
����������
�������

Citation: Fan, P.; Chen, J.; Sarker, T.

Roles of Economic Development

Level and Other Human System

Factors in COVID-19 Spread in the

Early Stage of the Pandemic.

Sustainability 2022, 14, 2342. https://

doi.org/10.3390/su14042342

Academic Editor: Dohyeong Kim

Received: 31 January 2022

Accepted: 14 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Roles of Economic Development Level and Other Human
System Factors in COVID-19 Spread in the Early Stage of
the Pandemic
Peilei Fan 1,2,* , Jiquan Chen 1,3 and Tanni Sarker 1,2

1 Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA;
jqchen@msu.edu (J.C.); sarkerta@msu.edu (T.S.)

2 School of Planning, Design and Construction, Michigan State University, East Lansing, MI 48824, USA
3 Department of Geography, Environment & Spatial Sciences, Michigan State University,

East Lansing, MI 48824, USA
* Correspondence: fanpeile@msu.edu

Abstract: We identified four distinct clusters of 151 countries based on COVID-19 prevalence rate
from 1 February 2020 to 29 May 2021 by performing nonparametric K-means cluster analysis (KmL).
We forecasted future development of the clusters by using a nonlinear 3-parameter logistic (3PL)
model, and found that peak points of development are the latest for Cluster I and earliest for Cluster
IV. Based on partial least squares structural equation modeling (PLS-SEM) for the first twenty weeks
after 1 February 2020, we found that the prevalence rate of COVID-19 has been significantly influenced
by major elements of human systems. Better health infrastructure, more restriction of human mobility,
higher urban population density, and less urban environmental degradation are associated with
lower levels of prevalence rate (PR) of COVID-19. The most striking discovery of this study is that
economic development hindered the control of COVID-19 spread among countries in the early stage
of the pandemic. Highlights: While richer countries have advantages in health and other urban
infrastructures that may alleviate the prevalence rate of COVID-19, the combination of high economic
development level and low restriction on human mobility has led to faster spread of the virus in the
first 20 weeks after 1 February 2020.

Keywords: COVID-19; built environment; human mobility; urban density; urban environment

1. Introduction

After the first recorded outbreak in Wuhan, China, in December 2019, COVID-19
spread rapidly and became a global pandemic that significantly changed many aspects of
the earth, societies, and people. By 15 November 2021, there were more than 253.2 million
confirmed cases associated with over 5.1 million deaths (WHO Coronavirus Dashboard
at http://covid19.who.int, accessed on 19 November 2021). By that date (15 November
2021), America, Europe, and Southeast Asia were the most severely affected regions based
on accumulated number of cases of 95.1 million, 81.2 million, and 44.3 million, respectively,
and deaths of 2.3 million, 1.5 million, and 0.7 million, respectively.

While the medical community has been actively investigating the underlying mech-
anisms of the pandemic and has been developing vaccines, the general public, aided by
the available data and reporting of the media, became aware of differences in pandemic
severity among global nations. These differences are often attributed to disparities in
human systems at the national level, including health infrastructure, socioeconomic status,
built environment characteristics, cultural attitudes, and institutional actions such as gov-
ernment initiatives and policies on restrictions on mobility [1–5]. Despite the urgent need
and its extremely relevant policy implications, there are only a few research publications
devoted to human system determinants of virus spread at the global scale [1,4,5]. Published

Sustainability 2022, 14, 2342. https://doi.org/10.3390/su14042342 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14042342
https://doi.org/10.3390/su14042342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4448-4281
https://orcid.org/0000-0003-0761-9458
http://covid19.who.int
https://doi.org/10.3390/su14042342
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14042342?type=check_update&version=1


Sustainability 2022, 14, 2342 2 of 15

results on this topic are often small in geographic scope, e.g., 42 Asian countries [1], Eng-
land and Wales [2], or 401 counties in Germany [3]. Even for investigations with a global
scope, the findings are constrained by methodologies (i.e., correlation regression analysis,
Bayesian model averaging) that are ineffective at revealing the complicated relationships
among COVID-19 and multiple determinants, although they provide a preliminary base for
understanding the possible human system determinants for COVID-19 spread. A prelimi-
nary study conducted by Stojkoski et al. [4] examined 31 socioeconomic factors to identify
explanatory variables by using Bayesian model averaging on 106 countries. Hassan et al. [5]
performed correlation and multivariate multinominal logistic regression analysis on mostly
demographic factors (economic status, population density, the median age of the popula-
tion, and urban population rate) for COVID-19 on 163 countries. The only economic factor
was a categorical variable showing the country’s economic status based on GDP as “high
income,” “upper-middle income,” “lower-middle income,” or “low income”. However, our
understanding can be further improved by examining the trends of different clusters and
capturing complicated relationships among the prevalence rate of COVID 19 and multiple
major determinants of human systems.

