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Abstract: The objective of this paper was to characterize swell conditions in the coastal zone of the
South Shetland Islands, where our preliminary analyses evaluated potential locations for the Colom-
bian scientific station. The Simulating Waves Nearshore (SWAN) spectral model was implemented
for the Bransfield Strait. The boundary conditions were selected by a cluster analysis of the wave
climate from global hindcasting obtained with the WAVEWATCH III model. Some comparisons
between the model and wavemeter measurements were made. The results demonstrated that optimal
sea state conditions for the scientific base are present in the South Bay, Livingston Island.
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1. Introduction

The Republic of Colombia aims to be an advisory member of the Antarctic Treaty
System. The Colombian expeditions, which started in 2014, were performed in the Gerlache
Strait and on the South Shetland Islands with a wide oceanographic program [1]. One of
the goals of these expeditions is to find a suitable site for a temporary Antarctic base to be
initially active during the austral summer in the Southern Hemisphere.

The optimal location for the station should be defined by various criteria such as land
relief, soil stability, easy access from the water, and costs of the scientific activities. Initially,
these criteria were studied employing the Fuzzy TOPSIS algorithm [2]. The cited study
focused on the South Shetland Islands in the Bransfield Strait (Figure 1) with possible
locations along the Livingston and King George Islands and between the Robert and
Greenwich Islands. Greater interest was given to South Bay (Livingston I).

An important consideration while choosing the optimal location is the meteorological
and oceanographic conditions, particularly the sea state or wave climate. The latter may
be estimated based on wave propagation from a hindcasting reanalysis of a global model
system such as WAVEWATCH III [3]. This reanalysis provides decades of hourly resolved
pseudo-data of the wave climate on the open boundaries of our numerical domain. The
propagation within the area of interest, with a fine spatial resolution, gives the local swell
conditions related to the high-energy waves coming from Drake’s Passage. The objective of
this paper was to characterize the swell conditions near the coasts of the islands where the
preliminary analyses [2] evaluated the potential locations for the scientific station.

This paper is organized as follows. First, the methodology is presented in the next
section. Some comparisons between the model and the available data are made, and
boundary conditions on the open contours are determined. Then, Section 3 displays the
results of the study, followed by a discussion in Section 4.
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Figure 1. Study area and alternative locations for the Colombian Antarctic Scientific Station in the
South Shetland Islands. The red point indicates the Juan Carlos I Base (Spain) in the South Bay,
Livingston Island.

2. Materials and Methods

The model domain (Figure 2) was set to latitudes between 62◦ S and 64◦ S and
longitudes between 57.5◦ W and 61.5◦ W to cover the locations 1–7 along the coasts of
Livingston, King George, Robert, and Greenwich islands and to properly represent the
spatial resolution of bathymetry and wave output from the spectral model.

The coastal lines were extracted from the Antarctic Digital Database Map Viewer (NSIDC, [4]),
and the bottom relief was reproduced from GEBCO-0.5 [5]. In this way, the domain was
covered with a mesh of 30-min arc bathymetric data, later interpolated to a numerical grid
of 0.02◦ of latitude. Hence, the applied numerical grid had an approximate resolution of
1.01 km (latitude) by 2.23 km (longitude). Therefore, the computed grid was prepared for
201 × 101 nodes, and the SWAN spectral model [6] was implemented.
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Figure 2. Bathymetry of the SWAN domain, obtained from [5], wave-meter position (x in red), WW-III
open boundary nodes (1–16), and output model points (·) near alternate station locations (Figure 1).

The WAVEWATCH III (WW-III) wave reanalysis was used on the open boundaries of the
model domain [3]. WW-III is a third-generation wave model developed by NOAA/NCEP [7–9]
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in the spirit of the WAM [10], and its global reanalysis with a resolution of 0.5◦ is available
from February 2005 until the present. The earliest version of the WW-III hind-cast has
pseudo-data starting from 1997 with a course resolution (1◦) and it was thus not taken
into account in our model. Therefore, the analysis period included only the WW-III model
outputs from 2005 to 2018 with a time interval of three hours. The position of the WW-
III nodes is illustrated in Figure 2. The reanalysis variables were significant wave height,
spectral peak period, and direction during the months of the austral summer in the Southern
Hemisphere (from November to February).

Wind information has not been included in this paper. The principal interest of this
stage was swell conditions due to the poor knowledge of the local winds and the strong
influence of the waves from the Drake Strait on the Bransfield Strait. Nevertheless, some
additional considerations of wind sea and swell are included in Section 4.

The model configuration was as follows. The numerical scheme for the non-stationary
mode was BSBT, whereas SORDUP was implemented for the stationary climate [11]. The
bottom friction was defined by Collins [12], and depth-induced wave breaking and white-
capping were set as the default [13]. The frequency range was specified between 0.04 and
0.5 Hz with 51 frequencies, and the spectral angular resolution was 3◦. Finally, the width of
the directional distribution of incident wave energy was set to 17.1◦.

Figure 2 shows the position of the RBR_duo wavemeter employed during the period
between 22 December 2018 and 13 January 2019 (62.66◦ S, 60.58◦ W) in “Wave” mode at
4 Hz at a depth of 4.7 m. Each burst had a length of 4096.

