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Abstract: The article presents the findings of three-year field experiments conducted during 2017–2020
on the productivity, economics, and environmental footprints of the oilseed Brassica (OSB) with
species diversification and crop geometry alterations in semi-arid regions of India. The objectives
of the field experimentation was to assess the system of mustard intensification (SMI) in enhanc-
ing productivity and profitability with ensuring fewer environmental footprints. The results re-
vealed that Brassica carinata gave a maximum seed productivity (3173.8 kg ha−1) and net returns
(US$ 1141.72 ha−1) under a crop geometry of 60 cm × 60 cm. Further, an increase of 38% and 54% in
seed yield and net returns from B. carinata was observed over the existing traditional Brassica juncea
with conventional crop geometry. The maximum energy output was also recorded from B. carinata
(246,445 MJ ha−1). The broader crop geometry (60 cm× 60 cm) also resulted in maximum energy out-
put. The environmental footprint was lesser due to increased carbon gain (CG), carbon output (CO),
and carbon production efficiency (CPE) and lower greenhouse gas intensity (GHGi) in B. carinata.
However, the maximum water-use efficiency (WUE) was recorded in B. juncea (19.15 kg per ha-mm),
with a minimum water footprint (WFP), whereas, greater crop geometry (60 cm × 60 cm) resulted in
lower WFPs and better irrigation water use. Enhanced seed yield, economics, and fewer environmen-
tal footprints were observed at broader crop geometry in B. carinata over remaining OSBs.

Keywords: carbon sustainability; greenhouse gas emission; oilseed brassica; edible oil; system of
mustard intensification; water footprint

1. Introduction

Oilseed Brassicas (OSB) are important edible oil crops, which broadly include rapeseed-
mustard. These are the leading vegetable edible oil sources, after oil palm and soybean, in
the world [1]. In India, OSBs are the most-preferred edible oil and are produced in large
quantities domestically [2]. India imports edible oil worth more than USD 10.0 billion annu-
ally to meet the national requirement. India has the second-largest arable area (145 Mha) in
the world, but ironically more than 70% of the net sown area is devoted for graminaceous
cereal-millet cultivation. The concerted efforts have revolutionized cereal production in the
country and made it self-reliant in food grain production. However, the increasing gap in ed-
ible oil demand and supply has become a cause of concern. Severe environmental tradeoffs
are occurring due to higher acreage under water-guzzling and high-nutrient-demanding
crops in India and elsewhere. Crops like oilseeds and pulses are proven climate-smart
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crops [3] due to their lower environmental footprint and relatively low greenhouse-gas
emissions (GHGs) due to low input needs. OSBs includes seven crops that are mainly
used for the extraction of edible oil. These are Indian mustard (Brassica juncea (L.), black
mustard (Brassica nigra), Toria (Brassica campestris L. var. toria), brown sarson (Brassica
campestris L. var. brown sarson), yellow sarson (Brassica campestris L. var. yellow sarson),
and taramira (Eruca sativa/vesicaria Mill.), along with non-traditional species like gobhi
sarson (Brassica napus L.) and Ethiopian mustard or karan rai (Brassica carinata). Oilseed
rape (Brassica napus) with canola quality, i.e., low-glucosinolate, low-erucic acid varieties,
represents one of the world’s major sources of vegetable oil. It is the major edible oil in
many countries like Australia, Japan, and Canada [3]. Rapeseed and mustard are grown
worldwide, having maximum acreage in Canada (8 Mha) followed by China (7 Mha) and
India (6.8 Mha). Contrary to the global trend of having larger areas under rapeseed, In-
dian mustard (Brassica juncea L.) is the predominant cultivated OSB in India. The OSB
productivity in India is lower (1.16 Mg ha−1) compared to the global average (2.14 t ha−1)
due to a huge technological gap existing between potential and actual productivity [2,4,5].
The European Union has the highest OSB productivity (3.64 Mg ha−1), and higher OSB
productivity in Europe and North America is attributed to the long crop duration and
better carbon content in the soil [6].

Initial agronomic evaluation in many countries has established the usefulness of B.
carinata as a prospective edible oilseed crop worldwide and especially in India [7]. However,
its inclusion in many of the rapeseed-mustard-based cropping systems in the subtropics
remains limited due to the longer crop-duration restriction [3,4,7]. In Mediterranean
regions and in India, B carinata has been highlighted as a promising winter crop by many
researchers for high oil yield [8–12]. The multifarious usage of B. carinata for edible oil,
biofuel production, and industrial purposes makes its marvel crop. It is presently being
cultivated in northeast Africa, some parts of Canada, France, Spain, Australia, China, India,
and in South America. Another oilseed rape (Brassica napus L.) has greater prospects, which
can also be a potential option to substitute cereal crops areas due to its higher productivity
and its comparable economics. Brassica napus (gobhi sarson) is mainly grown in America
and Europe, is popularly known as canola (Canada oil), and is used to label rapeseed
varieties that are low in erucic acid and glucosinolate in extracted edible oil [13]. Gobhi
sarson is presently under cultivation over a limited area in Himachal Pradesh, Jammu,
and Kashmir and Punjab under irrigated production systems. OSB including B. napus and
Ethiopian mustard/Karan rai are the emerging oilseed crops having a limited area under
cultivation in northern India [14], but the long duration remains a major constraint. Among
the various OSBs cultivated in India, Indian mustard is the predominant winter oilseed
crop due to its adaptability in the existing cropping system under rainfed areas. It also
accounts for >75% of the total area under rapeseed-mustard cultivation in India. Evaluation
of improved agronomic practices like the system of mustard intensification (SMI) that could
improve yields needs to be standardized. The SMI for non-traditional OSBs in India must
also be optimized under square geometry with specific establishment methods [15].