As global society is confronted with one of its most serious challenges since World
War II, it is urgent to advance our scientific knowledge to understand the distinctions
among countries for development dynamics and on human system determinants of the
pandemic. This paper has two specific objectives: (1) to understand and predict the
dynamic evolution of the pandemic at the global level based on the data on confirmed cases
in 151 countries from early in the pandemic, 1 February 2020, when data became available
daily, to 29 May 2021; and (2) to identify and quantify the co-evolved interrelationships
between key human system forces for COVID-19 for the first 20 weeks after 1 February
2020. We combined a wide range of data sources and used different methods to achieve
our objectives. To diagnose the dynamic evolution of COVID-19 cases at the country level,
we first applied cluster analysis to divide the 151 countries based on prevalence rate (PR)
trajectory into four distinct groups; we then made predictions of the future for each country
using a nonlinear 3-parameter logistic (3PL) model.

To disentangle the co-evolved interrelationships between key human forces and
COVID-19 severity, we challenged ourselves with the following question: What are the
interdependent relationships among factors affecting COVID-19 spread, including key
human system elements? We sought answers through partial least squares structural equa-
tion modeling (PLS-SEM) by hypothesizing various casual relationships and feedbacks
between the potential determinants and the prevalence rate (PR) of COVID-19. While
there may be other important components such as cultural differences and implementation
of social distancing regulations, we identified the following four major factors of human
systems due to their measurability and widely acknowledged influences on COVID-19:
health infrastructure, economic development level, institutional mechanisms, and built
environment. Details are provided in the next section, “Data and Methods”, on the cluster
analysis, 3PL modeling, and PLS-SEM.

2. Data and Methods

In this paper, we relied on a wide range of global data sources on COVID-19, including
data on health infrastructure, economic development, institutional mechanisms, and urban
built environments (Please see the Appendix A for data source and other details). In the
following four subsections, we described the COVID-19 data and processing, cluster analy-
sis on COVID-19 prevalence trajectory, 3-parameter logistic modeling (3PL) for trajectory
forecasting, and partial least squares structural equation modeling (PLS-SEM) for key
determinants of the human system on COVID-19.

2.1. COVID-19 Data and Processing

We used John Hopkins University’s data depository for COVID-19 [6] to derive the
cumulative weekly cases for each country. In epidemiology, prevalence is defined as
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the proportion of a population who have the disease or health condition at a specific
time period [7]. The weekly prevalence rate of COVID-19 was calculated for the targeted
countries for our study period of 70 weeks (the week of 1 February 2020, to the week of
29 May 2021) by the following formula:

PC19 = (Nweek/Pop) × 105 (1)

where
PC19 = prevalence of COVID-19
Pop = population of targeted country
Nweek = number of weekly confirmed cases
We considered all 193 UN countries in our analysis. Some countries had late pandemic

spread, were delayed in reporting official cases, or had trajectories containing a few missing
values in the early weeks. We excluded countries with more than ten consecutive missing
values from our analysis. In addition, we also excluded countries with populations smaller
than one million, resulting in a total of 151 countries in our analysis. We conducted the
weekly prevalence trajectory analysis for the study period from 1 February 2020 to 29 May
2021. We also explored the impacts of human system drivers on prevalence in the early
stage of the outbreak for the first 20 weeks, i.e., the weekly data of the first reported cases
of each country starting from 1 February 2020, by using PLS-SEM.

2.2. Cluster Analysis on COVID-19 Prevalence Trajectories

Clustering is an unsupervised method that partitions a set of data points based on
their similarities [8]. Our aim in this study is to determine homogenous PR trajectories
of countries; these were measured in different time periods. Keeping this in mind, we
performed partitional clustering and nonparametric K-means cluster analysis (KmL) to
identify the distinct, homogenous clusters of countries based on COVID-19 prevalence
trajectories [9]. The K-means algorithm is based on the Euclidean distance metric, and
this method was adopted for clustering longitudinal data in the R package KmL. K-means
tries to find a partition that the minimizes within-group distance metric. We chose the
KmL algorithm over other approaches because this nonparametric hill-climbing approach
requires no assumptions about the forms of longitudinal trajectories or regarding the distri-
butions of the observations [10]. It can handle missing values and it is simple to execute
the algorithm several times by altering the starting conditions. Its graphical user interface
assists the user in selecting the appropriate number of clusters. The KmL analysis was
specified to allow 2 to 5 cluster structures, with each obtained by running 500 permutations.
The Calinski–Harabasz criterion is widely used in KmL as the primary selection crite-
rion along with two other criteria (e.g., Ray and Turi, and Davis and Bouldin). However,
it has been reported that it is not necessarily the appropriate method for identifying a true
cluster number [11]. In this study, the optimal 4-cluster solution was chosen based on
Calinski–Harabasz criterion value and researcher judgement [10]. Longitudinal analyses
were conducted using R Studio and R version 4.0.2 provided by R Foundation for Statisti-
cal Computing, Vienna, Austria (22 June 2020) (https://www.r-project.org/foundation/,
accessed on 14 August 2021).

