω, ξ, ξ∗, ε) = 1
2 ||ω ||2 + C

[
ϑε + 1

l ∑l
i=1
(
ξi + ξ∗i

)]
subject to : yi −ωT ϕ(xi)− b ≤ ε + ξi

ωT ϕ(xi)+b−yi≤ε+ξi
ξ∗ , ε≥0

(15)

where C is the parameter used to stabilize the model complexity and empirical risk term
||ω ||2, and ξ∗i denotes the distance and is called a slack variable. The Lagrange multipliers
technique is used to solve the dual optimization problem as expressed in Equation (16).

maxR
(
ai, a∗i

)
=

l
∑

i=1
yi
(
ai, a∗i

)
− 1

2

l
∑

i=1

l
∑

j=1

(
ai − a∗i

)(
aj − a∗j

)
K
(
xi, x∗i

)
subject to :

l
∑

i=1

(
ai − a∗i

)
= 0, 0 ≤ ai, a∗i ≤ C/l

l
∑

i=1
(ai + a∗i ) ≤ C.v

(16)
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where kernel functions are denoted by K(xi, xj), and the non-negative Lagrange multipliers
are represented by ai and a∗i . Equation (17) expresses the regression for an unknown input
vector x.

f (x) =
l

∑
i=1

(ai − a∗i )× K(x, xi) + b (17)

4.3. Ensembles Learning

In several research and commercial challenges involved in many industrial domains,
EL algorithms have been shown to have great generalization capacity. A typical EL method
with n ML models may be written as follows [50]:

FEL(x) = ∑n
i=1 FML

i (x) (18)

where x is the input parameters, FEL(x) is the final mode established through the EL
algorithm, and FML

i (x) is the selected ML algorithm, called the basis model.
Ensemble techniques train several machine learning algorithms to arrive at a final

conclusion. EL’s are based on human behaviour, which assumes that each problem can be
solved by gathering and implementing the opinions of a number of experts [51]. Based
on these differing viewpoints, a decision is made. When compared to employing a single
classifier, ELs provide superior results.

There are two main approaches for the construction of basic models in the EL algorithm.
Boosting techniques are algorithms that construct the base ML models in a sequential
manner. Each basis model in the boosting method (BM) is strongly dependent on one of the
basis models FML

i (x), and the training is regulated by the former “basis model” FML
i−1 (x).

Bagging approaches are those that train the “basis models” in a parallel framework, with
each basis model FML

i (x) being completely independent [52]. The boosting approach would
significantly enhance a model’s prediction variance and bias as a consequence of several
methods, but the bagging method could simply raise the stability of a model by lowering
the variance. Many research articles have indicated that the boosting method beats the
bagging method in terms of prediction accuracy.

5. Results and Analysis
5.1. Implementation of Machine Learning Alogthims to Predict the Compressive Strength

Based on the training process of the ML algorithms, the data were divided into two
parts. To avoid the overfitting phenomenon, the splitting ratio of the two sets was adjusted
to 7 ratios 3, where 70% (84 samples) of the data was used in the training process and
the other 30% (36 samples) of the data was utilized as testing data, as shown in Figure 7.
To validate the results of the ML algorithms, cross-validation with the 10-fold method
was used. In the 10-fold cross-validation method, the dataset was split into 10 subsets.
Each subset was for the validation process, with the remaining 9 subsets being utilized for
training inside the training stage.
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5.2. Results of ML Algorithms
5.2.1. GPR Model

In the GPR method, the Matern 5/2 GPR algorithm was found to be more precise than
the rest of the methods. The properties of the selected GPR are tabulated in Table 3. In
the training stage, the GPR model predicted the compressive strength values practically
accurately. However, there was a little difference in the testing stage. The GPR model’s
prediction accuracy (R = 0.9931, MAE = 1.4395, MAPE = 3.9752, and RMSE = 1.8262 in
the training phase, R = 0.8639, MAE = 4.0267, MAPE = 11.3444, and RMSE = 5.3077 in
the testing phase) demonstrates the model’s generalisation capability in both phases. In
Figure 8, a scatterplot shows the experimental and forecasted values of the compressive
strength of LWC for the training and testing datasets. The details of the other performance
indices are tabulated in Table 4.

Table 3. Selected properties of the Matern 5/2 GPR model.

Parameter Value

Basic function Constant
Use isotropic kernel Yes

Kernel scale 3.12
Signal standard deviation 0.0785

Sigma 0.0785
Optimize numeric parameters Yes
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Table 4. Statistical analysis results of different models.