The positive effects of growing oilseed rape in a cereal-based system have been ex-
tensively described [16–18] for their affirmative impact on the agroecosystem via subsoil
amelioration leading to enhanced nutrient and water uptake and disease suppression in
the following cereal [16]. Currently, many researchers are keenly probing an oilseed crop as
a resilient OSB [19], wherein Brassica carinata is the best candidate to withstand varied vul-
nerable environmental conditions [20,21]. It is also one of the most-promising Brassicacae
crops, which can be used currently for energy production [8,22] and for phytoremediation
properties as well [23,24]. Its higher production potential necessitates fewer inputs, and
its ability to adapt to and survive abiotic and biotic challenges makes it valuable in terms
of agronomy and energy balances [25]. Besides being a good source of edible oil, OSB
crops have been widely documented for having a better carbon budget [7,26–28]. Crop
production, including forestry and other land use (AFOLU), accounts for 24.8 percent of
global greenhouse-gas (GHG) emissions [29,30]; hence, the selection of crops and cropping
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systems requires careful planning to keep an optimum C balance in arable soils. The soil
carbon pool (2500 gigatons or 1012 kg) is >3.0 times larger than the atmospheric carbon
pool (760 GT) [31,32]. Deep-rooted arable crops, such as OSBs, are particularly important
for sustaining this C pool in the soil. OSBs with a high biomass contribution and low input
requirements thus become critical [4].

In addition, water use in agriculture has become a serious issue for sustainability as
agriculture is the world’s largest freshwater user, accounting for nearly all of the world’s
consumptive (green and blue) water footprint [33,34]. It has become a crucial need to
shift from increasing agricultural production per unit of land to increasing agricultural
productivity per unit of water to avoid future water scarcity. The proficient use of available
water by rapeseed-mustard causes higher average water productivity (WP), which remains
0.85 kgm−3 in India. Brining rain-fed rapeseed and mustard areas under irrigation would
suffice the crop’s relatively low water needs effusively through two to three light irriga-
tions [35–37]. Improved farming practices with species diversification under the SMI show
promise under such circumstances to produce more from limited water and to enhance
water-use efficiency [7,38]. Thus, rapeseed-mustard in SMI may be an effective approach,
which can optimally enhance productivity and also the WUE and eventually reduce water
and environmental footprints altogether. Keeping these sustainability challenges in the
foreground, SMI has been evaluated with the transplanting of B. napus and B. carinata under
a specific crop geometry to enhance the crop productivity, water-use efficiency, and energy
usages under Trans-Indo Gangetic plain zones.

2. Materials and Methods
2.1. Experimental Site and Weather Conditions

To enhance productivity with lesser environmental footprints, field experiments on
a system of mustard intensification (SMI) were conducted at the experimental field (Top
Block), ICAR –Indian Agricultural Research Institute (IARI), New Delhi located at latitude
28◦38′23′′ N, longitude: 77◦09′27′′ E, and 228.61 m AMSL for three consecutive years (2017–
2020). The climate of the experimental site was sub-tropical, and >70% of the total rainfall
was received during July to October. July and August were the wettest months (>60%
of monsoonal rainfall), while the remaining period in years were normally lesser or had
scanty rainfall. The maximum rainfall was received in July (368.4 mm) during 2017–2018
(Figure 1).

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. Rainfall pattern over the period of study (2017–2018 to 2019–2020). 

A significant deviation in mean monthly maximum temperatures was also observed 
across the years. The minimum temperature remained stable, and the lowest temperature 
in all three years was recorded in January. The typic Haplustert soil of the experimental 
field was sandy loam (65% sand, 14% silt, and 21% clay) in texture, slightly alkaline in 
nature (pH 7.9), and low in carbon (0.40%), available nitrogen (KMnO4 oxidizable N 151 
kg ha−1), phosphorus (0.5 M NaHCO3-extractable P 12.6 kg ha−1), and potassium (neutral 
1 N NH4OAc-extractable K 255 kg ha−1). 

2.2. Experimental Details 
The field experiment was carried out with a two-factor split-plot design and three 

replications. OSB species Brasica carinata (PC 6), Barssica napus (GSC 7), and Brassica juncea 
(var. Pusa Vijay) were sown in main plot, while a diverse crop geometry in sub-plots was 
used to ensure higher precision of the data. The direct seeded crop of Brassica carinata and 
Brassica napus often coincide with high temperature stress at the pod-filling stage, which 
reduces the seed yield. Similarly, early sowing in September or the first week of October 
faces high temperature at the germination stage, which causes the poor plant stand and 
lesser crop yield. Therefore, the seedlings were raised in the nursery (1000 m2) for 30 days 
for transplanting in the main field. In sub-plots, the crop geometries included three con-
figurations, i.e., 60 cm × 60 cm and 45 × 45 cm as transplanted oilseed brassica, and were 
compared with the standard practice of direct seeding at the 45 × 15 cm crop spacing. The 
experiment was laid out in a fixed-plot manner. Each OSBs were sown in a particular 
cropping system in the same plots during three years of experimentation (2017–2018, 
2018–2019, and 2019–2020). The gross and net plot sizes were 5 m × 5 m and 4.5 m × 4.5 m, 
respectively. The soil preparation was done as per treatment, and recommended tillage 
operations were followed for direct seeded as well as the transplanted oilseed brassica. 
The nursery of B. carinata and B. napus was laid down during the second week of Septem-
ber year, and the transplanting in the main field was done by the first week of October. 
One irrigation immediately after transplanting was done to have a better chance of seed-
ling survival. The details of inputs used and agronomic management adopted are given 
in Table 1. 

