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Abstract: The purpose of this study is to investigate the importance of economic, social, political, and
environmental factors in determining green technology diffusion. We use a unique annual panel
dataset covering 58 nations from 1990 to 2019. Based on dynamic panel data models estimated using
system generalized method of moments (GMM), we test whether the technological achievement of
nations, general technology diffusion trends, environmental performance, democratic accountability,
income distribution, foreign direct investment, income level, and socioeconomic conditions are signifi-
cant determinants. Our findings indicate that green technology diffusion has a significant relationship
with all of these factors. We obtain new evidence that general or brown technological innovation,
diffusion, and achievement trends in a country are significant drivers of environmental technology
diffusion. The findings of our paper have significant implications for sustainable development, given
the importance of green products and technologies. The results of the study suggest that policies
aimed at promoting the diffusion of green technologies may not be successful in the presence of
unfavorable economic, social, political, or environmental conditions.

Keywords: green technology diffusion; climate change; sustainable development; technological
achievement; dynamic panel data

1. Introduction

The benefits of the creation of technology and technology diffusion in climate change
mitigation have been greatly emphasized in recent policy debates in academia and policy
making institutions (e.g., [1–4]). The achievement of environmental goals for sustainable
development, as well as the minimization of their costs, are contingent on the develop-
ment and diffusion of innovative, environmentally friendly technology. Market failures in
terms of technological development are conceptually distinct from environmental exter-
nalities, implying that the deployment of new, ecologically beneficial technology suffers
from a “double externality,” making it a significant topic of interest for researchers and
policy makers.

Although the creation of green technologies plays a key role in climate change miti-
gation and sustainable development, these technologies may not be adopted widely and
their benefits may not be realized. New technologies become beneficial only when they are
widely adopted, which is governed by the process of technology diffusion. Schumpeter [5]
defines the technological progress as consisting of three stages: invention, innovation,
and diffusion. The benefits of a new technology become widespread through the process
of diffusion. As Allan et al. [4] points out, the diffusion of green technologies is even
more important than their invention and innovation for climate change adaptation. The
distinguishing feature of a “green” technology is that it generates or facilitates a reduction
in environmental externalities relative to the status quo. In comparison to the status quo,
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“green” technologies generate or promote a reduction in environmental externalities. Ac-
cording to some analyses, the widespread use of such technology will result in enormous
benefits [2,4]. Economists are skeptical of such assertions, pointing out that evaluations
usually overlook factors of that may impede the diffusion of new technologies.

Waisman et al. [6] provided a perspective that dives into the implementation contexts,
systems, and enabling conditions of green technology implementation in order to identify
actions that can more effectively foster, accelerate, and enable technology adoption. As a
result, this approach assists governments in identifying steps that will expedite, encourage,
and allow technological adoption, as well as in strengthening the policies, strategies, and
legal frameworks that support those efforts. The perspective brought forward by Waisman
et al. [6] is broadly linked to the point raised by previous literature that the benefits of green
technology are contingent on its widespread diffusion. Given the issues of reducing global
warming and mitigating the effects of climate change, even national-level actions will have
a limited impact, implying the need for global policy frameworks. There may be micro-
level reasons for the slow diffusion of green technologies, such as consumer preferences
and/or costs, in addition to the obvious installation costs adopted by the public [7–9].
However, macro-level considerations provide the framework for determining whether
green technology adoption will be broad enough to generate environmental advantages.

Against this backdrop, this study examines a broad range of macroeconomic factors
at the country level that may have an effect on the diffusion of green technology. Al-
though some of these characteristics, such as the overall trend in technology diffusion
and technological achievement, have not been examined previously, there are theoretical
reasons to believe they are significant to green technology diffusion. We evaluate the
following aspects as potential causal factors for green technology diffusion: technological
achievement, general trends in technology diffusion, environmental performance, carbon
dioxide (CO2) emissions, democratic accountability, income distribution, income level,
education as a measure of human capital, foreign direct investment, and socioeconomic
conditions. Several of these factors, such as CO2 emissions, inequality, and democracy,
have been researched in the contexts of environmental sustainability but not specifically as
determinants of green technology diffusion (see, for example, [8,10–16]). To the authors’
knowledge, no other study has evaluated the influence of these factors on the diffusion of
green technologies.

As pointed out by Allan et al. [4], many of the characteristics of the technology
diffusion process for green technologies are similar to those of general technology diffusion.
There is a substantial body of literature on general technology diffusion. Allan et al. [4]
survey green technology diffusion in relation to general technology diffusion and review
the related economic theory. Therefore, we consider the general technology diffusion trends
in a country as one of the factors determining the adaptation rate of green technologies. It
often takes a long time for new, intrinsically superior technologies to diffuse widely, and
diffusion rates vary greatly. For example, while it took 40 years for the clothes washer to
go from one quarter of households to three-quarters, color television achieved the same
amount of diffusion in less than 10 years [2]. However, the technology diffusion in a
country is interlinked to the creation of new technologies or innovation, the diffusion of
old and new technologies, and human skills [17,18]. These indicators serve as a measure of
a country’s “technical advancement”. As a result, we construct a technical achievement
index and investigate its relevance to the diffusion of green technology.

