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Abstract: For the selection of global climate models in the upper basin of the Blue Nile, an advanced
envelope-based approach was used. Currently, the number of general circulations models (GCM)
has increased extremely. The reliability of any general circulation model in a particular region is
confronted, so the selection of the appropriate climate models that can predict the climate variable
is essential. Representative concentration pathways RCP4.5 and RCP8.5 were taken into account.
For RCP4.5 105 GCMs were used and for RCP8.5 78 GCMs were used to select the best performance
models for the Upper Blue Nile Basin for a climate change impact study. Three steps were followed
to derive the best performing models in the study area based on their range of projected mean
temperature and precipitation changes, the range of projected extreme changes, and the ability to
reproduce past climates between 1971 and 2000 and 2071–2100. Five corners of the spectrum were
used, e.g., wet-warm, wet-cold, dry-warm, dry-cold, and the 50th percentile of the temperatures.
For RCP4.5 and RCP8.5, a total of 25 GCMs were chosen based on the range of anticipated mean
temperature and rainfall change. Based on the range of extreme changes, 10 GCMs were chosen.
Finally, for each RCP4.5 and RCP8.5, five GCMs were chosen by combining all three stages.

Keywords: climate change; GCM; CMIP5; climate model selection; Upper Blue Nile River Basin

1. Introduction

Climate models are useful tools for understanding and predicting the complex climate
of the Earth. Forty GCMs from twenty research groups took part in phase 5 of the Coupled
Model Intercomparison Project (CMIP5) [1]. Every climate model created does not have the
same predictive performance in a specific area. For water resource planning, it is essential
to define acceptable GCMs for a given area. Climate change scenarios with different rates
and magnitudes provide a framework for assessing the likelihood of exceeding identifiable
physical change thresholds and the effects on biological and human systems [2]. Represen-
tative concentration pathways (RCPs) scenarios that include time series of total greenhouse
gas (GHG), aerosol and chemically active gas (GHG) emissions and concentrations, and
land use/land cover [3]. Planners and decision-makers have traditionally utilized sce-
narios to examine situations with uncertain outcomes [4]. The Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report (AR5) suggests four trajectories for
future climate change analysis: RCP8.5, RCP6, RCP4.5, and RCP2.6 [5]. While the size

Sustainability 2022, 14, 2140. https://doi.org/10.3390/su14042140 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14042140
https://doi.org/10.3390/su14042140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2831-033X
https://doi.org/10.3390/su14042140
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14042140?type=check_update&version=2


Sustainability 2022, 14, 2140 2 of 18

and number of climate models is growing, computing power is low. Hence, it is imper-
ative to compromise the amount that can be used for an analysis of climate change. In
most climate impact studies, climate models should be selected based on the full range
of changes. There is no easy way to choose climate models [6]. The selection of climate
downscaling models is typically carried out in two key ways, namely, the envelope and
the past efficiency approach [7–9]. In the output approach above, the choice of climate
models is based on the ability of the models to duplicate the continuous climate, while the
envelope approach [10] takes into account the range of models that cover a large number
of predictions. The performance approach has the possibility to hide all projection areas
selected from the available GCM pool for an ensemble, eliminating the need to use the
envelope method after selection. Other methods for selecting the best climate model are
the applied filter and wrapper feature selection methods [6,11–13] taking into account
different qualification metrics, statistical indices or their combination using multi-criteria
decision analysis (MCDA), while past performance and envelope-based are used on this
study. The study relies on climate models’ ability to replicate past weather circumstances,
or on improvements to the broad spectrum of climatic variables planned from the entire
collection of accessible climate models. The envelope and past performance approach were
applied to the Indus, Ganges, and Brahmaputra river basins [6]. The following procedures
were chosen for the selection of climate models that have the optimal projection over the
examination field: (1) climate models based on the magnitude of anticipated changes in
weather patterns; (2) based on a variety of extreme climatic variable changes; and (3) based
on weather simulation capabilities to reproduce past climate variables. Based on the 5th
Assessment Report of the IPCC, the selected climate model data will be downscaled and
used as input in the hydrological SWAT model [14,15] in order to measure potential impacts
of climate change on river runoff and sediment yield in the Upper Blue Nile River Basin.

2. Data Sources and Study Area
2.1. Study Area

The current study employed procedure of climate change model selection for the
Upper Blue Nile River Basin, which contributes significantly to flow and sediment and is
the source of more than 60% of the Nile River [15] and also located between longitude 32◦ E
and 40◦ E and latitudes 9◦ N and 16◦ N [16] (Figure 1).The climate in the Abay/Upper
Blue Nile River Basin is governed by the migration of the Inter Tropical Convergent Zone
(ITCZ), which moves seasonally from the South to the North and back [17,18]. The Blue
Nile’s discharge is highly seasonal, with over 80% of annual runoff falling between July
and October, and only 4% dropping between January and April [19]. The precipitation is
also highly fluctuating and influenced by the tropical highland monsoon. It has a rainy
season from June to September, a short rainy season from March to May, and a dry season
from October to May [20–22].
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Figure 1. Upper Blue Nile Basin (UBNB): main catchments, streams, and tributaries.

2.2. Data Collection and Sources

Three types of data were used: general circulation model (GCM) output of precip-
itation and mean air temperature, extreme indices, and the Water and Global Change
(WATCH) Forcing Data ERA-Interim (WFDEI) are the data sets used for this study.

2.2.1. GCM Outputs

The Climate Modeling Association has established a set of four new representative con-
centration trajectories as a foundation for long-term and short-term modeling studies [3].
The 5th IPCC assessment suggested two medium stability scenarios (RCP4.5 and RCP6),
a scenario with very high base emissions (RCP8.5), and a mitigated scenario (RCP2.6). A
medium (RCP4.5) and a high (RCP8.5) emission scenario were chosen for this study as long-
term climate change models do not provide for changes in vegetation. The change in tem-
perature and precipitation simulated by Coupled Model Intercomparison Project 5 (CMIP5)
GCMs between the historical periods 1971–2000 and 2071–2100 was obtained from the envi-
ronment explorer scenario (https://climexp.knmi.nl/start.cgi) (accessed on 15 June 2021) of
the Royal Netherlands Metrological Institute (KNMI) for the representative concentration
pathway, RCP4.5, and RCP8.5 radiative forcing scenarios.

2.2.2. Extreme Indices

The extremes indices from the Expert Team on Climate Change Detection and Indices
ETCCDI archive [23,24] provided by the “Canadian Centre for Climate Modeling and
Analysis” was utilized to obtaisn the annual extremes of the regular CMIP5 results. This
information was collected and downloaded in an indirect manner via the KNMI Climate
Explorer, a web-based analysis utility for investigating change in climate.