2.3. Logistic Model (3PL) for Trajectory Forecasting

To understand and explain the spread of the pandemic, we analyzed the prevalence
trajectory of clusters of countries by using a nonlinear 3-parameter logistic model because
of its ability to capture the dynamics of the prevalence of the pandemic. A logistic function
or logistic curve is known as an S-curve, and it has been widely used in disciplines such as
statistics, economics, and epidemiology [12]. The function was developed by Verhulst [13]
to describe the growth rate equation of a population by adjusting the exponential model.
Logistic growth is defined by the following differential equation:

dP(t)/dt = rP(t)(1 − P(t)/K) (2)

https://www.r-project.org/foundation/
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where P(t) represents population size at time t, r and K indicate the intrinsic growth rate
and carrying capacity of the environment, respectively. The value of (1 − P(t)/K) is close
to 1 when the P value is small compared to K and close to 0 when the P value approaches K.
Thus, as long as P << K, the population grows exponentially then begins to stop gradually
as the population approaches the maximum value (when P = K).

Rearranging Equation (2), we get Equation (3), as follows:

dP(t)/[P(t)(K − P)] = (r/K)dt (3)

For the specific boundary condition, we can consider P0 as the population at time
t = 0.

The solution of Equation (3) can be expressed as,

P(t) = K/(1 + e−rt(K − P0)/P0) (4)

The shape of this solution is often defined as sigmoid shaped or S shaped with a
symmetrical slope or peak time for the value of

tp = (log(K − P0))/P0r (5)

In this study, P(t) represents the prevalence rate of COVID-19 (number of confirmed
cases per 105 population) at a certain time t; the parameter r thus represents the growth rate
of P(t), whereas K here stands for the maximum prevalence rate at the end of the endemic
period, where further growth is negligible.

2.4. Key Human System Factors for COVID-19 Infections

Partial least squares structural equation modeling (PLS-SEM) can be used to under-
stand the complex relationships between COVID-19 and key factors of human systems.
Structural equation modeling (SEM) has been widely used to quantify the complicated
relationships among multiple factors [14–17]. With small and non-normally distributed
data, PLS-SEM can be used to conduct exploratory research [16]. We hypothesized that
health infrastructure, economic development level, institutional mechanism, and urban
built environment have all impacted the spread of COVID-19. Elements of the model are ei-
ther directly observable or latent variables based on multiple selected variables. In addition
to their interrelationships with the PR of COVID-19, inter-relationships between key factors
of human systems are also modeled. For example, we hypothesize that economic develop-
ment level may have a positive impact on built environment, institutional mechanism, and
health infrastructure.

Health infrastructure, including health facilities measured by hospital beds per thou-
sand people and health care professionals such as physicians per thousand people, as well
as COVID-specific health care such as quarantine and testing facilities, personal protective
equipment (PPE) kits, and ambulances, have been identified as significant factors affecting
the spread of the virus [4,18,19]. In this study, we incorporated health infrastructure as one
of the key human system elements to be examined. Health infrastructure is modeled by
four variables that are widely acknowledged as indicators of the quality of the health care
system, i.e., Global Health Care Security Index (GHSI), physicians per 1000 people, health
care access and quality index, and hospital beds per 1000 people.