Figure 3 shows the comparison of wave height and the period between measured
and modeled results during the aforementioned period of 23 days. The non-stationary
model mode was used. Although the RBR instrument data calculated the significant wave
period (T1/3), the model results were analyzed with the peak period (Tp). There are several
differences between these two periods; usually, T1/3, calculated in the same way as H1/3,
should be 10–20% less than Tp, and this circumstance must be considered. However, there
are two main considerations when understanding the greater differences between the
model and the data. First, the simulated fields correspond to swell, and although sea waves
may be important, the wind reanalysis (from the WW-III database) does not reflect the local
winds and squalls observed by the expedition members. Second, the GEBCO-0.5 data grid
is not fine enough to correctly reproduce the processes of shoaling and bottom friction.

The next methodological step was to define the wave climate characteristics (wave
height, period, and direction) along the open boundaries (Figure 2). For this aim, the WW-III
datasets were submitted for cluster analysis [14], classifying only two principal centroids.
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3. Results

Figure 4 shows some examples of the cluster analysis from the 16 boundary points
(WW-III nodes), where one may observe two different directions of incident waves in the
Bransfield Strait. The first pattern propagated from the NW (281–288◦) with a significant
wave height of 3.0–3.5 m and a peak period of 10.4–10.8 s, whereas the second one cor-
responded to a NE direction (58–69◦), a wave height of 2.6–2.9 m, and a wave period of
8.7–8.9 s. It is clear that the energetically highest pattern was the NW swell from Drake’s
Passage. When clustering by only two directions, a bimodal opposite behavior (NW vs.
NE patterns) appeared. However, by separately clustering the wave height–period space,
we found two respective wave periods for each node in the model.
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Figure 4. Cluster analysis of the wave height, peak period, and direction at the open boundary points
2, 5, 9, and 14 shown in Figure 2.

It was also observed that the austral summer period on the specified boundaries was
characterized predominantly by long waves from the NW with periods of up to 22 s. In
contrast, the waves propagated from the NE direction were limited to 12–14 s. Furthermore,
the respective ranges of the significant wave heights exceeded 10 m (NW) or were between
4 and 6 m (NE).

Figure 5 compares the NW pattern versus the NE pattern’s significant wave height
corresponding to swell propagation in the stationary mode from the open boundaries of the
model. The relationship between wave height (Hs) and wavelength (λ), referred to as wave
steepness (Hs/λ), is demonstrated in Figure 6 since it is a good energetic characteristic of
wave fields. Moreover, the directions of the incident waves for each pattern are presented in
Figure 7. Herein, the mean wavelength λ was defined as a first-order inverse wavenumber
weighted by the 2D energy spectrum.
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Figure 7. Swell direction (nautical) for cluster 1 (top) and cluster 2 (bottom).

Table 1 presents the numerical results for local wave conditions, obtained for the
patterns of cluster analysis.

Logically, the criteria for locating the station should be examined with more available
information. The comparison between wave-meter data and the SWAN model, made in
Figure 3, is not sufficient if one proceeds only with a swell analysis without considering
wind sea data. Some preliminary data on wind behavior in the South Bay (Figure 8)
demonstrate the fast variability of the atmospheric conditions with average wind speeds
of 4–8 m/s having instant squalls of up to 20 m/s (and sometimes more) during less than
one year of observations. Although winds predominantly come from the SW (from the
continent), the land topography of Livingstone Island (Figure 2) reaches elevations of
600 m, which could cause strong katabatic winds.
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Table 1. Significant wave height (Hs), peak period (Tp), and direction (dd) for the points shown in
Figure 2.

Cluster Number Point Hs (m) Tp (s) dd
(Degrees)

1 1 1.22 10.5 239
1 2 1.15 10.5 236
1 3 0.79 10.5 235
1 4 0.32 10.5 233
1 5 1.17 10.5 235
1 6 2.41 10.7 316
1 7 0.10 10.7 197
2 1 0.04 8.9 238
2 2 0.03 8.9 254
2 3 0.02 8.9 254
2 4 0.01 8.9 251
2 5 0.11 11.1 127
2 6 0.88 8.8 024
2 7 0.26 8.7 131
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Figure 8. Wind speed (left) and wind direction (right) at Luis Carlos I station (Figure 1), located in
the South Bay, measured between 23 March 2018 and 12 January 2019. The direction was the running
average inside a 24-h window.

A fine-resolution atmospheric model is required to describe local wind conditions, but
some specific phenomena, such as katabatic winds, may play an important role in the wave
dynamics and can be physically difficult to reproduce by a model.

4. Conclusions

Upon looking for the best site among locations 1–7 in Figure 2 from the point of view
of the wave climate, it seems better to consider the South Bay (Livingston Island). The
wave conditions in the bay are moderate, with wave heights lower than 1.2 m, yet the
open sea orientation does not shelter the bay completely from the NW waves (Table 1).
The other oceanographically optimal site would be point 7 (Figure 2), located between
the Nelson and King George islands. Although both sites have minimum wave steepness,
point 7 has slightly more favorable conditions due to lower wave periods (8.9 s versus
10.5 s at points 1–4).

Other logistical aspects examined in the previously cited study [2] describe the South
Bay as the best option for a new base.
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It is clear that to assess the local wave model properties, the bathymetry should be well
defined. GEBCO-0.5 data may still be insufficient to achieve an adequate spatial resolution
to resolve shallow water processes such as wave breaking, shoaling, and friction.

Nevertheless, we consider swell conditions to be of greater prime interest because
the regional effect of incident waves from the Drake Strait on the domain is undiscussable.
The local fetch area in the Bransfield Strait is around 200 km, so the mean wind speed of
10–15 m/s would need to last more than 10–24 h to saturate the wave spectra and produce
wave heights of 1.0–2.5 m with relatively low periods between 5 and 7 s. This would be
shorter in comparison to the waves under the swell conditions discussed in this paper.
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