2.2.3. Observed Data

The data set WATCH Forcing Data methodology applied to ERA-Interim (WFDEI [25,26]
was used to test the model output of individual GCM runs. It was created by means of the
same approach as the frequently used WATCH Forcing Data [27] using the ERA interim
reanalysis data [24]. We used WFDEI precipitation data that had been corrected for Global
Precipitation Climatology Center (GPCC) precipitation data [28].

https://climexp.knmi.nl/start.cgi
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3. Materials and Method

The envelope-based technique and the prior performance technique are combined in a
three-stage selection approach for GCM runs. To begin, climate models are chosen for their
capacity to predict yearly average variations in mean total temperature and precipitation.
After that, the range is fine-tuned based on rainfall and temperature extremes. Finally, the
final editions of the remaining models are compared to the WFDE [25] climate reference
product to arrive at a decision.

3.1. Representative Concentration Pathways Selection

Climate scenarios are hypothetical scenarios used to assess how climate change would
affect infrastructure and ecosystems [29]. In its fifth assessment report, the Intergovernmen-
tal Panel on Climate Change (IPCC) proposed four new scenarios known as Representative
Concentration Pathways [30].

With one mitigation scenario (RCP2.6), two intermediate stabilization scenarios
(RCP4.5/RCP6), and one very high baseline emission scenario (RCP4.5/RCP6), the four RCPs
chosen are judged scientifically representative (RCP8.5) [3]. By 2100, the Rising Radia-
tive Forcing Pathway (RCP8.5) would have reached 8.5 W/m2 (1370 ppm CO2 equiva-
lent) [3,31]. RCP6 slimits the stabilization without overshoot pathway to 6 W/m2 (850 ppm
CO2 eq.) after 2100. After 2100, RCP4.5 stabilizes without overshooting to 4.5 W/m2

(650 ppm CO2 eq.) [32]. RCP2.6 has a radiative forcing peak of 3 W/m2 (490 ppm CO2 eq.)
prior to 2100, then drops to 2.6 W/m2 by 2100 (the chosen pathway). RCP2.6 reflects the
lower end of the scenario in terms of emissions and radiative forcing [33]. In the second
part of the twenty-first century, these scenarios commonly portray negative emissions
from energy use. The scenario appears technically feasible, but one critical assumption is
that all countries will contribute in the short term, which includes expanding participa-
tion beyond Countries of the Organization for Economic Cooperation and Development
(OECD) and involving key OECD countries [34]. We decided not to include RCP2.6 in
the climate model ensemble because adaptation planning requires robust, representative
climate change scenarios. This means there are two medium stabilization scenarios (RCP4.5
and RCP6) to choose from, as well as one with extremely high baseline emissions (RCP8.5).
In this case, combining RCP4.5 and RCP8.5, which comprise a medium stability scenario
and a high emission scenario while spanning the entire range of radiative forcing triggered
by RCP4.5, RCP6, and RCP8.5 is the optimum option. Despite the fact that we only used
RCP4.5 and RCP8.5 to create ensembles, the method presented here can easily be adapted
to other RCPs.

3.2. Climatic Means Changes

The initial decision is based on a set of estimates of mean air temperature (T) and total
annual precipitation sum (P) increases from 1971 to 2100, dispersed in the model domain
between longitude 32◦ E and 40◦ E and latitudes 7◦ N and 13◦ N. The 105 CMIP5 General
Circulation models (GCM) for RCP4.5 and 78 for RCP8.5 for change in temperature and
precipitation were calculated. The Climate Explorer (http://climexp.knmi.nl) (accessed
on 15 June 2021) of the Royal Netherlands Meteorological Institute (KNMI) was used to
make this measurement. The 10th and 90th percentile values for ∆T and ∆P are measured.
All the model runs were used in RCP4.5 and RCP8.5 independently after resampling the
GCM data to the same 2.5◦ × 2.5◦ grid. Creation of scenarios data inputs for impacts
modeling, assessment of the effects in relation to the current environment, and discus-
sion of effective adaptation responses are all common uses of downscaling. Significant
uncertainties associated with climate model scenarios typically cascade into even greater
uncertainties in regional climate change scenarios and impacts [35]. The complete range
of GCM projections is wide and extended when downscaled or turned into possible im-
pacts, with high uncertainties attached [35,36] and it cascades to an even broader spectrum.
The models can also be classified as reflecting the Warm-Wet, Warm-Dry, Cold-Wet, and
Cold-Dry corners of the full spectrum, as well as projections that are around the median

http://climexp.knmi.nl
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tendency of future model projections, since the available future predictions range from
extremely wet to extremely dry future climates, or from extremely warm to extremely cold
future climates. These figures represent the four extremes of predicted temperature and
precipitation variations. Both the tenth percentile value for ∆T and the tenth percentile
value for ∆P are classified as ‘cold and dry’. The ‘cold, wet’ corner of the continuum is
represented by the 10th percentile value for ∆T and the 90th percentile value for ∆P. The
90th percentile value for ∆T and the 10th percentile value for ∆P both fall into the ‘warm,
dry’ category. The 90th percentile value for ∆T and the 90th percentile value for ∆P are
both in the ‘warm, wet’ category. The 10th and 90th percentile values are used in place
of the minimum and maximum projections to avoid the collection of outliers [37,38]. The
model runs’ proximity to the 10th and 90th percentile values is calculated using percentile
rank scores corresponding to the model runs’ projections for ∆T and ∆P in relation to the
whole range of forecasts in the complete ensemble [6]:

D
PT

i ,PP
j =

√
(|PT

i −PT
j |)

2
+(|PP

i −PP
j |)2

(1)

where DPT
i ,PP

j
is the distance of a model (j)’s ∆T and ∆P (PT

i and PP
j , respectively), to the

corner’s (i)’s 10th and/or 90th percentile of ∆T and ∆P score for the entire ensemble
(PT

i and PP
j , respectively). For each corner, the five models with the lowest D values and

data available for a regular time phase are chosen from the ensemble. Since the GCM runs
will be downscaled, only models that contain data for a daily time step are chosen. Model
runs with data only available in bigger time increments are integrated in the initial pool of
available model runs, which are used to measure the percentile values of the model runs,
in order to acquire a complete picture of all anticipated probable futures. Each RCP has its
own RCP. The first selection yields five model runs for each RCP. All ensemble members
are implemented in the ensemble that goes through the initial selection step for GCMs
with available ensemble members of various initial conditions (denoted by rxixpx after
the GCM’s name). If all ensemble members of the initial criteria are used, The 10th and
90th percentile values are described differently if all ensemble members of the original
criterion are utilized per GCM than if only one ensemble member of the initial criteria is
employed. We decided to encompass all ensemble members with an initial condition, as
each one contributes to a different result and there is no way of knowing which one should
be preferred over the others.