While economic development level has often been associated with health outcomes,
it has been argued that few health benefits arise from further economic growth after a
country achieves a certain threshold level of development [4]. A more egalitarian society
with a developed economy often has better health outcomes than a country with a similar
development level but with greater disparities in income distribution [20]. Furthermore,
a higher development level is usually associated with a more globally integrated economy,
which implies more interactions through trade, investment, and movement of people, which
may facilitate the transmission of disease [21–25]. A previous study showed mixed results
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so far on economic development level and COVID at a global scale. There is negligible
evidence that GDP per capita is a true determinant of COVID outcome [4]. However,
it has been revealed that a country’s economic status, i.e., being in high-income, upper-
middle-income, lower-middle-income, or low-income categories, can have a significant
influence on case attack rate, case fatality rate, and case recovery rate [5]. In general,
lower-income countries are more likely to have a higher risk in case of attack rate and
recovery rate compared to that of higher-income countries [5]. Patel et al., in an open letter
to the editor of Public Health, suggested that policy makers take socioeconomic factors into
consideration and particularly understand that people with a low socioeconomic status
tend to be more vulnerable due to increased exposure caused by limited financial resources
and overcrowded accommodations [26]. We consider economic development an important
element of the pandemic and treat it as an important latent variable. In our model, it is
a latent variable based on three observable variables, i.e., GDP per capita, foreign direct
investment (FDI) inflows per capita, and employment rate. The data are available through
the World Development Indicator [27].

Institutional mechanisms and their consequent outcomes according to different levels
of implementation are probably the most controversial piece in the human system, as
government actions may arouse great public debate and ignite sentiments from different
sectors of the society. As person-to-person contact, public transport use and exposure to
public gatherings have been identified as primary sources of COVID-19 spread [28], social
distance, isolation, quarantine, and lockdowns have been implemented as key measures
by different countries/cities following the guidelines of the World Health Organization,
e.g., 43 countries [29], China [30], and India [31,32]. The resulting population movement
was found to be responsible for virus spread at different spatial levels, i.e., the interna-
tional level (travelers from Arab countries visiting Iran [18]), within Asian countries [1],
and citywide in China [33].

Here we used two variables to represent government actions and the consequences
of the movement of people: one is the government stringency index to represent the
institutional factor, which measures the degree of stringency of government policies; the
other is the latent variable on restrictions of mobility as a result of government actions,
reflected by four measurable variables (% change in mobility for retail and recreational trips,
through transit stations, on workplace trips, and between residential areas, respectively).
The Oxford COVID-19 Government Response Tracker [34] developed a common stringency
index (with values ranging from 1 and 100, with 100 as the strictest) based on eleven
sub-indicators that reflect the level of policy measures that governments from various
countries have taken to tackle the spread of the pandemic on a daily basis. Change in
human mobility is modeled as a latent variable based on four variables: % of change
in mobility in (1) retail and recreation trips, (2) transit stations, (3) workplace trips, and
(4) residential trips. The data were acquired from the COVID-19 Community Mobility
report generated by Google based on comparing changes in the daily number of visitors to
the baseline [35]. The baseline value is the median value from a 5-week period (3 January
to 6 February 2020). This report is composed of different categories of visits and length of
stay at different places (retail and recreation facilities, grocery and pharmacy shops, parks,
transit stations, workplaces, and residential areas) and is calculated as change percentages
compared to the baseline. Increases in movement in residential and park categories are
associated with decreased mobility, as these categories indicate activities in residential areas.
Because the definition of trips to the grocery store and pharmacy as well as parks varies
with location, we excluded these two categories from our analysis to maintain consistency.

Finally, we incorporated urban built environment, mainly reflected by urban popula-
tion density and urban environment degradation, as an important determinant for human
systems. While population density has been identified as being influential for affecting
virus spread [4,5,36], we consider the urban population density, rather than the overall
population density, to be a better indicator, as urban areas provide the main challenges
to the social distancing and isolation that are needed to prevent the spread of COVID-19,
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although so far there have been mixed findings on associations between urban population
density and the spread of the virus in different countries [37,38]. In addition to urban
population density, urban environmental quality has often been associated with the health
of residents [39] and it serves as a deterrent to the spread of infectious disease, including
COVID-19 [40,41]. We use urban air pollution to reflect the degree of urban environment
degradation, particularly due to the evidence that poor air quality increases the death rate
and confirmed cases of COVID-19 [41]. The data of urban population density and area of
urban centers in each country were obtained from (https://ghsl.jrc.ec.europa.eu/CFS.php,
accessed on 15 June 2021). Based on GHS-Built, an urban center is comprised of 1 km2

continuous grid cells and has at least 50% of built-up with a minimum population density
of 5000 inhabitants per km2 [42]. Additionally, we used the estimated annual average
population weighted concentration of PM2.5 (in µgm−3) for urban areas as an indicator of
urban environmental degradation [43].