Popper [19,20] asserts that democratic social arrangements are more conducive to in-
novation. The scant empirical evidence in this subject casts doubt on democracy’s positive
role on innovation [15,21,22]. To our knowledge, however, no research has examined the
impact of democracy on environmental technology diffusion, which we anticipate will
have a different dynamic than technology innovation and other type technology diffusion.
Income distribution is another factor that may affect the diffusion of environmental technol-
ogy. As noted by Magnani [23] and Pfaff [24], inequality has a complicated impact on the
creation and diffusion of green technologies. When the median voter’s income surpasses
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the national average, economic redistribution increases the demand for environmental
protection. The per capita income is another factor, as most of the research and develop-
ment (R&D) leading to innovations and its adaptation happen in high-income countries.
Education is critical to a country’s progress. Bartel and Lichtenberg [25] believe that highly
educated individuals are more inclined to adopt new technologies, hence influencing their
diffusion and demand. Foreign direct investment (FDI) flows, as argued by Driffield and
Love [26], Popp [27], and Dechezleprêtre et al. [28,29], may function as critical drivers of
environmental technology creation and diffusion, compelling us to investigate them as
a factor impacting green technology diffusion. In worsening environmental conditions,
such as higher CO2 emission, better socioeconomic conditions and higher environmen-
tal performance enhance the demand for environmental quality, hence, they also impact
environmental technology innovation and diffusion in a positive way [30–32].

The objectives of this paper are threefold: (i) to examine the economic, social, political,
and environmental factors of green technology diffusion in 58 countries, (ii) to fill an
important knowledge gap by examining whether the general technology diffusion trends
and technological achievements of nations are also the source of trends in green technology
diffusion, and (iii) to explore several dynamic panel data models using the system GMM
method and show that these factors do indeed play a significant role in the diffusion process
of green technologies. The results are robust to model specifications.

By incorporating additional dimensions of green technology diffusion, this study
contributes to the existing literature in several ways. First, unlike prior research, we place
a premium on the distribution of green technology, rather than on its creation. Second,
we enhance past research by offering a comprehensive set of criteria that may affect the
diffusion of green technologies. While the majority of countries have made only a few
advances in green technology, the spread of green technology has reached practically every
country. Green technology’s spread should not be considered in isolation from a country’s
technological achievement. Third, along with other factors, green technology is likely to be
influenced by brown technical change. Our paper studies green technology dissemination
in relation to nations’ technical accomplishment, which encompasses both the generation
and spread of new technologies. Fourth, we also determine whether brown technology—
which covers a much broader range of technologies—diffusion trends are a significant
driver of green technology diffusion, thus, filling an important knowledge gap in the
literature. Fifth, we extend previous research by incorporating a broad range of factors that
may influence the diffusion of green technologies, including democratic accountability, per
capita income, education, socioeconomic status, foreign direct investment, CO2 emission,
and environmental performance. These variables comprise the most comprehensive set of
variables, not all of which have been explored previously. Sixth, we update the technological
achievement index of Desai et al. [17] from 1990 to 2019 and expand its scope to 58 nations.
Thus, in comparison to earlier research, our study covers a longer time period and includes
a greater number of countries. Seventh, we also estimate panel data models that account
for the endogeneity of some explanatory variables. Additionally, unlike earlier research,
we estimate dynamic panel data models for a longer period, which allows for sluggish
adjustment and lagged effects to be taken into account. Our empirical findings demonstrate
that these factors are good determinants of the diffusion of green technologies. The evidence
is unaffected by a variety of mode specifications. Our findings have important policy
implications, since they imply that unfavorable country-level macro conditions may impede
policy initiatives targeted at promoting green technology development and adaptation.

The remainder of the paper is structured as follows: Section 2 conducts a review of the
relevant studies. Section 3 discusses the empirical methodology and explains the data used
in the study. Section 4 analyzes the empirical findings, and Section 5 concludes.

2. Literature Review

Global warming is a significant issue in the modern era, with a variety of consequences
for humanity and the environment. Climate change is a factor in global warming. Due to
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the underlying threat to the planet’s energy balance and climate, technological innovation
must be encouraged.

A number of studies examine the relationship between democracy, inequality, and
country-level environmental technology change. Scruggs [33] investigates the effects of
economic and political inequality on environmental regulations; his findings indicate that
increasing inequality can result in a degradation of environmental quality, as the sustainabil-
ity approach assumes. Vona and Patriarca [13] examine the relationship between inequality
and green technologies for the members of the Organisation for Economic Co-operation and
Development (OECD) between 1985 and 2000, concluding that inequality in rich countries
is negatively correlated with the diffusion of green technologies, whereas inequality in
poor countries is dependent on per-capita income. Kempf and Rossignol [10] analyze the
relationship between inequality and green technology policy using a theoretical approach
in which they model the endogenous growth process. Their theoretical conclusions imply
that increasing social inequality has a detrimental effect on the ecosystem. Even in the face
of adverse environmental conditions, an unequal society tends to consume more resources.
Nonetheless, You et al. [34] assess the influence of democracy and financial openness on
CO2 emissions using data from 1985 to 2005, finding evidence that greater democracy
appears to cut emissions, while increased financial openness appears to have no effect
on emissions. Lv [35] studies the influence of democracy and income on CO2 emissions
data from 1997 to 2010 in 19 developing nations, finding evidence that democracy reduces
emissions when a country’s wealth level is above a specific level. Zecca and Nicolli [15]
evaluate the factors and advancements of environmental technologies and eco-friendly
innovations using data between 1980 and 2013, utilizing a dataset of patent applications,
inequality, and democratization on green technological transformation. Economic growth,
inequality reduction, and more democratic societies all have a substantial association with
environmental technological change in 77 nations, according to their empirical findings.