3.3. Refined Selection: Changes in Climatic Extremes

Extreme climatic events and changes are particularly important because of their
potentially devastating effects on humanity and ecosystems, as highlighted by the Inter-
governmental Panel on Climate Change’s Special Report on Extreme Events (SREX) [39].
After the initial screening process, the number of Models left is further lowered. The model
runs are evaluated for their expected changes in climatic extremes in this phase. Changes
in two Expert Team on Climate Change Detection and Indices (ETCCDI) indices for air
temperature and precipitation are used to measure changes in climatic extremes. Variations
in the Warm Spell Duration Index (WSDI) and the Cold Spell Duration Index (CSDI) are
investigated to describe changes in air temperature extremes. Since the climate model
ensemble will be used to force hydrological and agricultural growth models, we decided
to look at variations in R99pTOT and CDD as evident indices of precipitation extremes
leading to corresponding hydrological extremes. WSDI is a useful indicator for instances
when crops may be subjected to water stress due to increased evapotranspiration during
hot spells, but CDD is a good indicator for crop growth during dry spells. The indices
are calculated for each of the 2.5◦ × 2.5◦ grid cells in the research region using regular
model performance for each year in the future era (2071–2100) and the reference period
(1971–2000). The most appropriate index for air temperature and the most important
indicator for precipitation are taken into account for each model chosen in the first selection.
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For example, the models in the warm, wet corner use WSDI, which shows warm periods,
and R99pTOT, which shows extreme precipitation events. In this case CDD and CSDI are
ignored, but the dry and cold corners are considered for models in the two related indices
are both rated and given a score of 1–5 for the five models originally selected for each corner.
Likewise, the model with the highest WSDI increase gets five points, while the model with
the lowest WSDI increase gets one Point. To arrive at a final result, all points are added
together. The models with the highest final scores are selected based on their final score.
This reduces the number of models for each corner from five to one. For each RCP, four
corners x two models equals eight models that are validated against the climatic reference
product.The description of extreme indices used in this study is depicted in Table 1.

Table 1. Extreme indices used during the GCM selection method. Tables should be placed in the
main text near to the first time they are cited.

Climate Variable ETCCDI Index Description of the ETCCDI Index

Precipitation R99pTOT Precipitation as a result of exceptionally wet days (>99th percentile)
CDD Maximum length of a dry spell (P < 1 mm): consecutive dry days

Air Temperature
WSDI

Warm spell duration index: the number of days in a period of at least
six days where the daily maximum temperature (TX) is greater than

the 90th percentile.

CSDI
Cold spell duration index: the number of days in a period of at least
six days where the daily minimum temperature (TN) is less than in

the tenth percentile.

In the preceding steps, the precipitation skill score of the screened models was cal-
culated using the mean temperature change and the annual sum of the precipitation and
extreme indices, between the group that received the maximum weighted rank skill value
of 1 and the others obtained a rank based on their difference to this highest calculated using
Equation (2).

SKEI = 1− EIh − EIt

EIh
(2)

SK denotes the weighted ran for the particular extreme index. EI denotes the maximum
index value in a group, h denotes the highest index value in a group, and t denotes the
target index to be classified. Similarly, when the means were changed that is ∆T (◦C)
and ∆P (%), the ranking (SKm) was established based on the difference ∆T (◦C) or ∆P (%)
exposed by each member with the percentile became relevant value for this group.

SKm = 1−
(∆T or ∆P)10,50 or 90thpercentile − (∆T or ∆P)target

(∆T or ∆P)10,50 or 90thpercentile
(3)

3.4. Past Performance

The initial decision focuses on a series of projections of mean air temperature (∆T) and
total annual precipitation sum (∆P) changes for the period.

After the refined range, the remaining models are validated against the WFDEI data
set [26]. The qualification score covers the years 1980 to 2004, and skill scores for each
model are calculated using all monthly values from the 25-year data set. The ability of each
model to simulate the reference climate is determined by comparing monthly mean air
temperature and monthly rainfall totals between the model simulation and the WFDEI. In
order to analyze variations in the model performance between different river basins and
between the upstream and downstream sections of the basins, a validation is carried out
for each sub-basin (Figure 1) in order to prevent overestimation and underestimation in the
entire area.

Refs. [40–42] developed skill ratings to measure the efficiency of the selected GCM runs.
Temperature and precipitation capabilities are calculated differently. The method [40] is used
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to calculate the temperature skill ranking. The least cumulative value of two distributions of
each binned value was calculated to produce a metric that quantifies the common area between
two probability distribution function PDFs. This temperature Skill Score was calculated using
Equation (4):

SKTmp =
n

∑
1

minimum(ZGCM,Zobs) (4)

The number of bins used to calculate the PDF is represented by n. The frequency of
values in a given bin from the model is represented by ZGCM, while ZObs represents the
frequency of values in a given container/bin from the observed data. This skill is given a 1
if the simulated and observed data are identical, and a 0 if there are no similarities at all.
In this study, 100 bins were used to generate the PDFs. The precipitation ability score is
based on [41]; it is made up of a series of five skill score functions that account for different
characteristics of precipitation behavior. These skill score functions are described below
for our case of comparing GCM data to the WFDEI dataset: these are the five skill score
functions for a specific model j:

f1 = 1−
(
|AGCM −AWFDEI|

2·AWFDEI

)0.5
(5)

f2 = 1−
(∣∣A+

GCM−A+
WFDEI

∣∣
2·A+

WFDEI

)0.5

(6)

f3 = 1−
(∣∣A−GCM −A−WFDEI

∣∣
2·A−WFDEI

)0.5

(7)

f4 = 1−
(∣∣PGCM − PWFDEI

∣∣
2·PWFDEI

)0.5

(8)

f5 = 1−
(
|σGCM − σWFDEI|

2·σWFDEI

)0.5
(9)

where AGCM and AWFDEI are the fractional areas over (+) and under (−) the 50th percentile,
respectively, and A+ and A− are the fractional areas below the simulated (climate model)
and observed precipitation cumulative density function (PDF) curves. The standard de-
viation of the probability distribution function is σ, P that denotes the average annual
precipitation over the Upper Blue Nile Basin. Each of the aforementioned elements is meant
to cover distinct parts of the probability distribution feature of climate models, such as the
mean and total area (Equations (5) and (8)), smaller and greater amounts of precipitation
(Equations (6) and (7)), and the form of the distribution (Equation (9)). Each model j:
multiplies these five influencing factors to arrive at a single rainfall skill rating.

skprec = f1·f2·f3·f4·f5 (10)

Finally, the overall skill or rank is multiplied by all of the skill ratings for reproducing
reference temperature and precipitation, as well as the rankings/scores based on variations
in the means and extremes:

Final skill score = skEI1 ·skEI2 ·sk∆P·sk∆T·skTemp·skprec (11)

A greater score implies better performance in this skill category, whereas a lower one
suggests poor performance. For each group of climate models, these competence ratings
can be converted into a simple ranking from 1 to 5.