Model R MAE MAPE RMSE NS a20-Index

GPR 0.974 2.1023 5.8632 3.2603 0.9477 0.9580
SVMR 0.9647 2.8526 7.8439 4.1512 0.7566 0.8750

EL 0.9571 3.3334 8.6391 4.4732 0.9020 0.8500
Optimized GPR 0.9803 1.9909 5.5676 2.8294 0.9606 0.9670

Optimized SVMR 0.9777 2.5106 7.0123 3.7741 0.9299 0.9500
Optimized EL 0.9621 3.1132 8.5132 3.9666 0.9227 0.9500

Further, the GPR model was optimized using the parameters shown in Table 5. The
plot between the minimum mean square error (MSE) and the number of iterations for
normalized values is shown in Figure 9. The prediction accuracy of the optimized GPR
model for the training and testing phase was R = 0.9933, MAE = 1.4063, MAPE = 3.8953,
RMSE = 1.7982, and R = 0.8915, MAE = 3.6880, MAPE = 10.4227, RMSE = 4.4002, respectively,
as shown in Table 6. The comparison between the experimental and forecasted values is
shown in Figure 10.

Table 5. Selected properties of the optimized GPR model.

Parameter Value

Basic function Constant
Kernel function Isotropic Rational Quadratic

Kernel scale 0.37139
Signal standard deviation 0.12845

Sigma 0.01588
Optimize numeric parameters Yes
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5.2.2. SVMR Model

In all trained SVMR models, the cubic SVMR model outperformed the other models.
The parameters used to train the desired SVMR model are presented in Table 7. The SVMR
model’s prediction accuracy (R = 0.9784, MAE = 2.3648, MAPE = 6.4588, and RMSE = 1.5979
in the training phase, R = 0.8799, MAE = 4.2689, MAPE = 11.8652, and RMSE = 5.6277 in the
testing phase) demonstrates the model’s general capability in both phases. Figure 11 shows
the training and testing data scatterplot between the experimental and forecasted values.

Table 7. Selected properties of the cubic SVMR model.

Parameter Value

Box constraint 0.1323
Epsilon 0.1204

Kernel scale 1
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The SVMR model was optimized using Table 8 parameters. The accuracy of the
optimized SVMR model was 1.67% higher than the conventional SVMR model. The plot
between the minimum mean square error (MSE) and a number of iterations for normalized
values is shown in Figure 12. In terms of R, MAE, MAPE, and RMSE, the prediction
accuracy of the optimized SVMR model for the training and testing data was 0.9947, 1.2962,
3.6952, 3.2988, and 0.8882, 6.0363, 16.6425, 4.6111, respectively. The comparison between
the experimental and forecasted values of the training and testing dataset is shown in
Figure 13.

Table 8. Selected properties of the optimized SVMR model.

Parameter Value

Kernel function Cubic
Box constraint 0.0018365

Epsilon 0.00012396
Kernel scale 1
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5.2.3. EL Model

Both boosted and bagged trees models were trained in the EL algorithm, and it was
found that the boosted trees model performed well. The prediction accuracy of the EL
model (R = 0.9653, MAE = 3.3133, MAPE = 8.3943, and RMSE = 4.5923 in the training
phase, R = 0.9163, MAE = 3.3941, MAPE = 9.3498, and RMSE = 3.8653 in testing phase)
demonstrates the model’s general capability in both phases, using Table 9 parameters. In
Figure 14, a scatterplot depicts the comparison between the experimental and forecasted
values of the compressive strength of LWC for the training and testing datasets. The details
of the other performance indices are tabulated in Table 4.
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Table 9. Selected properties of the boosted EL model.

Parameter Value

Leaf size 10
Number of learners 42

Learning rate 0.1
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Further, the EL model was optimized using the parameters shown in Table 10. The plot
between the minimum mean square error (MSE) and the number of iterations for normal-
ized values is shown in Figure 15. The prediction accuracy of the optimized EL model for
training and testing phase was R = 0.9764, MAE = 2.8698, MAPE = 7.8365, RMSE = 3.5887,
and R = 0.9051, MAE = 2.8698, MAPE = 10.4778, RMSE = 4.6127, respectively, as shown
in Table 5. The comparison between the experimental and predicted values is shown in
Figure 16.
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Table 10. Selected properties of the optimized EL model.

Parameter Value

Minimum leaf size 1
Number of learners 499

Number of predictors to sample 3
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compressive strength of LWC—Optimized EL.

5.3. Comparison of Results of ML Models

The performance of the optimized GPR model is excellent among all the models based
on the performance indices. The correlation coefficient of the optimized GPR model was
0.65%, 1.62%, 2.42%, 0.27%, and 1.89% higher than the GPR, SVMR, EL, optimized SVMR,
and optimized EL models, respectively. Similarly, the optimized GPR model had the highest
NS and a-20 index among the other models. The MAE-value of the optimized GPR model
was 1.9909, which was 5.3%, 30.2%, 40.27%, 20.7%, and 36.05% lower than the GPR, SVMR,
EL, optimized SVMR, and optimized EL models, respectively. Similarly, the MAPE and
RMSE values of the optimized GPR model were the lowest compared to other models, with
values of 5.5676 and 2.8298, respectively. The performance of the rest of the models is given
in decreasing order: GPR, optimized SVM, SVM, optimized EL, and EL models.