Additionally, the literature abounds with survey studies on the diffusion and devel-
opment of green technologies. Allan et al. [4] conduct a review of the literature on the
dissemination and development of green technology, focusing on policy instruments as
well as the adoption decisions of individuals and businesses. Their findings indicate that
certain elements such as knowledge, awareness, cognitive biases, and values all play a
significant influence in the diffusion of technology. Popp et al. [11] conduct another review
of the literature, focusing on the role of green technical advancements. Their survey shows
that the process of developing environmentally friendly policies encountered numerous
obstacles, including resource constraints, climate change adaptation, R&D investment, and
environmental regulation. This innovation process, on the other hand, establishes a link
between the adoption of new technologies, the diffusion of knowledge, and the long-term
sustainability of economic growth.

The majority of the existing research on green technological diffusion in the literature
has focused on empirically measuring cross-country technological innovation and diffu-
sion. Hall and Helmers [36] examine significant innovators’ patents on green technologies,
utilizing the OECD countries’ green technology patent classes. Their findings indicate that
the pledged patents serve to ensure the safety of environmentally friendly innovations
and aid in their diffusion. Nonetheless, Jin [37] studies worldwide technology diffusion
using data from the OECD’s multi-region general equilibrium model. The findings indicate
an increase in the dissemination of green innovations, cross-country R&D activities, and
incentives for global climate mitigation. Du et al. [14] evaluate the influence of green techno-
logical diffusion on CO2 emissions throughout the 1996–2012 period using a panel dataset
covering 71 nations. These effects are dependent on countries’ income levels; the higher the
income level, the more economies contribute to CO2 emission reductions. Recently, Halkos
and Skouloudis [38] published another study analyzing the diffusion and development
of environmental technology utilizing a country-level database for 56 nations from 2005
to 2014. Their findings indicate that government effectiveness, foreign direct investment,
and human capital development all contribute to the spread of environmental technolo-
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gies. Lv et al. [39] use the data envelopment analysis (DEA) methodology and the global
Malmquist-Luenberger index (GML) to examine the relationships and disparities between
financial scale, financial structure, and financial efficiency on green technology innovation
in China from 2003 to 2017. The empirical findings reveal that financial efficiency and
financial scale have a detrimental effect on green technology innovation, whereas financial
structure has a beneficial effect. Additionally, Horbach [40] examines the causes of green
technology dissemination using a German firm-level survey dataset, obtaining evidence
that the growth of inventions, environmental instruments, and regulations promote green
technology. Additionally, there are studies [11,41–44] that examine the impact of envi-
ronmental regulations, tools, innovations, and international environmental policy on the
diffusion of green technologies in various sectors and countries, obtaining evidence that
promotes green technology generation and diffusion.

Both the theoretical and empirical literature have established a link between environ-
mental conditions and the diffusion of green technologies. Ghezzi et al. [45] investigate the
Italian mobile network market’s regulation, environment, strategy, and technology (REST)
model. Theoretical and empirical findings add additional support to current research on
the diffusion of mobile technologies by merging technology diffusion and strategy analysis.
Pérez-Suárez and López-Menéndez [46] assess the performance of environmental forecasts
using the sustainability-based environmental Kuznets curve (EKC) and environmental
logistic curve (ELC) models. Their findings provide compelling evidence for country-
specific CO2 emission policies. Similarly, Hötte [8] improves the modeling of technological
learning and the various shapes of diffusion curves in several dimensions by employing a
macroeconomic agent-based model. The empirical and theoretical findings demonstrate
the applicability of climate policies based on the type of diffusion barriers and the extent to
which green technologies can be advanced. Satrovic and Ahmad [47] evaluate the existence
of EKC for the Gulf Cooperation Council (GCC) countries by examining the relationships
between carbon dioxide emissions per capita, urban population, per capita GDP, electric
power consumption per capita, and democratic accountability index. Their findings indi-
cate that the EKC exists for Saudi Arabia and Bahrain, but that it does not exist in the other
countries, which have a U-shaped curve.

Several related studies have focused on the efficacy of environmental attitudes and aware-
ness in promoting green technology adoption. Zeng et al. [48] investigate the dynamics of green
technology diffusion and consumers’ environmental attitudes, obtaining evidence that their
habits and attitudes favor green technology diffusion. Hussain et al. [49], on the other hand,
employ the survey approach to examine customers’ attitudes and awareness toward green tech-
nology. According to the data, there is a substantial correlation between the process of acquiring
green products and customer awareness. Finally, Obydenkova and Salahodjaev [50] examine
the relationship between the Climate Laws, Institutions, and Measures Index (CLIMI), cognitive
abilities, and democracy index in 94 countries. Their findings indicate that societies’ demo-
cratic and cognitive capabilities are positively correlated with climate change policies. Other
research [51–56] has empirically confirmed that consumers’ habits, attitudes, and awareness
processes are critical for green technology uptake.

We expand on previous research by introducing new dimensions of green technology
dissemination in this study. Unlike earlier research, we concentrate on the spread of
green technology rather than just the development of green technologies. We further
extend the past research by introducing a broad range of factors that may influence green
technology diffusion.