The climate model selection strategy used in this study follows the approach and
methods proposed by [6,14,40,43,44] with a few tweaks to the evaluation criteria.
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4. Results
4.1. Selection of Models
4.1.1. Changes in Climatic Means

For both RCP4.5 and RCP8.5, a total of 25 models were chosen from the 105 and
78 models encompassing all ensemble members, respectively, based on changes in mean air
temperature and annual sum of precipitation between 2071–2100 and 1971–2000. Figure 2
and Table 2 show the results of the initial short-listing of the GCM model runs. Only those
GCM runs were kept in this step that exhibited minimal differences with the 10th, 50th,
and 90th percentile values of ∆T (◦C) and ∆P (%), which were resulting in sets of five GCM
runs at each corner and five in the center for each RCP with the remaining model runs
not being processed further. For each RCP, a total of 20 model runs were chosen in this
manner. It is worth noting that the RCP8.5 model pool’s range of forecasts for ∆T and
∆P was substantially greater than the RCP4.5 model pools. ∆P varies from −11.80% to
60.83% for the latter, more extreme RCP, and T ranges from 2.41 ◦C to 5.58 ◦C; however,
these ranges are substantially greater for the former (RCP4.5), with ∆P ranging between
10.24% and 42.66% and ∆T between 0.92 ◦C and 3.49 ◦C. The differences between the 10th,
50th, and 90th percentile values in the relevant corner or center were also utilized to rank
the GCM runs that were shortlisted. This rating was established to be utilized in the final
selection process so that the model runs that best represent the group of models or kind
of situation (Warm-Wet, Warm-Dry, Cold-Wet, Cold-Dry, or the Median) are prioritized.
The terms “Wet-Cold” and “Dry-Cold” in the “Wet-Cold” and “Dry-Cold” scenarios do
not indicate that future temperatures will be colder than the reference period, but instead
that future warming will be lower than the Warm scenarios. In the scenarios “Dry-Cold”
and “Dry-Warm”, the labels Dry and Warm are just descriptive of the scenario’s relative
position to others.
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Figure 2. Changes in mean air temperature (∆T) and annual precipitation sum (∆P) projected for all 
included GCM runs (a) for RCP4.5 and (b) for RCP8.5 between 2071 and 2100 as well as 1971 and 
2000. The full-spectrum corners for ∆T and ∆P are indicated by blue crosses. The model runs that 
were chosen are highlighted in red, while the model runs that were shortlisted are represented in 
green. 

Table 2. Initially selected models using Change in climatic means for RCP 4.5 and RCP8.5. 

Figure 2. Changes in mean air temperature (∆T) and annual precipitation sum (∆P) projected for
all included GCM runs (a) for RCP4.5 and (b) for RCP8.5 between 2071 and 2100 as well as 1971
and 2000. The full-spectrum corners for ∆T and ∆P are indicated by blue crosses. The model runs
that were chosen are highlighted in red, while the model runs that were shortlisted are represented
in green.



Sustainability 2022, 14, 2140 9 of 18

Table 2. Initially selected models using Change in climatic means for RCP 4.5 and RCP8.5.

Scenario RCP4.5 RCP8.5

RCP Projection Model ∆P (%) ∆T (◦C) Model ∆P (%) ∆T (◦C)

Warm-Dry

CSIRO-Mk3-6-0_r8i1p1 −10.22 3.25 CSIRO-Mk3-6-0_r4i1p1 −11.7 5.58
CSIRO-Mk3-6-0_r3i1p1 −8.35 3.41 CSIRO-Mk3-6-0_r1i1p1 −10.7 5.47
CSIRO-Mk3-6-0_r6i1p1 −9.75 3.44 CSIRO-Mk3-6-0_r8i1p1 −11.8 5.25
CSIRO-Mk3-6-0_r1i1p1 −10.24 3.42 CSIRO-Mk3-6-0_r2i1p1 −10.5 5.43
CSIRO-Mk3-6-0_r2i1p1 −10.08 3.49 CSIRO-Mk3-6-0_r7i1p1 −11 5.33

Cold-Dry

GFDL-ESM2G_r1i1p1 −0.71 1.75 GISS-E2-H_r1i1p1 −10.5 3.98
FIO-ESM_r3i1p1 −4.37 1.9 GISS-E2-R_r1i1p1 −4.5 3.44

GISS-E2-R_r5i1p1 −3.59 1.87 GISS-E2-H_r1i1p2 −4.23 3.93
FIO-ESM_r2i1p1 −4.3 1.97 GFDL-ESM2G_r1i1p1 −1.4 3.91
inmcm4_r1i1p1 −2.00 1.75 FIO-ESM_r2i1p1 −2.71 4.01

Cold-Wet

CanESM2_r5i1p1 23.68 2.48 BNU-ESM_r1i1p1 53.69 2.69
BNU-ESM_r1i1p1 42.66 0.92 FGOALS_g2_r1i1p1 20.19 2.41

FGOALS_g2_ r1i1p1 8.24 1.19 CESM1-BGC_r1i1p1 18.48 3.21
CCSM4_r4i1p1 9.99 1.69 CCSM4_r6i1p1 17.73 3.36
CCSM4_r2i1p1 9.68 1.65 CCSM4_r2i1p1 17.15 3.32

Warm-Wet

IPSL-CM5A-LR_r3i1p1 26.17 2.91 IPSL-CM5A-LR_r2i1p1 56.03 5.35
IPSL-CM5A-LR_r1i1p1 28.12 2.82 IPSL-CM5A-LR_r1i1p1 60.83 5.38
IPSL-CM5A-LR_r4i1p1 24.42 2.85 IPSL-CM5A-LR_r3i1p1 47.55 5.35
IPSL-CM5A-LR_r2i1p1 22.42 2.82 IPSL-CM5A-LR_r4i1p1 58.57 5.2

CanESM2_r4i1p1 25.12 2.52 CanESM2_r5i1p1 45.94 4.92
IPSL-CM5A-LR_r3i1p1 26.17 2.91 IPSL-CM5A-LR_r2i1p1 56.03 5.35

Mean (50th
percentile)

CESM1-CAM5_r2i1p1 11.54 2.36 CanESM2_r1i1p1 37.67 5.06
bcc-csm1-1-m_r1i1p1 10.73 1.78 CanESM2_r2i1p1 36.95 5.09

CanESM2_r3i1p1 19.16 2.58 CanESM2_r3i1p1 35.94 5.04
CanESM2_r1i1p1 18.72 2.56 CanESM2_r4i1p1 40.82 4.97

IPSL-CM5B-LR_r1i1p1 13.59 1.92 IPSL-CM5B-LR_r1i1p1 34.77 3.94

4.1.2. Changes in Climatic Extremes

Based on expected changes in climatic extremes, the 20 model runs chosen for each
RCP were explored further. Table 3 details the expected improvements in a number of
critical indices. The model runs with the highest changes in the extreme indices for each of
the corners are as follows: Warm-Wet, Warm-Dry, Cold-Wet, and Cold-Dry receive priority
during the final pick comparable to the rank assigned based on changes in the means. The
center or mean situations, unlike the four corners, were not examined using extreme indices.
Tables 3 and 4 show the ranking and scores for the means and severe indices as well as
the ability scores for reproducing reference climate for RCP4.5 and RCP8.5, respectively.
The model run with the largest or lowest changes in mean precipitation or temperature
also has the highest or lowest change in the related extreme index most of the time. For
“Wet” scenarios, the R99pTOT (%) index was utilized, while for “Dry” scenarios, the CDD
(%) index was employed. WSDI (%) was utilized for the “Warm” scenarios, while CSDI
(%) was used for the “Cold” scenarios. In this approach, a collection of two (2) indices
were examined for each of the four (4) scenarios: Warm-Wet, Warm-Dry, Cold-Wet, and
Cold-Dry.
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Table 3. Selection of remaining models using the change in climatic extremes for RCP 4.5.