3. Results
3.1. Clustered Countries by COVID-19 Infections

Four distinct clusters of countries were identified based on the PR (number of con-
firmed cases per 105 people) of COVID-19 during 1 February 2020–29 May 2021 (Figure 1,
Tables 1 and 2). Cluster I (green color) had the slowest spread speed of the virus, as re-
flected by the flattest slope of the fitted line and the lowest PR among the four clusters.
It reached a low level (<434 people per 105 people on average) by the end of the study
period. This cluster includes 76 countries: 39 from Africa, 25 from Asia, 1 from Europe,
7 from Central America, 3 from Oceania, and 1 from South America (Figure 2, Table 2). It is
worth noting that India ranked low and experienced a slow increase in PR, in contrast to
the common perception that the country had a very severe spread of COVID-19 (ranked
second in total confirmed cases and deaths during the study period, only after the USA).
Cluster IV (orange color) is the opposite of Cluster I in terms of the level of PR and its
development trend; it had the fastest spreading speed and the highest PR among the four
clusters. In particular, at the inflection (turning point) of the 49th week, its PR increased
dramatically, reflected by the extremely steep slope of the fitted line. Nineteen countries
fell in this category: 5 in the Middle East of Asia, 12 in Europe, 1 in North America (USA),
and 1 Central America (Panama). Clusters II and III are the intermediate groups between
the extreme clusters of I and IV, with Cluster II having a flatter slope in the trend line than
Cluster III. Cluster II had moderate (the second slowest) spread speed and moderate PR
(the second lowest) among the four clusters. With a total of 27 countries, Cluster II (blue
color) includes 7 in Africa, 7 in Asia, 5 in Europe, 1 (Canada) in North America, 3 in Central
America, and 4 in South America. Cluster III had substantial spread speed of the virus and
a considerable PR within the four clusters. With a total of 29 countries, Cluster III (yellow
color) includes 6 in Asia, 17 in Europe, 1 in Central America, and 5 in South America.

Table 1. Estimated coefficients of the 3-parameter logistic model for each cluster and goodness of fit.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

Growth rate 0.058
(0.052, 0.064)

0.077
(0.073,0.082)

0.104
(0.1,0.108)

0.119
(0.114, 0.124)

Inflection
point

72.15
(63.12, 81.19)

57.82
(55.67, 59.96)

54.13
(53.34, 54.93)

49.4
(48.81, 49.99)

Asymptote 872
(612.1, 1132)

4090
(3782, 4398)

7980
(7716, 8243)

10,360.284
(10,110.73, 10,609.77)

Normalized
RMSE 0.029 0.013 0.019 0.016

Note: The respective 95% confidence intervals are given in parenthesis.

https://ghsl.jrc.ec.europa.eu/CFS.php
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Figure 1. Actual and predicted PR for COVID-19 for the four clusters of countries. The four clusters
were identified by using cluster analysis. The changes over time were modeled with a 3-parameter
logistic model. The dotted points indicate the actual PR for each cluster; the solid lines represent
the fitted changes. The shaded areas around the solid lines represent a 95% confidence interval
(IV) of the estimates. The horizontal dashed lines indicate the total size of PR per 105 people in
the final phase of the pandemic on 30 July 2022. The vertical solid line intersects the PR curve and
represents the inflection (turning) point of the pandemic. The predicted peak time, i.e., the maximum
PR of Clusters I, II, III, and IV, will occur on 20 October 2021; 30 January 2022; 20 April 2022; 30 July
2022, respectively.

Table 2. Cluster of countries by the dynamics of COVID-19 prevalence rate per 10,000 people.

Country Names

Cluster I (76)

Africa (39)

Algeria, Angola, Benin, Burkina Faso, Burundi, Cameroon, Chad, Congo, Cote d’Ivoire, Democratic Rep.
of Congo, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau,
Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Niger, Nigeria, Rwanda,
Senegal, Sierra Leone, South Sudan, Sudan, Tanzania, Togo, Uganda, Zambia, Zimbabwe

Asia (25)
Afghanistan, Bangladesh, Cambodia, China, Hong Kong, India, Indonesia, Japan, Laos, Malaysia,
Mongolia, Myanmar, Nepal, Pakistan, Philippines, Singapore, South Korea, Sri Lanka, Syria, Tajikistan,
Thailand, Timor Este, Uzbekistan, Vietnam, Yemen

Central America (7) Cuba, El Salvador, Guatemala, Haiti, Jamaica, Nicaragua, Trinidad and Tobago
Oceania (3) Australia, New Zealand, Papua New Guinea
Europe (1) Finland
South America (1) Venezuela



Sustainability 2022, 14, 2342 8 of 15

Table 2. Cont.