3. Methodology and Data
3.1. Dynamic Panel Data Model

Our data covers annual observations for N = 58 countries from 1990 to 2019, during a
T = 30-year span. As a result, we must check for common panel data regression problems
such as multicollinearity, autocorrelation, nonstationarity, heteroscedasticity, heterogeneity,
and cross-section dependence. Unit root tests establish that the variables in our study
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are stationary (see Section 4), so we use dynamic panel data methods to investigate the
relationships between green technology diffusion and its determinants. Historically, the
dynamic panel estimate approach has been utilized in a variety of empirical investigations
on environmental issues [57–62]. We use the system generalized method moments (GMM)
estimator introduced by Arellano and Bover [63] and Blundell and Bond [64] for the
potential presence of endogeneity, heteroskedasticity, autocorrelation, and fixed effects.
When an unobserved time-invariant country impact is missing, the ordinary least squares
(OLS) technique is biased and inconsistent [65]. The Arellano–Bond GMM estimator
starts by differentiating all regressors and applying the GMM method [66], resulting in
differenced GMM. Furthermore, Arellano and Blundell’s GMM estimation provides a
method in which the first differences of instrumental variables are uncorrelated with the
fixed effects, resulting in a system GMM estimator that is more efficient and consistent. The
System GMM estimator is intended for situations with “small T, large N” panels, which
include a small number of time periods and a large number of individuals; non-exogenous
independent variables that are correlated with past and possibly current realizations of the
error; fixed effects; and heteroskedasticity and autocorrelation within individuals [67].

Most studies in the literature examine the influence of CO2 emissions, inequality,
foreign direct investment, and democracy on green technology [10,15,68–76]. Our study
extends the analysis into the effects of technological change, environmental policy, political
factors, and economic performance on green technology diffusion in a large panel of
world economies. As a result, this study raises new research questions about the effects of
technological, political, social, environmental, and economic elements on the diffusion of
green technology. Also, our study examines these effects using a dynamic system GMM
model rather than static models such as the fixed effects model.

The most general form of the model in our study is as follows:

ETDi,t = f (DAi,t, EDUi,t, FDIRi,t, SOCi,t, TOP1i,t, CO2,i,t,
EPIi,t, GDPi,t, GTDi,t , TAIi,t) + εi,t

(1)

where EDT represents environmental or green technology diffusion which is a function of
ten variables: general technology diffusion (GTD), technology achievement index (TAI), per
capita gross domestic product measured in US dollars (GDP), income inequality measured
as share of the top 1% of highest-income households (TOP1), education index (EDU), socio-
economic conditions (SOC), democratic accountability (DA), foreign direct investment as
percent of gross domestic product (FDIR), CO2 emission (metric tons per capita), and EPI
environmental performance index (EPI). In equation t = 1, 2, . . . , T denotes time in years
and i = 1, 2, . . . , N denotes countries. All variables are in natural logarithms.

We assume that the relationship between the dependent variable and the independent
variables is linear. Thus, the explicit form of the dynamic panel model can be written as
follows:

ln(ETDi,t) = α0 +
p
∑

j=1
ρi ln

(
ETDi,t−j

)
+ β1 ln(DAi,t) + β2 ln(EDUi,t) + β3 ln(FDIRi,t) + β4 ln(SOCi,t)

+β5 ln(TOP1i,t) + β6 ln(CO2,i,t) + β7 ln(EPIi,t) + β8 ln(GDPi,t) + β9 ln(GTDi,t)
+β10 ln(TAIi,t) + ηi + vi,t

(2)

where ln denotes natural logarithm, p is the autocorrelation order, and ηi+vi,t is the usual
error components decomposition of the error term. As usual, we assume that ηi and vi,t are
independently distributed across i and have the familiar error component’s structure, that
is, E(ηi) = 0, E(vi,t), and E(vi,tηi) = 0. Moreover, the errors vi,t are not autocorrelated, i.e.,
E(vi,tvi,s) = 0 for t 6= s.

We use the first to second lags of all variables included in the regression as GMM-
style instruments in our implementation of the Arellano-Bond system GMM model. To
ensure that all relevant variables are included as instruments while avoiding biasing our
parameters, we include one instrument for each variable and lag distance rather than one
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instrument for each variable, time period, and lag distance. This was done because when
the number of instruments included increases in proportion to the number of data, the
parameter estimates become biased toward feasible generalized least squares estimates [64].

The validity of all instruments in the regression model can be evaluated using the
Saragn-Hansen J-test of over-identifying restrictions. We also employ the serial correlation
tests of Arellano and Bond [77]. In the presence of a lagged endogenous variable as
independent variable in the regression model, the two-step system GMM estimator allows
for an exact degree of endogeneity. As a result, we estimate the empirical linkages between
green technology diffusion and chosen variables using Arellano and Bover’s (1995) and
Blundell and Bond’s (1998) two-step system GMM estimator.

Due to the significant correlation between the variables EDU, TAI, EPI, GDP, CO2, and
GDT, we are unable to estimate the whole model in Equation (2). Because of the nature
of the economy or because a variable is already included in an index variable, there is
a high correlation among these variables. EDU, for example, is a sub-component of the
TAI variable. As a result, in Equation (2), we impose various constraints and estimate
11 alternative forms of the generic model. These models, along with the restrictions they
imply on equation two, are given in Table 1. When we exclude a variable or a group of
variables, we consider whether one of the remaining index variables in the model includes
the excluded variable as a component, whether the excluded variable may measure the
same concept that another variable in the model already measures, or whether there is a
high correlation between some variables that results in a serious multicollinearity problem.