  

Figure 1. Rainfall pattern over the period of study (2017–2018 to 2019–2020).



Sustainability 2022, 14, 2230 4 of 18

A significant deviation in mean monthly maximum temperatures was also observed
across the years. The minimum temperature remained stable, and the lowest temperature in
all three years was recorded in January. The typic Haplustert soil of the experimental field
was sandy loam (65% sand, 14% silt, and 21% clay) in texture, slightly alkaline in nature
(pH 7.9), and low in carbon (0.40%), available nitrogen (KMnO4 oxidizable N 151 kg ha−1),
phosphorus (0.5 M NaHCO3-extractable P 12.6 kg ha−1), and potassium (neutral 1 N
NH4OAc-extractable K 255 kg ha−1).

2.2. Experimental Details

The field experiment was carried out with a two-factor split-plot design and three repli-
cations. OSB species Brasica carinata (PC 6), Barssica napus (GSC 7), and Brassica juncea (var.
Pusa Vijay) were sown in main plot, while a diverse crop geometry in sub-plots was used to
ensure higher precision of the data. The direct seeded crop of Brassica carinata and Brassica napus
often coincide with high temperature stress at the pod-filling stage, which reduces the seed
yield. Similarly, early sowing in September or the first week of October faces high temperature
at the germination stage, which causes the poor plant stand and lesser crop yield. Therefore,
the seedlings were raised in the nursery (1000 m2) for 30 days for transplanting in the main
field. In sub-plots, the crop geometries included three configurations, i.e., 60 cm × 60 cm and
45 × 45 cm as transplanted oilseed brassica, and were compared with the standard practice
of direct seeding at the 45× 15 cm crop spacing. The experiment was laid out in a fixed-plot
manner. Each OSBs were sown in a particular cropping system in the same plots during three
years of experimentation (2017–2018, 2018–2019, and 2019–2020). The gross and net plot sizes
were 5 m× 5 m and 4.5 m× 4.5 m, respectively. The soil preparation was done as per treatment,
and recommended tillage operations were followed for direct seeded as well as the transplanted
oilseed brassica. The nursery of B. carinata and B. napus was laid down during the second week
of September year, and the transplanting in the main field was done by the first week of October.
One irrigation immediately after transplanting was done to have a better chance of seedling
survival. The details of inputs used and agronomic management adopted are given in Table 1.

2.3. Crop Management and Yield Measurements

The particulars of crop-management practices performed and input used in different OSB
species were as per the recommended practices. The field was prepared as per crop requirements
and the treatment imposed. One deep plowing with a disc harrow was followed by three
plowings with cultivators. After plowing, planking was done as normal tillage operations. The
sowing of seed in the nursery was done during the second week of September every year. The
transplanting in the main field of the seedlings of B. carinata and B. napus was done during
the second week of October. After transplanting of the seedlings in the main field, one light
irrigation (40–50 mm) was applied for optimum seedling establishment. The direct seeding of B.
juncea was done at the same time, i.e., during the second week of the October every year; the
detailed operations are mentioned in Table 1.

The direct seeded B. juncea was irrigated twice in the crop-growth period: once at 30 days
after sowing (DAS) and second at silique initiation (60–70 DAS). The need-based weed, disease,
and insect management were practiced as explained in Table 1. The nutrient requirement was
also different for all three OSBs, depending upon the total biomass yield and nutrient uptake.
As per the recommended fertilizer dose, N, P, K, and S was applied. The whole amount of P,
K, and S was applied as basal dose, while 1/2 N of the total requirement was applied as basal
and the remaining 1/2 N was top-dressed after the first irrigation (40 DAS). The initial 30 DAS
remained critical for crop weed completion in Indian mustard, while in the case of B. napus
and B. carinata, the first 45 DAS remains crucial for weed interference; hence, the crop was kept
weed-free through one pre-emergence spray of oxadiagryl (16%) @ 90.0 gm a.i.ha−1, followed
by two hand-weedings. The crop was harvested based on physiological maturity; accordingly,
B. napus and B. carinata were harvested after 185 DAS (10–15 April every year), whereas B. juncea
matured at 145 DAS and was harvested in and around 15 March. The agronomic operations
were done as per crop needs and treatments.



Sustainability 2022, 14, 2230 5 of 18

Table 1. Input use in diverse Oilseed brassica species.