Country Names

Cluster II (27)
Africa (7) Tunisia, South Africa, Libya, Botswana, Namibia, Eswatini, Morocco
Asia (7) Oman, Iran, Azerbaijan, Iraq, Kazakhstan, Kyrgyzstan, Saudi Arabia
Europe (5) Germany, Belarus, Greece, Russia, Norway
South America (4) Uruguay, Paraguay, Bolivia, Ecuador
Central America (3) Dominican Republic, Honduras, Mexico
North America (1) Canada

Cluster III (29)

Europe (17) Estonia, Hungary, Poland, North Macedonia, Austria, Slovakia, Latvia, Italy, United Kingdom, Moldova,
Bosnia and Herzegovina, Bulgaria, Romania, Ireland, Ukraine, Denmark, Albania

Asia (6) Lebanon, Jordan, Kuwait, Turkey, Palestine, United Arab Emirates
South America (5) Argentina, Brazil, Chile, Colombia, Peru
Central America (1) Costa Rica

Cluster IV (19)

Europe (12) Czechia, Slovenia, Sweden, Serbia, Lithuania, Netherlands, Belgium, Croatia, France, Portugal,
Switzerland, Spain

Middle East Asia (5) Bahrain, Israel, Georgia, Qatar, Armenia
North America (1) United States
South America (1) Panama

Figure 2. Spatial distribution of the four clusters based on the COVID-19 prevalence rate. Cluster I
countries are primarily from Asia and Africa (83%), whereas Cluster IV countries are mostly from
Europe, the Middle East, and North and Central America (USA and Panama).
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3.2. The Near Future of Prevalence Rate

Predicting COVID-19 PR is challenging due to the unclear origins and transmission
mechanisms of this novel pathogen, as well as the wide range of adaptive human inter-
ventions via policies and regulations. To address this uncertainty, a 3-parameter logistic
model was used to depict both the transmission dynamics process and the trajectory of the
pandemic. The purpose is to explore when the pandemic might have been under control
based on initial development, and it is contingent upon the continuation of intervention
efforts. In addition to the mutation and evolution of the virus, many human system factors
may influence the progress of a pandemic, such as new policies and human mobility and
connectivity. In addition, the availability of testing kits, particularly during the early stages
of a pandemic when unreported and undocumented infected patients are prevalent, may
influence the model robustness.

Predicted future prevalence rates for different clusters, based on the data from the
first 70 weeks, are illustrated for a period after 29 May 2021 (Figure 1, Table 1). A high
correlation between observed and predicted PR was found for each cluster (Normalized
RMSE < 0.03, p < 0.05). While there are many uncertain factors that could affect prediction,
future development trends of four different clusters and their relative speed to the peak are
anticipated. Based on this model, PR values by 30 July 2022 for Clusters I, II, III, and IV are
872, 4090, 7989, and 10,360, respectively. More importantly, the maximum PR of Clusters I,
II, III, and IV will occur on 20 October 2021, 30 January 2022, 20 April 2022, and 30 July
2022, respectively. Estimated model coefficients are provided in Table 1. The predicted
peak times of the outbreak are indicative when the growth rate of prevalence changes from
an increasing to a decreasing trend. The prevalence growth rates for Clusters I, II, III, and
IV are estimated as 0.058, 0.077, 0.104, and 0.119, respectively. It is worth noting that these
clusters reached their peaks in different time periods. For example, Cluster IV reached
its peak after 49.4 (48.81, 49.99) weeks (2 January 2021), whereas Clusters I, II, and III will
reach their peaks after 72.15 (63.12, 81.19) (19 June 2021), 57.82 (55.67, 59.96) (27 February
2021), and 54.13 (53.34, 54.93) weeks (6 February 2021), respectively.

3.3. Human System Influences in the Spread of COVID-19

From our PLS-SEM model, we found that COVID-19 severity was significantly in-
fluenced by major elements of human systems, including economic development level,
restriction of human mobility, and built environment (urban environmental degradation
and urban population density) (Figure 3). Better health infrastructure, more restrictions of
human mobility, higher urban population density, and less urban environmental degra-
dation are associated with lower severity of COVID-19, as indicated by the coefficients of
−0.184, −0.112 *, −0.106 *, and 0.105 *. However, the association between health infrastruc-
ture and severity of COVID-19 is not statistically significant (at p-value: 0.221). It should be
noted that economic development level has a positive and significant coefficient of 0.641 *
with COVID-19 severity. While this may contradict some research [5], this result has been
reported in several countries with high economic development levels, such as Switzer-
land, the USA, and the Netherlands, which were ranked 2nd, 5th, and 10th by GDPpc
in 2020 (https://knoema.com/atlas/ranks/GDP-per-capita, accessed on 15 November
2021). We echo Stojkoski [4] that GDPpc is not a direct determinant of COVID-19 out-
come, but it appears to be an indirect indication of COVID-19 spread. Not surprisingly,
government actions, measured by stringency, appear to be associated with the prevalence
rate of COVID-19 (0.110 *). We reason that a high prevalence rate may have stimulated
government actions for more stringent controls.