Table 1. Model specifications.

Model Name Exclusion Restriction Excluded Variables

Model 1 β6 = β7 = β8 = β9 = β10 = 0 CO2, EPI, GDP, GTD, TAI
Model 2 β2 = β7 = β8 = β9 = β10 = 0 EDU, EPI, GDP, GTD, TAI
Model 3 β6 = β8 = β9 = β10 = 0 CO2, GDP, GTD, TAI
Model 4 β2 = β6 = β7 = β9 = β10 = 0 EDU, CO2, EPI, GTD, TAI
Model 5 β6 = β7 = β8 = β10 = 0 CO2, EPI, GDP, TAI
Model 6 β2 = β6 = β7 = β8 = β9 = 0 EDU, CO2, EPI, GDP, GTD
Model 7 β8 = β9 = β10 = 0 GDP, GTD, TAI
Model 8 β2 = β6 = β8 = β9 = 0 EDU, CO2, GDP, GTD
Model 9 β2 = β9 = β10 = 0 EDU, GTD, TAI
Model 10 β2 = β8 = β10 = 0 EDU, GDP, TAI
Model 11 β2 = β6 = β10 = 0 EDU, CO2, TAI

Implied relationship
Model 1 ETD = f(DA, EDU, FDIR, SOC, TOP1) + ε
Model 2 ETD = f(DA, FDIR, SOC, TOP1, CO2) + ε
Model 3 ETD = f(DA, EDU, FDIR, SOC, TOP1, EPI) + ε
Model 4 ETD = f(DA, FDIR, SOC, TOP1, GDP) + ε
Model 5 ETD = f(DA, EDU, FDIR, SOC, TOP1, GTD) + ε
Model 6 ETD = f(DA, FDIR, SOC, TOP1, TAI) + ε
Model 7 ETD = f(DA, EDU, FDIR, SOC, TOP1, CO2, EPI) + ε
Model 8 ETD = f(DA, FDIR, SOC, TOP1, EPI, TAI) + ε
Model 9 ETD = f(DA, FDIR, SOC, TOP1, CO2, EPI, GDP) + ε
Model 10 ETD = f(DA, FDIR, SOC, TOP1, CO2, EPI, GTD) + ε
Model 11 ETD = f(DA, FDIR, SOC, TOP1, EPI, GDP, GTD) + ε

We use four essential diagnostics after estimating each model utilizing the two-step
system GMM method. The first is the Sargan-Hansen J-test of overidentifying restric-
tions [66,78], which is used to assess the validity of an instrument. Second, the first-order
[AR(1)] and second-order [AR(2)] autocorrelation tests are employed to see if enough lags
are included to account for autocorrelation.
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3.2. Data

The study uses annual panel data over the period 1990–2019 for 58 countries, which are
listed in Appendix A. These countries are selected based on data availability and include
developing and developed countries. We construct the green technology diffusion and
general technology diffusion using the World Intellectual Property Organization’s (WIPO)
patent dataset. This WIPO dataset contains patent indicators and statistics that are useful
for assessing environmental innovations. This WIPO dataset enables the assessment of
countries’ and firms’ innovation performance, as well as the development of governmental
environmental and innovation policies. The average of the green technology diffusion
and general technology diffusion variables across 58 countries for the period 1990–2019
is depicted in Figure 1. As illustrated in Figure 1, both general technology diffusion and
green technology dissemination increased in tandem until 2010. However, since 2010, green
technology diffusion has increased at a faster rate than general technology diffusion.

Figure 1. A time series plot of the average green technology diffusion and the average general
technology diffusion.

GDP per capita figures, which are purchasing power parity (PPP)-adjusted and in US
dollars, as well as per capita CO2 emissions in metric tons, are sourced from the World
Bank’s World Development Indicators (WDI) database. Additionally, we collect foreign
direct investment from the WDI, which we convert to a proportion of GDP. The income
share of the top 1% of the wealthiest households is derived from World Inequality. The
factors pertaining to democratic accountability and socioeconomic situations are drawn
from the Political Risk Services (PRS) Group database. Both variables are indexed from 1 to
10, with a higher index value indicating better outcomes.

Education index is extracted from the Human Development Report of the United
Nations. The education index calculation is based on an average of expected years of
schooling (of children) and means years of schooling (of adults) which is normalized by
scaling with the corresponding maxima. The environmental performance index is retrieved
from the Socioeconomic Data and Applications Center. The environmental performance
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index has a data cluster based on 25 indicators and 10 policy categories. These policies
are related to the environmental burden of disease, water (effects on human health), air
pollution (effects on human health), water resources, biodiversity and habitat, forestry,
fisheries, agriculture, and climate change [79].

Finally, technological advancements are critical for economic growth and sustainable
development. Its objective is to advance sustainability through countries’ capabilities
and usage of technological and environmental investments. We quantify technological
achievement by developing a technology achievement index using data gathered from
multiple data sources, such as databases maintained by various organizations. We generate
the TAI using the method developed by Desai et al. [17]. The TAI has four dimensions
and sub-indicators: human skill development, new technology creation, old technology
diffusion, and new technology diffusion. Gross enrolment ratios at all levels (excluding
pre-primary) and gross enrollment ratios at the tertiary level are used to determine human
skill development. Patents granted to residents and royalties and license fees collected (in
US dollars per person) are used to quantify the development of new technology. Access
to energy (kWh per capita) and telephone mainlines, as well as cellular users, contribute
to the diffusion of old technology (per 1000 people). The diffusion of new technology is
measured in terms of internet users (per 1000 people) and high-tech exports (percent of
manufactured exports). Figure 2 depicts the average TAI for 58 countries from 1990 to 2019.
After 2005, we observe a slowing of TAI growth, culminating in near-stagnation in 2015.