Operations B. carinata B. napus B. juncea

Variety PC 6 GSC7 Pusa vijay

Nursery and field preparation Three ploughings followed by
planking Three ploughings followed by planking Three ploughings followed by planking

Seed 2.5–3.0 kg ha−1 2.5–3.0 kg ha−1 5 kg ha−1

Transplanting 30-day-old seedlings 30-day-old seedlings -

Irrigation Three irrigations (180 mm) Three irrigations (180 mm) Two irrigations (120 mm)

Fertilizer (N-P-K-S) 100-50-40-40 100-50-40-40 80-40-40-40

Herbicide Oxadiargyl 16 @ 90 gha−1 and
two hand-weedings Oxadiargyl 16 @ 90 gha−1 and two hand-weedings Oxadiargyl 16 @ 90 gha−1

Insecticide Need-based Two sprays of Dimethoiate 30 EC @ 600 mL ha−1 Two sprays of Dimethoiate 30 EC @ 600 mL ha−1

Fungicide

Downy mildew endemic
areas; the disease is managed by

treating the seeds with metalaxyl-M
31.8% ES @

6 mLkg−1 seed

Treating the seeds with metalaxyl-M 31.8% ES @
6 mLkg−1 seed

Soil incorporation of Trichoderma based product @
2.5 kg ha−1 pre- incubated in 50 kg of well rotten farm

yard manure to reduce soil-borne inoculum of Alternaria
blight, white rust, downy mildew, club root, and

Sclerotinia rot.

Harvesting and threshing At physiological maturity At physiological maturity At physiological maturity
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The seed yield of the individual OSB crops were assessed by harvesting 20.25 m2 areas
under each crop at maturity. The economic part (seed) of all OSB crops were winnowed and
cleaned after harvesting with a Pullman plot thresher. The grain yield of rapeseed-mustard
was estimated at an 8% moisture content.

2.4. Productivity and Production Efficiency Estimation

The productive capacity of different OSBs species was estimated in terms of total
seed output from one ha area. The net plot area (20.25 m2) crop plants were included
in estimation of seed yield per ha. The biological productivity was estimated as total
aboveground biomass accumulation including both the seed as well the vegetative part of
the crop plants.

The ability of the system to produce economic yield per day is known as production
efficiency (PE) and was estimated as per Equation (1).

PE (kg ha−1 day−1) =
Total seed yield

(
kg ha−1)

crop duration(Days)
(1)

2.5. Carbon-Emission and C- Efficiencies Estimation

Carbon emissions from different management and cropping systems refer to the
total greenhouse-gas emissions. Total greenhouse-gases emission includes the emission
from transportation, production, and all inputs for crop required during the entire crop
production series from sowing to harvest and the direct N2O emissions from the farm
soil. The carbon emissions from different management practices in the present study was
estimated using the following formula.

CE =
n

∑
i=1

CEi + CEN2O = cm
n

∑
i=1

σi × Ci + CN × σN2O × 1.57× 298× 0.27 (2)

where the carbon emission of each production input (kg ce ha−1) is denoted by CE; σ i
is the carbon-emission parameters of each production input i; Ci is the amount of each
production input i; CE N2O represents the carbon footprint caused by direct N2O emissions
from application of N fertilizer (kg ce ha−1); CN is the quantity of N fertilizer (kg ce ha−1)
applied; σN2O is the emission factor of N2O emissions induced by N-fertilizer application;
1.57 factor concerning with molecular weight of N2 and N2O; 298 is the net global warming
potential (GWP) in a 100-year horizon; 0.27 factor concerning to the molecular weight of
CO2 and CE.

The reduction in carbon emissions remains essential for the design of carbon-neutral
production systems. Hence, improving the efficiency of resource use in crop production is
very crucial. To assess the carbon neutrality of designed production systems, the following
C indices were calculated. For carbon input auditing, specific C-equivalence factors as
recommended by the IPCC were multiplied with the respective input used.

Net C gain was calculated with the Equation (3)

Net C emission
(

kg CO2 e Mg−1
)
= CS− CE (3)

where CS is the photosynthesis carbon sink (kg ce ha−1), and CE is the total carbon emission
equivalence (kg ce ha−1) Carbon ecological efficiency (CEE) is the ratio of photosynthetic
carbon to total carbon emissions produced in the specific production system. A production
system with a higher CEE is considered more sustainable over others. Similarly, carbon
production efficiency (CPE) and carbon economic efficiency (CEcoE) measured the food
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productivity and economic gain per unit of carbon emission, respectively. CEE, CPE, and
CEcoE were calculated with the Equations (5)–(7), respectively.

CEE =
Carbon sin k of photosynthesis

(
kg ce ha−1)

Total carbon emission (kg ce ha−1)
(4)

CPE =
Economic output

(
kg ha−1)

Total carbon emission (kg ce ha−1)
(5)

CEcoE =
Total economic value

(
US$ ha−1)

Total carbon emission (kg ce ha−1)
(6)

GHGI =
GWP (kg ce ha−1)

Seed yield (kg ha−1)
(7)

2.6. Carbon Sustainability Index (CSI)

It indicates the C efficiency potential of a production system. The systems had higher
CSI considered as C-efficient systems. The CSI was calculated as per Equation (8) [39].

Is =
(

C0 −Ci

Ci

)
t (8)

where Is indicates the carbon sustainability index; C0 is the sum of all C outputs, expressed
in C equivalents; Ci is the total C inputs in terms of C equivalents; and t is the time in years.