https://knoema.com/atlas/ranks/GDP-per-capita
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Figure 3. Empirical influences of major human system factors (economic, social, policy, health
infrastructure, and urban environment status) on the prevalence rate (PR) of COVID-19 for the
151 countries from the 20-week study period. Observed variables are presented by boxes, latent
variables by ovals and the standardized path coefficients and factor loads are listed next to arrows
in the PLS-SEM model. The significance level (p < 0.05) is indicated by *. The fitting indexes in the
model are: CFI: 0.936, TLI: 0.915, SRMR: 0.058, RMSEA: 0.093. The PR of COVID-19 was particularly
related to economic development level, health infrastructure, and policies regarding restrictions on
human mobility, but less associated with urban environment and urban population density.

4. Discussion

Among the possible influencing factors, economic development shows the most sig-
nificant impacts on health infrastructure and urban environmental degradation, urban
population density, and government action. Better economic development levels unsurpris-
ingly led to the better health infrastructure (coefficient of 0.972 *), less urban environment
degradation (−0.592 *), lower urban population density (−0.741 *), and less stringent gov-
ernment measures (−0.079 *). More stringent government action was closely related with
restrictions on human mobility (coefficient −0.760 *). This may be because less restriction
of human mobility at the early stage had led to higher prevalence rates of COVID, which in
turn triggered more stringent government action. This may also be because people and
policy makers in more developed countries tend to have a higher resistance to restrictive
policies/actions that may reduce living standards. Intensified restriction of human mo-
bility can limit mobility for retail and recreational trips, through transit stations and on
workplaces trips, but increase mobility between residential areas.

The most conspicuous discovery of this study is that in the early stage of the pandemic,
economic development level appeared to hinder the control of COVID-19 spread among
global countries, as evidenced by its positive and significant coefficient of 0.641 * with
the PR of COVID-19. While higher economic development level is likely coupled with
more advanced health infrastructure and less urban environmental degradation, with both
factors possibly reducing the PR of COVID-19 severity, we find an opposite relationship.
This finding resonates well with those who argue that few health benefits arise from further
economic growth after a country achieves a certain threshold level of development [5].
It also confirms the view that countries with high economic development levels may have
more globally integrated economies that feature trade, investment, and movement of
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people related to business travel, thus contributing to the transmission of disease at the
global scale [21–25] We also argue that people in developed countries may have a high
resistance to any actions that can potentially reduce their quality of life. Conversely, we
should not ignore the impact of COVID-19 on economic development, particularly on small
business and entrepreneurship [44–46].

We also confirm that restrictions on human mobility, low urban environmental degra-
dation, and high urban population density helped slow the spread of COVID-19, as is
evidenced by their significant coefficients of −0.112 *, 0.105 *, and −0.106 * with the PR of
COVID-19, respectively. Our findings on the effectiveness of restrictions on human mobility
align well with recent studies at the regional or country level [28–32]. More importantly,
we confirm that poor urban environmental features such as air pollution are associated
with higher PRs of COVID-19 [40,41]. Interestingly, high urban population density appears
to be associated with lower levels of PR of COVID-19, which is contradictory to the general
belief that the disease spreads faster in more densely populated areas [4,5,36], albeit this
contributes to the debate on the mixed result of urban population density and the spread
of COVID-19 in different countries [37,38]. Tighter control and management of, better
information about the virus in, and intentional avoidance of traveling to populated areas
may be other possible reasons that could be further investigated. The effective control of
highly populated urban centers in East Asian countries may be a case-in-point to show that,
as long as other factors such as human mobility are well controlled and urban environmen-
tal quality is decent, urban population density may not be a detrimental factor contributing
to COVID-19 spread.

In our predictions through logistical modeling, we did not consider the influence
of the emergence of other variants and vaccines that could change the trajectory of the
spread of COVID-19. The data used in this paper go up to 29 May 2021, when more severe
variants, such as the delta variant, had just started to affect Europe, and when most of
the countries had not started mass vaccination. Furthermore, we have also adapted to the
new normal, such as working from home, practicing social distancing, and implementing
various degrees of mobility restriction [47–50]. We expect that new variants, vaccines, and
new medicines, as well as the new normal lifestyle, will play critical roles in changing the
speed and nature of virus spread and thus the prevalence rate. Nevertheless, our method
can be applied to early stages of pandemics and can be used for better management and
policy development for containing the spread of viruses.