Figure 2. The average technology achievement index for the whole period.

Table 2 summarizes the statistics for all panel data variables, including the number
of observations (n), the mean, the standard deviation, and the minimum and maximum
values. There are 1740 observations in our balanced data sets. The second panel of Table 2
contains descriptive statistics for level logarithms, where the ln(1 + x) transformation is
utilized in circumstances where direct logarithmic transformation is not possible. However,
when untransformed data is used, our results are qualitatively same. The second panel’s
first column contains the variable names for logarithmic levels that match to the names in
the first panel.
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Table 2. Descriptive statistics.

Variable n Mean Std. Dev. Min Max

Levels

ETD 1740 425.147 2126.166 0.000 44,195.000
DA 1740 4.706 1.641 0.042 6.000

EDU 1740 0.726 0.135 0.254 0.943
FDIR 1740 0.010 0.026 −0.062 0.272
SOC 1740 6.595 2.335 0.167 11.000
TOP1 1740 0.134 0.054 0.037 0.378
CO2 1740 7.378 4.564 0.675 27.431
EPI 1740 59.337 11.559 29.090 90.680

GDP 1740 23,488.320 17,159.730 982.501 120,962.200
GTD 1740 25,899.140 98,867.840 0.000 1,423,528.000
TAI 1740 0.295 0.121 0.021 0.820

Log levels
LETD 1740 3.399 2.229 0.000 10.696
LGTD 1740 7.203 2.585 0.000 14.169
LEPI 1740 4.063 0.203 3.370 4.507
LCO2 1740 1.773 0.737 –0.393 3.312
LGDP 1740 9.777 0.816 6.890 11.703
LTAI 1740 –1.318 0.472 –3.863 –0.199

LTOP1 1740 –2.081 0.383 –3.310 –0.973
LEDU 1740 –0.340 0.210 –1.370 –0.059
LDA 1740 1.416 0.664 –3.178 1.792
LSOC 1740 1.762 0.652 –1.792 2.398
LFDIR 1740 0.926 2.449 –6.446 24.053

Note: n is the number of observations while Std. dev. denotes standard deviation.

The Pearson correlation coefficient estimates for all variables are shown in Table 3.
Correlation estimates indicate whether there is a high degree of correlation between the
model’s variables, which may aid in identifying possible multicollinearity. The correlation
coefficients between LETD and LTOP1 are found to be negative. Other variables, on the
other hand, are positively correlated with the diffusion of green technologies. Additionally,
some pairs of variables have a high and positive correlation coefficient. LETD and LGTD,
LTAI and LEDU, LTAI and LGDP, LGDP and LEDU, LGDP and LEPI, LGDP and LCO2,
and LCO2 and LEDU are some of these pairs.

Table 3. The Pearson correlation coefficient estimates.

Variable LETD LDA LEDU LFDIR LSOC LTOP1 LCO2 LEPI LGDP LGTD LTAI

LETD 1.00
LDA 0.28 1.00

LEDU 0.42 0.33 1.00
LFDIR 0.39 –0.09 –0.12 1.00
LSOC 0.37 0.67 0.31 0.11 1.00
LTOP1 –0.16 –0.02 –0.36 0.10 0.10 1.00
LCO2 0.42 0.04 0.59 –0.04 0.19 –0.40 1.00
LEPI 0.30 0.32 0.62 –0.18 0.32 –0.28 0.25 1.00

LGDP 0.44 0.33 0.76 –0.12 0.53 –0.21 0.64 0.69 1.00
LGTD 0.96 0.34 0.46 0.37 0.44 –0.16 0.41 0.32 0.51 1.00
LTAI 0.59 0.31 0.85 0.12 0.32 –0.34 0.57 0.52 0.70 0.64 1.00

Note: Boldface indicates significance at 1% level.

We give the mean of variables by country in Table 4. For each country, the mean is
calculated using the data from 1990 to 2019. China, Japan, and the United States all have
the greatest mean for green technology diffusion, whereas Japan, the US, and China all
have the highest mean for general technology diffusion. Similarly, the US, Japan, Canada,
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and Sweden have the highest mean for the technology achievement index. Switzerland,
Norway, and Luxembourg have the highest mean in the environmental performance index.

Table 4. The means of variables by country for the period 1990–2019.