RCP Projection Model ∆R99P Tot (%) ∆CDD (%) ∆WSDI (%) ∆CSDI (%)

Warm-Dry

CSIRO-Mk3-6-0_r8i1p1 26.35 −10.02 1959.46 −98.07
CSIRO-Mk3-6-0_r3i1p1 12.57 −8.31 2677.96 −97.48
CSIRO-Mk3-6-0_r6i1p1 17.59 −9.34 1871.25 −98.22
CSIRO-Mk3-6-0_r1i1p1 24.91 −9.77 2501.96 −98.78
CSIRO-Mk3-6-0_r2i1p1 25.92 −9.74 2451.11 −98.05

Cold-Dry

GFDL-ESM2G_r1i1p1 32.9 −2.1 634.53 −93.63
FIO-ESM_r3i1p1 __ __ __ __

GISS-E2-R_r5i1p1 __ __ __ __
FIO-ESM_r2i1p1 __ __ __ __
inmcm4_r1i1p1 5.41 −3.34 858.61 −52.22

Wet-Cold

BNU-ESM_r1i1p1 __ __ __ __
bcc-csm1-1-m_r1i1p1 71.71 5.36 944.7 −87.52
FGOALS_g2_ r1i1p1 __ __ __ __

CCSM4_r4i1p1 __ __ __ __
CCSM4_r2i1p1 80.39 3.46 879.57 −83.52

Wet-Warm

IPSL-CM5A-LR_r3i1p1 182.56 12.66 1575.59 −96.59
IPSL-CM5A-LR_r1i1p1 210.48 13.43 1081.35 −94.09
IPSL-CM5A-LR_r4i1p1 136.30 11.511 1476.11 −96.55

IPSL-CM5A-LR_r2i1p1 200.19 8.766 914.82 −95.67
CanESM2_r4i1p1 80.96 5.24 859.92 −90.38

__ Sign indicates that there are no extreme indices data for those listed models in Table 4.

Table 4. Selection of remaining models using the change in climatic extremes for RCP8.5.

RCP Projection Model ∆R99P Tot (%) ∆CDD (%) ∆WSDI (%) ∆CSDI (%)

Warm-Dry

GISS-E2-H_r1i1p1 ___ ___ ___ ___
GISS-E2-R_r1i1p1 ___ ___ ___ ___
GISS-E2-H_r1i1p2 ___ ___ ___ ___

GFDL-ESM2G_r1i1p1 124.26 −5.99 1376.13 −99.79
FIO-ESM_r2i1p1 ___ ___ ___ ___

Cold-Dry

CSIRO-Mk3-6-0_r4i1p1 37.83 −13.58 3525.97 −99.98
CSIRO-Mk3-6-0_r1i1p1 68.59 −13.19 3227.31 −99.68
CSIRO-Mk3-6-0_r8i1p1 15.44 4.99 2546.26 −100
CSIRO-Mk3-6-0_r2i1p1 3.05 −11.49 3102.2 −99.78
CSIRO-Mk3-6-0_r7i1p1 19.83 −12.21 4388.02 −99.85

Wet-Cold

BNU-ESM_r1i1p1 ___ ___ ___ ___
FGOALS_g2_r1i1p1 ___ ___ ___ ___
CESM1-BGC_r1i1p1 ___ ___ ___ ___

CCSM4_r6i1p1 ___ ___ ___ ___
CCSM4_r2i1p1 158.93 5.49 1835.49 −97.79

Wet-Warm

IPSL-CM5A-LR_r2i1p1 709.7 21.26 1094.01 −94.79
IPSL-CM5A-LR_r1i1p1 638 24.34 1305.77 −92.69
IPSL-CM5A-LR_r3i1p1 420.94 19.96 1988.23 −90.75
IPSL-CM5A-LR_r4i1p1 604.9 21.26 1791.89 −95.09

CanESM2_r4i1p1 80.96 5.24 859.92 −90.38

__ Sign indicates that there are no extreme indices data for those listed models on Table 5.
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Table 5. Selection of models using past performance for RCP4.5 and RCP8.5.

Scenario RCP4.5 RCP8.5

RCP Projection Model Tscore P Score Model Tscore P Score

Warm-Dry

CSIRO-Mk3-6-0_r8i1p1 0.63 0.23 CSIRO-Mk3-6-0_r4i1p1 0.55 0.36
CSIRO-Mk3-6-0_r3i1p1 0.62 0.26 CSIRO-Mk3-6-0_r1i1p1 0.52 0.39
CSIRO-Mk3-6-0_r6i1p1 0.55 0.25 CSIRO-Mk3-6-0_r8i1p1 0.55 0.41
CSIRO-Mk3-6-0_r1i1p1 0.59 0.38 CSIRO-Mk3-6-0_r2i1p1 0.55 0.16
CSIRO-Mk3-6-0_r2i1p1 0.65 0.24 CSIRO-Mk3-6-0_r7i1p1 0.51 0.34

Cold-Dry

GFDL-ESM2G_r1i1p1 0.55 0.41 GISS-E2-H_r1i1p1 0.66 0.25
FIO-ESM_r3i1p1 0.53 0.43 GISS-E2-R_r1i1p1 0.63 0.22

GISS-E2-R_r5i1p1 0.54 0.52 GISS-E2-H_r1i1p2 0.68 0.03
FIO-ESM_r2i1p1 0.49 0.46 GFDL-ESM2G_r1i1p1 0.66 0.22
inmcm4_r1i1p1 0.52 0.44 FIO-ESM_r2i1p1 0.58 0.43

Cold-Warm

CanESM2_r5i1p1 0.58 0.40 BNU-ESM_r1i1p1 0.64 0.36
BNU-ESM_r1i1p1 0.64 0.35 FGOALS_g2_r1i1p1 0.59 0.46

FGOALS_g2_r1i1p1 0.59 0.37 CESM1-BGC_r1i1p1 0.6 0.21
CCSM4_r4i1p1 0.56 0.51 CCSM4_r6i1p1 0.58 0.27
CCSM4_r2i1p1 0.60 0.51 CCSM4_r2i1p1 0.60 0.45