2.7. Energy Estimation

Energy auditing is a key tool to judge the environmental performance of the production
system. Environmental emissions are directly linked with energy consumption, and the es-
timation of energy use in crop production explores an energy-use efficiency edge between
outputs and inputs [40]. The energy input includes both direct and indirect energy. Energy
use in crop cultivation is form of fuel for machinery, human and animal power, and electric
power used, whereas indirect energy use consists of planting material, nutrient sources, and
pesticide uses. Energy computations were done with the help of energy coefficients [41–44], and
their multiplication with the level of specific input was used for crop cultivation. Likewise, for
estimation of energy output, energy coefficients were integrated with the economic production
of a specific crop in the system [41,44–47]. For energy dynamics auditing in OSB, energy indices
were used to assess the energy efficiency in the study:

Net Energy (MJ ha−1) = Energy output (MJ ha−1)− Energy input (MJ ha−1) (9)

Energy Efficiency =
Total energy output

(
MJ ha−1)

Total energy input (MJ ha−1)
(10)

Energy productivity =
Net energy returns

(
MJ ha−1)

Total energy input (MJ ha−1)
(11)

Specific energy (Kg MJ−1) =
Energy input

(
MJ ha−1)

Economic yield (Mg ha−1)
(12)

2.8. Water Use and Water Footprint

The measured quantity of irrigation water was applied to each OSB species. Water-use
efficiency, water productivity, and the water footprint were calculated based [7,48] on the
equations given below.

Irrigation WUE (kg−1 per ha−mm) =
Seed productvity (Kg ha−1)

Irrigation water applied (ha−mm)
(13)
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Water productivity (kg seed per m3 water) =
Seed productivity (kg ha−1)

Irrigation water applied (m3)
(14)

Water footprint (Liters of water per kg−1 seed) =
Water used (liters ha−1)

Seed productivity (kg ha−1)
(15)

2.9. Economic Analysis

The economic analysis of the diverse OSBs under different crop geometries was done based
on the marginal analysis of the input and the output used. The crop-management practices
and input used from sowing to storage of the products were used for estimation of the cost
of cultivation of different crops. The gross return was estimated by multiplying the minimum
support price declared by the Government of India with crop production. The net returns
were calculated deducting the gross return from the cost of cultivation. The monetary outflow
occurred, and returns attained from the crops in diversified production systems were done
in USD (1 USD =
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Biological Productivity 

(kg ha−1) 

Production 
Efficiency (kg ha−1 

day−1) 
Oilseed Brassica species-A 

B. carinata 3173.8 A 17,179 A 17.2 A 
B napus 2511.7 B 13,764 B 13.6 B 
B. juncea 2298.4 B 12,012 B 15.9 AB 

Crop geometry-B 
S1: 60 × 60 2836.4 A 15,559 A 15.9 
S2: 45 × 45 2631. 7 A,B 13,971 B 15.4 
S3: 45 × 15 2515.9 B 13,425 B 15.3 

Note: (Means followed by different letters in each column for particular set of treatments are sig-
nificantly different at p ≤ 0.05 as per Tukey’s HSD test). 

73.5). The system net returns (SNR), the benefit-cost ratio (B:C), and the
profitability index (PI) were calculated by the following Equations (16)–(18).

NR
(

US$ ha−1
)
= Gross returns (US$)− Cost o f cultivation (US$) (16)

B:C ratio =
Net return

(
US$ ha−1)

Cost o f cultivation (US$ ha−1)
(17)

PI (US$ ha−1 day−1) =
Net returns (US US$)

365
(18)

2.10. Statistical Analysis

The general linear model (GLM) method of the SAS 9.4 (SAS Institute, 2003) was used
for analysis of variance, using all data. This was also used for determining the statistical
significance of the OSBs under diverse crop geometries under SMI. The least-significant
difference (LSD) at p = 0.05 was used to compare the treatment effects.

3. Results
3.1. Effect on OSB Productivity and Economics

Among all the OSBs, B. carinata resulted in a maximum seed productivity (3173.8 kg ha−1),
which remained significantly higher over B. napus and B. juncea. Likewise, the crop geometry
of 60 cm × 60 cm produced the highest seed productivity (2836.4 kgha−1) but remained at
par with a 45 cm × 45 cm crop geometry and significantly higher over a conventional crop
geometry of 45 cm× 15 cm (Table 2 and Figure 2).

A similar trend was observed in the biological yield and the production efficiency of
different OSBs under various crop geometries; however, the effect of crop geometry on
production efficiency was found to be non-significant (Table 2). A 38% and a 9.3% higher
seed yield were recorded in B. carinata and B. napus, respectively, over existing traditional
Indian mustard cultivation with the prevailing crop geometry. Likewise, the crop geometry
of 60 cm× 60 cm resulted in a 13% increase in seed yield, and up to a 5% higher growth was
observed at a 45 cm × 45 cm crop geometry over traditional crop spacing. The economics
of OSB species diversification indicates that the maximum net return of USD 1417 ha−1

was recorded from B. carinata, which was 54% higher over B. napus and 10% higher over B
juncea. With regards to crop geometry, 60 cm × 60 cm resulted in a 12% increase, whereas
the 45 cm × 45 cm crop geometry resulted in an almost 2% increase in the net return. In all
the treatments, the B:C ratio remained greater than 2, however the maximum (3.76) was
with B. carinata. Among B. napus and B. juncea, the B:C ratio remained statistically at par
(2.71 and 2.45, respectively). The profitability index (PI) showed that the per-day net return
was significantly higher (USD 7.66) in B. carinata, and the PI remained statistically at par
with B. napus and B. juncea in all economic parameters including PI (Table 3). The care in
the nursery at the early stage ensured greater survival of the seedlings and subsequently
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better crop stands by the end of October. The quick initial growth and timely maturity of
the crop under the Indo Gangetic plains zones also skipped the terminal heat stress often
faced with the late-sown crop.