Figure 17 illustrates the experimental and predicted compressive strength calculated
by the GPR, SVMR, EL, and optimized GPR, SVMR, and EL. The error between the ex-
perimental and predicted values is examined in Figure 17. Different ML algorithms were
used to recognize the pattern embedded in the experimental data, and variation in the
predicted datasets was compared with the ML models. The greater difference between the
experimental dataset and ML algorithms indicates higher errors. The dark blue dotted
lines reflect the experimental values in each graph, while the red lines show the predicted
values. The sky-blue circles beneath these lines show their errors.
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6. Conclusions

The purpose of this study was to compare the different ML-based prediction models
used for predicting the compressive strength of LWC based on the dataset characteristics.
The compressive strength of LWA was predicted using various algorithms, such as GPR,
SVMR, EL, optimized GPR, optimized SVMR, and optimized EL. In total, 120 datasets were
used in this study, which were taken from the literature. The prediction of the lightweight
concrete fck was predicted using all the concrete parameters (C, W, FA, LWCA, NWCA,
w/c) provided in the database. R, RMSE, MAE, MAPE, NS, and a20-index statistical
indices were used to evaluate and compare the prediction accuracy of different models.
The following conclusions were drawn:

• The conventional and optimized machine models used for forecasting the compressive
strength of LWC performed well.

• The optimized GPR model had the greatest accuracy, with less variation in the experi-
mental and predicted values in terms of errors.

• The optimized GPR model provided training and testing correlation coefficients (R)
of 0.9933 and 0.8915, respectively, and the optimized SVMR model provided training
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and testing correlation coefficients (R) of 0.9947 and 0.8882, respectively. The results
indicate that the optimized GPR and SVMR models can predict the compressive
strength with higher reliability and accuracy.

• The accuracy of the ML models decreased (based on the R, MAE, MAPE, and RMSE
assessment criteria) in the following sequence: optimized GPR, optimal SVMR, GPR,
SVMR, Optimized EL, and EL.

The machine learning models were excellent in capturing the intricate nonlinear
correlations between the six input parameters and compressive strength. They may be used
to quickly assess the compressive strength of LWC without the need to perform expensive
and time-consuming experiments. More crucially, the machine learning-based estimation
tools enable easy exploration of essential parameters, resulting in a cost-effective and
trustworthy design. The machine learning approach is a strong instrument for engineering
analysis. The proposed optimized GPR model can only perform effectively for data that
fall within the range of the datasets used for creating the models, which is a limitation of
this study. The accuracy of these models can be further enhanced using a metaheuristic
algorithm and by adding more parameters in the database. In future work, the density of
lightweight concrete can be predicted.
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Notation: Symbols and Acronyms

fck Compressive strength of concrete ACO Ant colony optimization
W Water content AI Artificial intelligence
C Cement ANN Artificial neural network
w/c Water-cement ratio BGR Bagging regression
Ei Experimental value BM Boosting method
Pi Predicted value CC Cascade correlation
P Mean of predicted values CML Conventional machine learning
N No. Of samples in the dataset R Correlation coefficient
xi Input variable DTR Decision tree regression
ti Target variable DA Dragonfly algorithm
k(x, x′) Covariance function EL Ensemble learning
l Scale length ELM Extreme learning machine
σ2

f Maximum permissible variance FFBP Feed-forward backpropagation
ε Gaussian noise FA Fine aggregate
f(x) Latent function GPR Gaussian progress regression
δ(x, x′) Kronecker delta function GA Genetic algorithm
σ2

n Variance of n observations GOA Grasshopper optimization algorithm
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x,′ Kernel function HENSM Hybrid ensemble model
f (xi) Forecasted values LWA Lightweight aggregates
∅(xi) Function of nonlinear mapping LWCA Lightweight coarse aggregate
ω and b Optimized parameters LWC Lightweight concrete
||ω ||2 Empirical risk term MAE Mean absolute error
ξ∗i Slack variable MAPE Mean absolute percentage error
y* Value to be normalized ML Machine learning
y Original value in the dataset MSE Mean square error
ymax Maximum value in the desired dataset MPMR Minimax probability machine regression
ymin Minimum value in the desired dataset MARS Multivariate adaptive regression splines
RMSE Root mean squared error NSEI Nash-Sutcliffe efficiency index
SSA Salp swarm algorithm NN Neural network
SVMR Support vector machine regression NWCA Normal weight coarse aggregate
WOA Whale optimization algorithm RF Random forest
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