Warm-Wet

IPSL-CM5A-LR_r3i1p1 0.60 0.35 IPSL-CM5A-LR_r2i1p1 0.57 0.43
IPSL-CM5A-LR_r1i1p1 0.64 0.35 IPSL-CM5A-LR_r1i1p1 0.64 0.38
IPSL-CM5A-LR_r4i1p1 0.60 0.39 IPSL-CM5A-LR_r3i1p1 0.46 0.14
IPSL-CM5A-LR_r2i1p1 0.57 0.39 IPSL-CM5A-LR_r4i1p1 0.60 0.14

CanESM2_r4i1p1 0.57 0.32 CanESM2_r5i1p1 0.58 0.40

CESM1-CAM5_r2i1p1 0.59 0.62 CanESM2_r1i1p1 0.57 0.25
bcc-csm1-1-m_r1i1p1 0.62 0.44 CanESM2_r2i1p1 0.49 0.44

Mean CanESM2_r3i1p1 0.56 0.32 CanESM2_r3i1p1 0.56 0.39
CanESM2_r1i1p1 0.57 0.25 CanESM2_r4i1p1 0.57 0.43

IPSL-CM5B-LR_r1i1p1 0.58 0.30 IPSL-CM5B-LR_r1i1p1 0.58 0.27

4.1.3. Past Performance

The final model is chosen based on model performance validation against the WFDEI
dataset. The model runs were evaluated for their ability to recreate the reference precipi-
tation and temperature data after an evaluation of their anticipated changes in averages
and extreme indices. Table 5 shows the expected skill ratings for the remaining GCM
runs resulting from climate extremes. The last skill scores and ranks were generated by
multiplying all relevant skill scores awarded to each model run by a factor of two after
awarding skill scores based on historical performance. Each scenario was assigned a final
rank, with the model run with the highest final skill score receiving the highest rank, and
so forth. The temperature skills score of all selected models is higher than the precipitation
score in both RCP4.5 and RCP8.5. The wet warm corner received the lowest precipitation
skill score for RCP8.5. Despite the fact that the proposed method aims to combine the
benefits of envelope-based and past-performance-based GCM selection for impact assess-
ments, it has scale constraints in both climatic mean and extreme mean analyses when
averaging the entire area [6,14]. The skill scores of both precipitation and temperature were
calculated for the entire area after subdividing into 16 sub-basins (Tables 6 and 7). Except
for a few sub-basins, all models have shown higher precipitation and temperature skill
scores compared to without subdividing the entire study area.
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Table 6. Skill scores for GCM runs remaining after Step 2.

GCM Runs Tana North
Gojam Beshilo Weleka Jemma South

Gojam Muger Guder Fincha Didessa Anger Wonbera Dabus Belles Dinder Rahad Guder

IPSL-CM5A-LR_r3i1p1 0.39 0.51 0.60 0.61 0.66 0.63 0.70 0.68 0.52 0.68 0.50 0.57 0.62 0.62 0.68
BNU-ESM_r1i1p1 0.22 0.34 0.18 0.36 0.33 0.51 0.31 0.51 0.35 0.47 0.30 0.39 0.54 0.54 0.23

CSIRO-Mk3-6-0_r3i1p1 0.38 0.40 0.29 0.36 0.36 0.47 0.42 0.35 0.42 0.50 0.35 0.70 0.11 0.11 0.76
inmcm4_r1i1p1 0.20 0.18 0.21 0.41 0.35 0.29 0.32 0.36 0.23 0.43 0.22 0.26 0.63 0.63 0.25

bcc-csm1-1-m-r1i1p1 0.29 0.22 0.18 0.23 0.31 0.40 0.38 0.44 0.37 0.49 0.32 0.41 0.28 0.28 0.39
IPSL-CM5A-LR_r2i1p1 0.13 0.22 0.29 0.35 0.36 0.31 0.37 0.40 0.23 0.37 0.21 0.26 0.31 0.31 0.21
CSIRO-Mk3-6-0_r4i1p1 0.33 0.46 0.18 0.35 0.34 0.46 0.42 0.31 0.49 0.45 0.40 0.66 0.13 0.13 0.58
GFDL-ESM2G_r1i1p1 0.46 0.30 0.42 0.64 0.46 0.59 0.43 0.54 0.35 0.47 0.30 0.42 0.51 0.51 0.52

CanESM2-r3i1p1 0.41 0.58 0.29 0.27 0.26 0.28 0.25 0.16 0.55 0.18 0.60 0.45 0.17 0.17 0.26

Table 7. Skill scores for GCM runs of mean air temperature remaining after Step 2.

GCM Runs Tana North
Gojam Beshilo Weleka Jemma South

Gojam Muger Guder Fincha Didessa Anger Wonbera Dabus Belles Dinder Rahad Guder

IPSL-CM5A-LR_r3i1p1 0.46 0.57 0.63 0.63 0.58 0.58 0.56 0.69 0.60 0.66 0.61 0.65 0.67 0.60 0.59
BNU-ESM_r1i1p1 0.35 0.43 0.60 0.56 0.55 0.63 0.56 0.66 0.66 0.65 0.65 0.63 0.72 0.66 0.69

CSIRO-Mk3-6-0_r3i1p1 0.47 0.53 0.53 0.56 0.53 0.53 0.57 0.71 0.57 0.66 0.58 0.66 0.67 0.62 0.68
inmcm4_r1i1p1 0.56 0.51 0.56 0.47 0.47 0.44 0.47 0.46 0.45 0.45 0.47 0.47 0.53 0.54 0.56

bcc-csm1-1-m-r1i1p1 0.56 0.70 0.60 0.61 0.61 0.62 0.69 0.68 0.66 0.71 0.68 0.66 0.63 0.61 0.57
IPSL-CM5A-LR_r2i1p1 0.46 0.53 0.58 0.59 0.60 0.56 0.55 0.66 0.57 0.68 0.61 0.61 0.66 0.58 0.61
CSIRO-Mk3-6-0_r4i1p1 0.45 0.48 0.52 0.54 0.57 0.51 0.49 0.72 0.49 0.69 0.52 0.69 0.68 0.65 0.68
GFDL-ESM2G_r1i1p1 0.58 0.59 0.62 0.61 0.58 0.65 0.61 0.64 0.64 0.64 0.63 0.68 0.69 0.70 0.65

CanESM2-r3i1p1 0.53 0.62 0.51 0.54 0.52 0.61 0.50 0.63 0.64 0.62 0.61 0.60 0.60 0.64 0.64
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4.1.4. The Weighted Rank of the Overall Steps

The result of the overall weighted rank of all steps used in this study is shown in
Tables 8 and 9 for RCP4.5 and RCP8.5, respectively. Even though all the five selected model
in the dry cold corner in both RCP4.5 and RCP8.5 shows the best performance, they are not be
preferred for climate change impact study due to lack of daily precipitation and temperature
data. So, in the spectrum of the dry corner in both RCP4.5 and RCP8.5, FIO-ESM-r3i1p1 and
FIO-ESM_r2i1p1 were replaced by Inmcm4_r1i1p1 and GFDL-ESM2G_r1i1p1, respectively.