Table 2. Seed, biological productivity (kg ha−1), and production efficiency of Oilseed brassica under
diverse crop geometries and crop-establishment methods.

Treatments Seed Yield (kg ha−1) Biological Productivity (kg ha−1) Production Efficiency (kg ha−1 day−1)

Oilseed Brassica species-A

B. carinata 3173.8 A 17,179 A 17.2 A

B. napus 2511.7 B 13,764 B 13.6 B

B. juncea 2298.4 B 12,012 B 15.9 AB

Crop geometry-B

S1: 60 × 60 2836.4 A 15,559 A 15.9

S2: 45 × 45 2631.7 A,B 13,971 B 15.4

S3: 45 × 15 2515.9 B 13,425 B 15.3

Note: (Means followed by different letters in each column for particular set of treatments are significantly different
at p ≤ 0.05 as per Tukey’s HSD test).
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Crop geometry).

The intensive energy usage causes increasing costs, greenhouse-gas emissions, and other
negative environment footprints; hence, efficient energy use has become very critical for agri-
cultural operations at the present time. The energy studies revealed that the maximum energy
output was obtained from B carinata (246,445 MJ ha−1), which was significantly (p≤ 0.05) higher
over B. napus and B juncea. Broader crop geometry (60 cm× 60 cm) also resulted in maximum
energy output but remained statistically at par with 45 cm× 45 cm and higher than the energy
output from traditionally grown B juncea. A similar trend was obtained in net energy, energy
efficiency, energy productivity, and energy profitability (Table 4). However, the specific energy
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was greater in the case of B. juncea under a regular crop geometry (45 cm 15 cm). The declining
trend of energy input likewise resulted in a lower specific energy under broad crop spacing (60
cm × 60 cm), whereas a narrow, regular crop geometry incurred a higher energy input and
consequently a higher specific energy.

Table 3. Economics of Oilseed brassica under diverse crop geometries and crop-establishment methods.

Treatments NR (US$ ha−1) B:C Ratio Profitability Index (USD ha−1 day−1)

Oilseed Brassica species-A

B. carinata 1417.2 A 3.76 A 7.66 A

B. napus 1018.9 B 2.71 B 5.51 B

B. juncea 920.5 B 2.45 B 6.35 B

Crop geometry-B

S1: 60 × 60 1199.0 A 2.99 A,B 6.93 A

S2: 45 × 45 1089.6 A 2.72 B 6.36 A

S3: 45 × 15 1068.6 A 3.21 A 6.23 A

Note: (Means followed by different letters in each column for particular set of treatments are significantly different
at p ≤ 0.05 as per Tukey’s HSD test).

Table 4. Energy-use dynamics of species diversity under diverse crop geometries (pooled).

Treatments Energy Input
(MJ ha−1)

Energy Output
(MJ ha−1)

Net Energy
(MJ ha−1)

Energy
Efficiency

Energy
Productivity

Energy
Profitability

Specific
Energy

Oilseed Brassica species-A

B. carinata 8994 A 246,445 A 233,814 A 27.40 A 26.00 A 0.35 A 2.9 B

B. napus 8994 A 200,091 B 193,492 B 22.25 B 21.51 B 0.28 B 3.69 A

B. juncea 8382 C 172,872 B 162,707 C 20.62 B 19.41 B 0.27 B 3.71 A

Crop geometry-B

S1 8790 C 224,492 A 213,714 A 25.45 A 24.23 A 0.32 A 3.24

S2 8790 B 203,731 A,B 194,223 A,B 23.13 A,B 22.04 A,B 0.3 A,B 3.44

S3 8790 A 191,185 B 182,077 B 21.69 B 20.65 B 0.29 B 3.61

Note: (Means followed by different letters in each column for particular set of treatments are significantly different
at p ≤ 0.05 as per Tukey’s HSD test).

3.2. Carbon-Use Dynamics and Efficacy

The level of carbon input remained the same under all the OSB species under varying
crop geometries. However, the carbon gain, the carbon output, and the carbon production
efficiency (Figures 3 and 4) stand significantly higher under B. carinata. Similarly, a broader
squared crop geometry at 60 cm × 30 cm resulted in a higher CG, CO, and CPE.

The GHGi was obtained higher in B. juncea OSB and lower in B. napus and B. carinata.
However, crop geometry did not influence the GHGi in any of the OSB species. Carbon
ecological efficiency (CEE) was significantly higher in B. carinata (14.9 DW ha−1 kg-eq
CO2) compared to Cecol E in B. napus and B. juncea, while CEE remained higher under a
spacious crop geometry (Table 5). The carbon sustainability index was recorded as higher
in B. carinata, but it remained statistically at par with B. napus and B. juncea. Broader crop
spacing resulted in a higher CSI (5.07) over conventional spacing (Table 5).
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Table 5. Carbon analysis of diversification of Oilseed brassica under diverse crop geometry.