Country ETD DA EDU FDIR SOC TOP1 CO2 EPI GDP GTD TAI

Argentina 7.37 4.45 0.75 0.00 5.40 0.19 4.12 55.32 14,713.19 473.13 0.25
Australia 148.33 6.00 0.90 0.01 8.51 0.10 16.52 61.79 33,124.07 8827.03 0.34
Austria 137.60 5.64 0.77 0.00 8.62 0.11 7.76 70.99 36,194.82 7582.67 0.34
Belarus 10.80 1.49 0.73 0.00 3.72 0.10 6.40 55.07 10,805.19 564.60 0.29
Belgium 112.70 5.83 0.84 0.01 7.74 0.08 10.09 61.60 33,792.42 7425.20 0.35

Brazil 85.70 4.33 0.59 0.03 5.93 0.26 1.94 58.23 11,232.41 4266.63 0.17
Bulgaria 9.13 5.04 0.72 0.00 4.75 0.12 6.27 56.00 11,941.18 435.77 0.26
Canada 285.10 5.97 0.84 0.01 8.35 0.13 16.09 60.85 34,474.07 16,496.73 0.43
China 7684.33 1.58 0.53 0.17 6.87 0.12 4.66 43.93 6597.00 289,318.70 0.30

Colombia 6.00 4.00 0.57 0.01 4.45 0.22 1.69 60.64 9189.29 201.37 0.18
Croatia 6.17 3.76 0.68 0.00 3.79 0.08 4.39 63.62 16,023.12 300.53 0.25
Cyprus 3.70 5.59 0.72 0.00 8.63 0.11 6.66 60.06 26,159.24 242.17 0.25
Czechia 40.03 5.26 0.78 0.00 7.13 0.09 11.30 65.34 23,265.93 1216.87 0.32

Denmark 121.20 6.00 0.85 0.00 8.78 0.11 8.95 66.31 35,602.46 6842.27 0.38
Egypt 2.97 2.51 0.50 0.00 5.33 0.18 2.07 53.54 7543.04 99.13 0.11

Estonia 5.70 3.96 0.81 0.00 5.16 0.13 12.81 60.07 17,579.90 197.17 0.33
Finland 209.23 6.00 0.84 0.00 8.31 0.09 10.38 66.79 32,149.65 10,016.17 0.41
France 792.47 5.79 0.76 0.01 7.58 0.10 5.63 68.59 30,908.85 52,272.27 0.38

Germany 2186.00 5.64 0.86 0.02 7.80 0.11 9.87 69.76 34,398.31 132,895.40 0.40
Greece 16.87 5.57 0.73 0.00 6.12 0.11 7.54 61.65 23,045.17 696.23 0.26

Hungary 41.67 5.45 0.76 0.01 6.52 0.10 5.38 58.22 17,559.98 1490.33 0.26
Iceland 0.63 6.00 0.82 0.00 8.11 0.09 6.97 68.23 36,525.55 199.67 0.40
India 36.07 5.36 0.43 0.04 5.06 0.18 1.21 36.09 3316.96 3494.80 0.18

Ireland 28.47 5.96 0.82 0.01 8.59 0.11 9.21 61.08 40,124.76 2789.33 0.32
Israel 76.70 5.70 0.83 0.00 7.26 0.16 8.67 58.28 26,739.77 7097.27 0.33
Italy 262.20 4.95 0.73 0.01 7.52 0.08 7.02 68.64 30,524.54 19597.33 0.30

Japan 6129.67 5.24 0.78 0.00 8.09 0.11 9.33 64.44 30,999.44 436,595.90 0.49
Kazakhstan 5.87 1.18 0.74 0.00 4.86 0.13 12.53 39.14 14,608.92 236.77 0.23

Latvia 3.33 3.63 0.77 0.00 4.45 0.09 3.70 67.51 14,774.18 205.73 0.28
Lithuania 5.37 3.91 0.79 0.00 4.79 0.10 4.48 65.05 16,602.91 145.40 0.30

Luxembourg 27.90 5.89 0.73 0.00 9.46 0.13 20.86 71.88 70,381.46 1702.60 0.24
Mexico 26.23 5.04 0.59 0.02 7.06 0.24 4.05 49.09 13,356.05 1009.77 0.21

Moldova 6.73 3.16 0.66 0.00 2.86 0.09 2.57 46.81 5784.08 240.33 0.28
Morocco 4.67 3.73 0.40 0.00 5.59 0.16 1.42 47.92 4936.03 125.20 0.06

Netherlands 358.53 6.00 0.85 0.03 8.85 0.07 10.85 67.52 37,661.82 24,388.67 0.38
New Zealand 17.90 6.00 0.88 0.00 8.37 0.10 7.74 65.75 26,966.66 1557.67 0.32

Norway 93.13 5.93 0.88 0.00 9.44 0.11 8.78 71.50 44,964.18 3861.90 0.42
Peru 1.97 3.93 0.64 0.00 5.28 0.28 1.34 50.87 7504.84 52.70 0.23

Philippines 2.37 4.78 0.60 0.01 5.13 0.19 0.91 53.74 4833.73 108.37 0.12
Poland 123.03 5.44 0.79 0.01 5.94 0.12 8.30 64.48 16,262.97 3436.93 0.31

Portugal 10.63 5.61 0.68 0.00 7.23 0.11 5.15 58.83 22,474.35 544.20 0.26
Romania 22.47 5.39 0.70 0.00 4.86 0.12 4.55 48.84 12,840.81 1066.97 0.24

Russia 588.63 2.80 0.74 0.01 4.94 0.20 12.39 51.52 14,644.80 25,857.43 0.31
Saudi Arabia 21.53 1.02 0.63 0.00 6.81 0.18 16.00 53.22 44,658.53 580.50 0.21