Table 8. For all eligible RCP4.5 GCM runs, change in means (e and f), change in extremes (a, b, c, and
d), and skill ratings for recreating reference precipitation and air temperature (g and h).

a b c d e f g h

Projection Climate Model

Weighted
Rank

∆R99pTOT
(%)

Weighted
Rank

∆CDD
(%)

Weighted
Rank

∆WSDI
(%)

Weighted
Rank

∆CSDI
(%)

Weighted
Rank ∆T

(◦C)

Weighted
Rank ∆P

(%)

Skill
Score

for Tem-
perature
(SkTmp)

Skill
Score

for
Precipi-
tation

(SkPerc)

Final
Skill

Score (a ∗
b ∗ c ∗ d ∗
e ∗ f ∗ g ∗

h ∗ 10)

Final
Rank

Wet-Warm

IPSL-CM5A-
LR_r3i1p1 0.87 — 1 — 0.92 0.87 0.6 0.35 1.46 1

IPSL-CM5A-
LR_r1i1p1 1 — 0.69 — 0.89 0.93 0.64 0.35 1.27 2

IPSL-CM5A-
LR_r4i1p1 0.65 — 0.94 — 0.9 0.81 0.6 0.39 1.02 3

IPSL-CM5A-
LR_r2i1p1 0.95 — 0.58 — 0.89 0.74 0.57 0.39 0.82 4

CanESM2_r4i1p1 0.77 – 0.55 — 0.79 0.83 0.57 0.32 0.5 5

Wet-Cold

CanESM2_r5i1p1 0.7 — — 0.96 0.3 0.78 0.58 0.4 0.36 4
BNU-ESM_r1i1p1 — — — — 0.63 0.59 0.64 0.35 0.84 1

FGOALS_g2_
r1i1p1 — — — — 0.82 0.27 0.59 0.37 0.48 3

CCSM4_r4i1p1 — — — — 0.84 0.33 0.56 0.51 0.8 2
CCSM4_r2i1p1 1 0.35 0.33 0.85 0.87 0.32 0.6 0.51 0.08 5

Dry-Warm

CSIRO-Mk3-6-
0_r8i1p1 — 1 0.73 — 0.97 0.86 0.55 0.41 1.4 5

CSIRO-Mk3-6-
0_r3i1p1 — 0.83 1 — 0.92 0.93 0.53 0.43 1.614 1

CSIRO-Mk3-6-
0_r6i1p1 — 0.93 0.7 — 0.91 0.91 0.54 0.52 1.53 4

CSIRO-Mk3-6-
0_r1i1p1 — 0.98 0.93 — 0.92 0.86 0.49 0.46 1.613 2

CSIRO-Mk3-6-
0_r2i1p1 — 0.97 0.92 — 0.9 0.87 0.52 0.44 1.59 3

Dry-Cold

GISS-E2-R_r1i1p1 — 0.06 — 0.95 0.64 0.83 0.63 0.23 0.04 5
GISS-E2-R_r4i1p1 — — — — 0.61 0.74 0.62 0.26 0.71 2
GISS-E2-R_r3i1p1 — — — — 0.63 0.7 0.55 0.25 0.61 3
FIO-ESM_r3i1p1 — — — — 0.7 0.49 0.59 0.38 0.77 1
inmcm4_r1i1p1 — 1 — 0.558 0.71 0.4 0.65 0.24 0.25 4

Mean

CESM1-
CAM5_r2i1p1 — — — — 0.93 0.79 0.59 0.62 2.69 1

bcc-csm1-1-
m_r1i1p1 — — — — 0.81 0.73 0.62 0.44 1.62 2

CanESM2_r3i1p1 — — — — 0.83 0.69 0.56 0.32 1.02 4
CanESM2_r1i1p1 — — — — 0.84 0.72 0.57 0.25 0.87 5

IPSL-CM5B-
LR_r1i1p1 — — — — 0.87 0.93 0.58 0.3 1.41 3

Note: — indicated that extreme value is not considered due to the four corners that means the variation of dry
and warm projection.

4.2. Future Climate in the Upper Blue Nile Basin

Mean air temperature rises by 0.92–3.41 ◦C for RCP4.5 and 2.69–5.58 ◦C for RCP8.5
between 1971–2000 and 2071–2100, according to selected ensembles of GCM runs. The
selected ensembles of GCM runs mean extreme indices Precipitation wet days (R99PToT) is
between 5.41–709.7%, Consecutive dry days (CDD) −13.58–21.26%, Warm spell duration
index (WSDI) 858.61–3525.97% and Cold spell duration index (CSDI) −99.98–−52.22%.
Table 10 shows predicted increases in mean air temperature, precipitation, and ETCDDI
indices for selected ensembles of GCM runs 1971–2000 and 2071–2100 over the Upper Blue
Nile Basin. The projected changes in mean air temperature (∆T), warm period duration
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index (WSDI), cold period duration index (CSDI) between 2071–2100 and 1971–2000 for
RCP4.5 are in Figure 3a and RCP8.5 shown in Figure 3c. Between 2071–2100 and 1971–2000,
projected increases in annual precipitation sum (P), precipitation due to exceptionally wet
days (R99pTOT), and consecutive dry days (CDD) for RCP4.5 are shown in Figure 3b and
for RCP8.5 are shown in Figure 3d.

Table 9. For all RCP8.5 GCMs chosen, changes in means (e and f), extremes (a, b, c, and d), and skill
ratings for simulating reference precipitation and air temperature (g and h).

a b c d e f g h

Projection Climate Model

Weighted
Rank

∆R99pTOT
(%)

Weighted
Rank

∆CDD
(%)

Weighted
Rank

∆WSDI
(%)

Weighted
Rank

∆CSDI
(%)

Weighted
Rank ∆T

(◦C)

Weighted
Rank ∆P

(%)

Skill
Score

for Tem-
perature
(SkTmp)

Skill
Score

for
Precipi-
tation

(SkPerc)

Final
Skill

Score (a ∗
b ∗ c ∗ d ∗
e ∗ f ∗ g ∗

h ∗ 10)

Final
Rank

Warm-Dry

CSIRO-Mk3-6-
0_r4i1p1 — 1 0.8 — 0.98 0.7 0.55 0.36 1.08 1

CSIRO-Mk3-6-
0_r1i1p1 — 0.97 0.74 — 0.96 0.64 0.52 0.39 0.89 3

CSIRO-Mk3-6-
0_r8i1p1 — 0.37 0.58 — 0.92 0.7 0.55 0.41 0.31 4

CSIRO-Mk3-6-
0_r2i1p1 — 0.85 0.71 — 0.95 0.63 0.55 0.16 0.3 5

CSIRO-Mk3-6-
0_r7i1p1 — 0.9 1 — 0.94 0.66 0.51 0.34 0.96 2

Cold-Dry

GISS-E2-H_r1i1p1 — — — — 0.87 0.37 0.66 0.25 0.52 4
GISS-E2-R_r1i1p1 — — — — 0.98 0.73 0.63 0.22 1.01 3
GISS-E2-H_r1i1p2 — — — — 0.88 0.75 0.68 0.03 0.15 5