Treatments
Carbon
Input

(kg ha−1)

Carbon
Gain

(kg ha−1)

Carbon
Output

(kg ha−1)

CPE
(Kg Seed

CO2-eq/ha−1)

GHGi
(Kg CO2-eq

per kg−1

Grain Yield)

CEE
(Kg per ha
DW ha−1

kg-eq CO2)

CEcoE
(USD ha−1

CO2-eq)
CSI

Oilseed Brassica species-A

B. carinata 1152 C 6578 A 7730 A 2.63 A 0.37 B 14.90 A 1.24 A 5.71 A

B. napus 1152 B 5042 B 6194 B 1.95 B 0.47 A 11.94 B 0.89 B 4.38 A,B

B. juncea 1152 A 4253 C 5405 BC 1.97 B 0.51 A 10.42 B 0.80 B 3.69 B

Crop geometry-B

S1 1154 B 5847 A 7002 A 2.34 A 0.43 A 13.48 A 1.05 A 5.07 A

S2 1154 A 5133 B 6287 B 2.11 B 0.45 A 12.10 A,B 0.95 A 4.45 A,B

S3 1148 C 4893 C 6041 B 2.09 B 0.47 A 11.69 B 0.94 A 4.26 B

Note: (Means followed by different letters in each column for particular set of treatments are significantly different
at p ≤ 0.05 as per Tukey’s HSD test).

3.3. Water Usage and Efficiency

The WUE of applied irrigation water was found at a maximum in B. juncea
(19.15 k per ha-mm), but it remained statistically at par with WUE of B. carinata, and the
minimum WUE was recorded in B. napus (13.95 k per ha-mm). There was no effect of crop
geometry on WUE and WP. The WP of B. juncea remained at par with B. carinata, whereas the
minimum WP was recorded from B. napus (1.42 kg m−3). The water footprint (WFP) was lowest
in the case of B. juncea, which remained at par with B. carinata; however, the WFP of B. napus
remained at 892.5 L for one kg of seed yield. The crop geometry under transplanting also influ-
enced the WUE, WP, and WFP. The WUE under the broader crop geometry of 60 cm× 60 cm
(17.88 kg per ha-mm) remained statistically on par with 45 cm× 45 cm but significantly higher
over the conventional crop geometry of 45 cm× 15 cm (Table 6).

Table 6. Water-use efficiency, water productivity, and footprints of oilseed brassica under diverse
crop geometries and crop-establishment methods.

Treatments WUEIW (kg ha−1-mm) WPIW (kg m−3) Water Footprint (L kg−1 Seed Yield)

Oilseed Brassica species-A

B. carinata 17.63 A 1.79 A 578.8 B

B. napus 13.95 B 1.42 B 892.5 A

B. juncea 19.15 A 1.93 A 503.1 BC

Crop geometry-B

S1: 60 × 60 17.88 A 1.82 A 630.0 B

S2: 45 × 45 16.83 A 1.70 A 677.7 A

S3: 45 × 15 16.03 B 1.63 B 666.6 A

Note: (Means followed by different letters in each column for particular set of treatments are significantly different
at p ≤ 0.05 as per Tukey’s HSD test).

The similar trend was followed by WP, and the highest WP was recorded under
a 60 cm × 60 cm crop geometry, which was significantly higher over the conventional
crop geometry (45 cm × 15 cm). The water footprint was also influenced by different
crop configurations of crop spacing. Contrary to the WUE and WP, the WPFs remained
significantly higher under a conventional crop geometry (666.7 L kg−1 of crop economic
produce). A broader crop geometry (60 cm × 60 cm) led to low WFPs and efficient use of
irrigation water.
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4. Discussion

The recent advances like wider plant or row spacing and skip-row arrangements
optimizing crop geometry for desired plant stands have been widely accepted for effi-
cient use of available soil and water resources [48,49]. The canopy cover influences the
micro-climate within the crop [50] and hence remains instrumental in enhancing crop
growth and productivity [51,52]. The crop geometry directly influences light interception,
moisture availability, and wind movement, thereby affecting photosynthesis, dry-matter
accumulation, crop maturity, and overall productivity. An optimum plant density not
only enhances the crop productivity and quality but also reduces pilferages of applied
inputs [53]. Two critical inputs like fertilizer and irrigation are efficiently utilized under
an optimal plant density in SMI. A higher plant density often reduces light interception
and increases resource competition among plants, which adversely affects crop phenolog-
ical development [54]. With wider spacing, a 33% reduction in the seed requirement of
hybrid mustard was recorded, and hence the seed availability for wider coverage can be
ensured [55]. Crop-row configuration is a vital agronomic management that has enormous
effect on seed yield and the yield components of individual plants [26,56,57]. The earlier
studies showed that the optimum row spacing in B. napus and other OSB affected seed
and oil yield in cultivars [58–60] mainly due to efficient use of available resources (water,
light, and soil nutrients). Better adaptability and enhanced productivity in B. carinata over
canola (B. napus) and Indian mustard (B. juncea) under adverse agro-climatic conditions
have been also reported by many researchers [8,61]. The OSB B. carinata has more tolerance
for warmer environments over canola and oilseed rape [62]. It also has a greater shattering
tolerance than canola and is better adaptable under sub-tropical and tropical conditions
under an appropriate geometry [62–64]. That was the probable reason for the higher seed
productivity and profitability of B. carinata under SMI. The soil organic matter is very crucial
for maintaining soil quality mainly because of its multifarious effects on soil properties [65].
The total SOC pools corresponds nearly to three to four times higher over the atmospheric
and biospheric C pool, [66,67], and its sequestration potential is mainly governed by the
C balance in soil [68]. Gan et al. [69] have highlighted that BMPs for obtaining higher
crop productivity and their impact on soil carbon and carbon sequestration for lower C
footprint in rapeseed-mustard. SMI resulted in a lower GHGi in B. napus and B. carinata
and improved water-use efficiency [70]. The use of improved crop seeding and row spacing
can enhance the canola yield up to l8% [71,72].