Our global investigations on COVID-19 spread also indicate the limitation of the
stringency index in determinant identification due to the way it is defined. Currently,
the national stringency index may be overestimated because it uses the value of the sub-
national unit that has the strictest policies [32]. We found a positive association between
government stringency index and severity of COVID-19 (0.110 *), and a negative association
between government stringency index and restrictions on human mobility (−0.760 *). While
government actions may be interpreted as reactions to a high level of PR of COVID-19,
we suspect that the fact that the stringency index was measured by the index of the sub-
national unit with the strictest policies may have also contributed to the result.

Cautiously, our study is based on country-level data, suggesting that additional
weighted modeling might be needed to factor country size. Large countries, such as the
USA, China, and India, should not be treated in the same way as small countries because
large countries have considerable variations due to subnational units influencing factors
from human systems. A better approach may be to use sub-national units for large countries
in our models if sufficient data is available. Moreover, we would also like to underline that
from an inter-country collaboration perspective, current responses from the Association
of South East Asian Nation (ASEAN) have been particularly interesting as the regional
cooperation on health security has been functioning based on lessons from SARS 2003 and
H1N1 200 [51]. Nevertheless, our methods in this paper can be applied to different levels
of spatial units.
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5. Conclusions

In this paper, we examined the confirmed COVID-19 cases of 151 countries from
the beginning of the pandemic, 1 February 2020, when the data became available daily,
to 29 May 2021. We identified four distinct clusters of 151 countries based on COVID-19
prevalence trajectories that had distinct dynamics in prevalence rate (PR). We found that the
turning point as well as the maximum PR rate of the pandemic were the latest for Cluster I
and the earliest for Cluster IV. Based on partial least squares structural equation model-
ing (PLS-SEM), we further found that the PR of COVID-19 was significantly influenced
(p < 0.05) by major elements of human systems, with coefficients of 0.641, −0.112, 0.105,
and −0.106 for economic development, restriction of human mobility, urban environmental
degradation, and urban population density, respectively, in the early stage of the pandemic.
Better health infrastructure, more restrictions on human mobility, higher urban population
density, and less urban environmental degradation were associated with lower PRs of
COVID-19, whereas economic development level had a positive and significant coefficient
of PR of COVID-19. Furthermore, high urban population density appeared to be associated
with lower PRs of COVID-19, indicating that it may not be a detrimental factor contributing
to COVID-19 spread.

This research advances our understanding of COVID-19 from a social science perspec-
tive, even though our findings are empirically based. The outcomes of the research will
enrich public knowledge and help the decision making of policy makers at different levels.
The research findings can be distributed in global policy forums and communicated to the
general public, through mechanisms such as K-12 public schools, for public awareness and
educational purposes.
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Appendix A

Table A1. Variables used in COVID-19 prevalence trajectories analysis and PLS-SEM analysis.

Data Unit Availability Data Source

COVID-19 Prevalence rate per 105 Weekly cases (1 February 2020–29 May 2021) Dong et al. [52];
JHU CSSE [6]

Change in mobility in retail and
recreation trips % Weekly data compared to baseline Google [35]

Change in mobility in transit stations % Weekly data compared to baseline Google [35]
Change in mobility in workplaces trips % Weekly data compared to baseline Google [35]
Change in mobility in residential trips % Weekly data compared to baseline Google [35]

Government response stringency index NA Weekly data of stringency index OxCGRT [34]
GDP per capita USD Most recent year of each country WB [27]

Foreign direct investment, net inflows USD Most recent year of each country WB [27]
Total population # Most recent year of each country WB [27]

Employment-to-population ratio % Most recent year of each country WB [27]
Global Health Security Index NA Global Health Security Index (2019) JHU CHS [53]
Physicians per 1000 people # Most recent year of each country WB [27]

Hospital beds per 1000 people # Most recent year of each country WB [27]
Healthcare Access and Quality Index NA Healthcare Access and Quality Index (2015) Barber et al. [54]
Urban population density (per km2) # Population distribution layer (2015) CIESIN [55]

Urban centers km2 Global human settlement layer (2015) EC [56]
Urban air pollution µgm−3 annual average, weighted PM2.5 (2015) Shaddick et al. [43]

Note: COVID-19 prevalence rate represents the virus development dynamics; all other data represent various
aspects of human systems. “GDP” stands for “Gross Domestic Product”. “NA” stands for “not applicable”.
The symbol “ugm−3” stands for “micrograms (one-millionth of a gram) per cubic meter air”. The Symbol “#”
stands for the number of people.
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