GFDL-
ESM2G_r1i1p1 1 1 — 1 0.88 0.92 0.66 0.22 1.17 2

FIO-ESM_r2i1p1 — — — — 0.86 0.84 0.58 0.43 1.79 1

Cold-Warm

BNU-ESM_r1i1p1 — — — — 0.77 0.97 0.64 0.36 1.69 1
FGOALS_g2_r1i1p1 — — — — 0.69 0.36 0.59 0.46 0.67 3

CESM1-
BGC_r1i1p1 — — — — 0.91 0.33 0.6 0.21 0.38 5

CCSM4_r6i1p1 — — — — 0.96 0.32 0.58 0.27 0.48 4
CCSM4_r2i1p1 1 — — 0.98 0.95 0.31 0.6 0.45 0.77 2

Warm-Wet

IPSL-CM5A-
LR_r2i1p1 1 — 0.55 — 0.94 0.99 0.57 0.43 1.27 1

IPSL-CM5A-
LR_r1i1p1 0.9 — 0.66 — 0.94 0.91 0.64 0.38 1.22 2

IPSL-CM5A-
LR_r3i1p1 0.59 — 1 — 0.94 0.86 0.46 0.14 0.31 5

IPSL-CM5A-
LR_r4i1p1 0.85 — 0.9 — 0.91 0.95 0.6 0.14 0.567 4

CanESM2_r5i1p1 1 — 0.55 — 0.94 0.99 0.57 0.43 1.27 1

Mean

CanESM2_r1i1p1 — — — — 0.83 0.88 0.573 0.25 1.05 5
CanESM2_r2i1p1 — — — — 0.82 0.9 0.49 0.44 1.61 3
CanESM2_r3i1p1 — — — — 0.83 0.93 0.563 0.39 1.72 1
CanESM2_r4i1p1 — — — — 0.85 0.79 0.567 0.43 1.63 2

IPSL-CM5B-
LR_r1i1p1 — — — — 0.91 0.97 0.577 0.27 1.37 4

— indicated that extreme value is not considered due to the four corners that means the variation of dry and
warm projection.

Table 10. Final GCM simulations of mean air temperature, precipitation, and ETCCDI indices
averaged over the research region between 1971 and 2000 and 2071–2100.

Scenario Projection Model ∆T (◦C) ∆P (%) ∆WSDI
(%)

∆CSDI
(%)

∆R99P
(%)

∆CDD
(%)

RCP4.5

Wet-Warm IPSL-CM5A-LR_r3i1p1 2.91 26.17 1575.59 −96.59 182.56 12.66
Wet-Cold BNU-ESM_r1i1p1 0.92 42.66 — — — —

Dry-Warm CSIRO-Mk3-6-0_r3i1p1 3.41 −8.35 2677.96 −97.48 12.57 −8.31
Dry-Cold inmcm4_r1i1p1 1.75 −2.00 858.61 −52.22 5.41 −3.34

RCP8.5

Wet-Warm IPSL-CM5A-LR_r2i1p1 5.35 56.03 1094.01 −94.79 709.70 21.26
Wet-Cold BNU-ESM_r1i1p1 2.69 53.69 — — — —

Dry-Warm CSIRO-Mk3-6-0_r4i1p1 5.58 −11.70 3525.97 −99.98 37.83 −13.58
Dry-Cold GFDL-ESM2G_r1i1p1 3.91 −1.40 1376.13 −99.79 124.26 −5.99

— indicated there is no extreme indices value in the KNMI website.
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Figure 3. Between 2071−2100 and 1971−2000, changes in mean air temperature (T), warm spell du-
ration index (WSDI), and cold spell duration index (CSDI) are forecast for RCP4.5 (a) and RCP8.5 (c).
Between 2071–2100 and 1971–2000, RCP4.5 (b) and RCP8.5 (d) projected changes in annual precipita-
tion sum (P), precipitation due to extremely wet days (R99pTOT), and consecutive dry days (CDD).
For the Upper Blue Nile Basin, Table 11 displays a list of selected Climate Models, Experiments, and
Ensemble Members.

Table 11. List of selected climate models, experiments, ensemble members for the Upper Blue
Nile Basin.

Scenario Model Name Institute Ensembles References

IPSL-CM5A-LR Institut Pierre Simon Laplace, Paris, France r3i1p [45]

BNU-ESM GCESS, BNU, Beijing, China r1i1p1 [46]

RCP4.5 CSIRO-Mk3-6-0 CSIRO Marine and Atmospheric Research r3i1p1 [47]

inmcm4_ Institute for Numerical Mathematics, Moscow, r1i1p1 [48]

bcc-csm1-1-m Beijing Climate Center r1i1p1 [49,50]

IPSL-CM5A-LR Institut Pierre Simon Laplace, Paris, France r2i1p1 [45]

RCP8.5 BNU-ESM_ GCESS, BNU, Beijing, China r1i1p1 [46]

CSIRO-Mk3-6-0 CSIRO Marine and Atmospheric Research r4i1p1 [47]

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory r1i1p1 [51]

CanESM2 Canadian Center for Climate Modeling and Analysis r3i1p1 [52,53]

5. Conclusions

Identifying the best-performing climate model has provided water resource policy-
makers with a wealth of knowledge. The envelope-based approach and past performance
were applied to the Upper Blue Nile Basin for the selection of representative climate models
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for a climate change impact study. Ten general circulation climate models were chosen
for this analysis, five in each representative’s climate model, RCP4.5 and RCP8.5, which
display medium 4.5 W/m2 and maximum 8.5 W/m2 energy released into the atmosphere,
respectively. All ensemble members of the 105 and 78 recommended general circulation
models by the IPCC 5th assessment report for RCP4.5 and RCP8.5, respectively, were
considered to choose the better performing model for the Upper Blue Nile Basin. Three
basic screening measures were used: change in the climatic mean, change in the extreme
climatic variable, and past performance. Using the change in climatic mean, 20 models
were chosen, 5 from each corner. Twenty-five models, including the 50th percentile of
the climatic mean, were also screened using change extreme climatic variable, leaving
ten models with overall weighted rank. The precipitation has shown a 42.66% maximum
increase in the wet cold corner in model BNU-ESM ensemble member r1i1p1, and a 10.22%
decrease in the dry corner in model CISRO-Mk3-6-0 ensemble member r8i1p1 for RCP4.5.
In the dry cold and dry warm corners, precipitation has to show a decreasing rate in all
models for RCP4.5; in the case of RCP8.5, precipitation increased by 60.83%, 58.57% and
56.03% inthea wet warm corner in IPSl-CM5A-LR for ensemble members r1i1p1, r2i1p1,
and r3i1p1, respectively; also, the temperature increased by 5.58 ◦C in the dry warm corner
in the model CISRO-Mk3-6-0 ensemble member r4i1p1.
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