Suitable crops and cropping systems have the potential to reduce the amount of
atmospheric CO2 emission, leading to soil organic carbon (SOC) storage and favoring
the soil carbon budget [28]. The terrestrial ecosystems approximately buffer 1/3rd of the
annual surge of atmospheric CO2 concentration from GHG emissions presently and are
also a net carbon sink of 3 GT/year [73]. Therefore, management of soil C budget through
agronomic manipulation with OSB species diversification embodies major potential for
climate-change mitigation as well [74]. These strategies could establish agriculture as a net
CO2 sequestration practice from the existing source as a net CO2 emitter. Lal (2004) [39,75]
has also reported that adoption of similar crop-land-management practices can increase soil
carbon storage in agroecosystems. Broader crop spacing resulted in a higher CSI (5.07) over
conventional spacing. The CSI in B. carinata and B. napus produced higher yields due to
higher plasticity of canopy expansion in these crops. Optimum input use, better recycling
of crop residue, and bio-efficiency of specific crops for conversion of all inputs into output
ensures a higher CSI [76].

Improved water and other input-use efficiencies were reported highest under opti-
mal planting densities that regulate the association among the individual plant and the
population [77–79]. Under water-stressed areas, the hybrid OSB plants absorb water from
deeper soil layers due to their specific drought-proofing mechanism [80]. The WUE of
applied irrigation water was recorded as a maximum in B. juncea (19.15 kg per ha-mm),
mainly because of better physio-morphological traits for efficient use of available water
and higher seed productivity. The WP of B. juncea remained higher, primarily due to the
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adaptive advantages of Indian mustard (B. juncea) over canola (B. napus) for efficient water
use owing to enhanced crop growth, plant—water relations, and yield [7,81]. Similarly,
the lowest water footprint (WFP) was recorded in B. juncea, which remained at par with
B. carinata. Crop geometry under transplanting has also influenced the WUE, WP, and
WFP. The broader crop geometry of 60 cm × 60 cm had a greater impact on the WUE
(17.88 kg per ha-mm) mainly due to the optimal use of available water [4,51,52]. Hence,
the WFT was also influenced by different crop configurations and crop spacings. Hoek-
stra et al. (2009) [33] also reported lesser WFT as the total volume of freshwater that is
used to produce the product was comparatively lower. Contrary to the WUE and WP, the
WPFs remained significantly higher under a conventional crop geometry (666.7 L per kg of
crop economic produce) due to an exhaustive water-use pattern [82]. While the broader
crop geometry (60 cm × 60 cm) led to decreased WFPs and better use of irrigation water,
Shekhawat et al. [7], Rathore et al. [35], and Sharma et al. [37] have also reported higher WP
for the rapeseed-mustard and suggested the conversion of conventional rain-fed rapeseed-
mustard areas into irrigated areas through appropriate irrigation scheduling, which can
easily meet the water requirement of the crop.

Efficient energy in agriculture is very crucial in the present context where it is facing
the challenges of increasing costs, greenhouse-gas emissions, and greater environmental foot-
prints [38,83,84]. The maximum energy output was recorded from B carinata (246,445 MJ ha−1).
Hence, energy-efficient crops like B. carinata are to be introduced in the existing systems. The
high edible oil productivity (1–2 Mg ha−1) and higher energy-conversion efficiency (ratio of
energy output to energy input) of OSBs make them a popular choice for cultivation among
all oilseed crops [85]. Bielski et al. [84] have also highlighted its vital use as liquid fuel due to
the higher energy-efficiency ratio of seeds. The production technology determines the energy
demand as energy input and the amount of energy assimilation in biomass (energy output). The
efficient energy use, assimilation, and conversion was recorded in B. carinata [8,85]. The SMI has
been identified and has come up as an effective production technologies for rapeseed-mustard.
The declining trend of energy input also resulted in a lower specific energy under a broad crop
spacing (60 cm× 60 cm), whereas a narrow, regular crop geometry incurred a higher energy
input and consequently a higher specific energy.

5. Conclusions

Declining water-use efficiency and water productivity, increasing GHGs emission
and environmental footprints, and poor resource-use efficiency are grave challenges of
present-day agriculture.

Modern crop-management strategies might increase productivity but often escalate
environmental and economic costs. The farming sector is therefore both a victim as well as
a culprit for increasing ecological imbalances, GHGs emissions, etc. For sustainable and
climate-smart farming, the environmental implications and sustainability of resource use,
the carbon sequestration, increasing WUE, and energy efficiency have become vital. These
implications compel to optimize the improved agronomic management with alternate crops
and cropping systems for safeguarding ecologies. OSBs are most suitable climate smart
crops with known environment-friendly impressions. Further refinement of production
technologies for OSB production, including SMI and species diversification, have been
reported to result in better resource management, efficient use, and a lesser ecological
footprint in terms of water usage and productivity. The present study also emphasized
that growing B. carinata at wider row spacing improves productivity and profitability with
minimum environmental footprints. It can further be introduced under certain identified
ecologies with improved cultivation practices for overall environment security.
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