Serbia 2.10 4.18 0.70 0.00 3.51 0.11 7.46 50.43 9897.00 105.30 0.21
Singapore 27.67 2.30 0.70 0.00 8.90 0.13 10.65 59.09 58,887.87 2731.97 0.30
Slovakia 11.43 5.45 0.76 0.00 6.42 0.07 6.99 65.47 18,183.64 299.57 0.31
Slovenia 9.33 3.64 0.82 0.00 4.73 0.07 7.11 62.88 23,343.57 571.03 0.35

South Africa 41.97 4.64 0.66 0.00 5.04 0.16 8.72 38.77 9615.10 1757.37 0.19
Spain 108.30 5.79 0.74 0.01 6.71 0.12 6.31 62.63 26,520.22 6609.40 0.32

Sweden 266.83 6.00 0.85 0.00 8.11 0.10 5.44 70.46 35,556.45 18,433.20 0.43
Switzerland 262.83 6.00 0.82 0.00 9.37 0.11 5.29 78.91 45,063.12 27,650.27 0.39

Thailand 2.87 3.79 0.55 0.01 7.07 0.22 3.24 56.39 10,683.14 174.20 0.21
Turkey 15.80 4.20 0.55 0.00 5.20 0.20 3.66 45.47 15,307.26 1656.87 0.19

UK 550.17 5.91 0.84 0.03 8.73 0.17 8.24 68.15 31,502.90 37,067.67 0.42
US 3588.67 5.92 0.87 0.05 8.53 0.12 18.25 59.20 42,436.14 328,214.90 0.73

Uruguay 0.93 4.75 0.68 0.00 5.84 0.19 1.82 58.38 13,383.80 56.40 0.19
Venezuela 2.53 3.87 0.59 0.00 4.31 0.21 6.21 56.55 14,155.73 66.00 0.17

All countries 425.15 4.71 0.73 0.01 6.60 0.13 7.38 59.34 23,488.32 25,899.14 0.29
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4. Empirical Results and Discussion
4.1. Empirical Results

We begin by reporting the results of essential preliminary tests, such as cross-sectional
dependency, homogeneity, and unit root tests. Cross-sectional dependence is critical when
examining the relationships between variables in panel data models. Due to the prospect
of countries becoming dependent on one another as a result of numerous economic ties
and the effect of shared causes, ignoring spillover effects might result in incorrect inference
and misspecification issues. Thus, we begin by examining cross-sectional dependence.
Additionally, slope homogeneity tests are included. As shown in Table 5, we report five
cross-sectional dependence tests: the Lagrange multiplier (LM) test developed by Breusch
and Pagan [80], the adjusted Lagrange multiplier (LM-adj) test developed by Pesaran
et al. [81], the cross-sectional dependence (CD) test developed by Pesaran [82,83], the LM
cross-sectional dependence (CDLM) test developed by Pesaran [82,83], and the adjusted
CDLM (CDLM-adj) test developed by Baltagi et al. [84]. Another critical preliminary test
in panel estimation is the model coefficients’ country-specific heterogeneity. We employ
two alternative tests to determine slope homogeneity. The first test is Pesaran and Yama-

gata’s [85] truncated slope homogeneity (
∼
∆HAC) test with Blomquist and Westerlund’s [86]

heteroskedasticity and autocorrelation consistent covariance (HAC) adjustment. The sec-

ond test is an adjusted version of the
∼
∆HAC test for small samples, designated by

∼
∆adj, HAC.

Each test is constructed using a pooled ordinary least squares regression with six different
model specifications. LETD is the dependent variable in each model. Each of the Models 1
to 5 include the variables LDA, LEDU, LFDIR, LSOC, and LTOP1, but each also includes
one of the variables LCO2, LEPI, LGDP, LGTD, and LTAI as independent variables, in the
provided order. Model 6 augments the independent variables in Model 1 with the variables
LCO2, LEPI, LGDP, LGTD, and LTAI.

Table 5. The cross-sectional dependence and slope homogeneity tests.

Test Statistic p-Value Statistic p-Value

Test in Model 1 Test in Model 4

LM 2183.630 *** 0.000 1943.164 *** 0.000
LM-adj 5.747 *** 0.000 1.300 0.194
CDLM 9.229 *** 0.000 5.047 *** 0.000

CDLM-adj 8.229 *** 0.000 4.047 *** 0.000
CD 20.234 *** 0.000 1.851 * 0.064
∼
∆HAC 1.318 0.187 1.522 0.128
∼
∆adj, HAC 1.566 0.117 1.808 * 0.071

Test in Model 2 Test in Model 5
LM 2061.656 *** 0.000 2098.710 *** 0.000

LM-adj 3.107 *** 0.002 3.911 *** 0.000
CDLM 7.107 *** 0.000 7.752 *** 0.000

CDLM-adj 6.107 *** 0.000 6.752 *** 0.000
CD 23.936 *** 0.000 13.215 *** 0.000
∼
∆HAC 1.086 0.277 0.896 0.370
∼
∆adj, HAC 1.291 0.197 1.065 0.287

Test in Model 3 Test in Model 6
LM 2087.873 *** 0.000 1993.615 *** 0.000

LM-adj 3.613 *** 0.000 0.427 0.669
CDLM 7.563 *** 0.000 5.924 *** 0.000

CDLM-adj 6.563 *** 0.000 4.924 *** 0.000
CD 20.456 *** 0.000 0.093 0.926
∼
∆HAC 1.094 0.274 –0.565 0.572
∼
∆adj, HAC 1.300 0.194 –0.931 0.352

Note: *, **, and *** denote significance at 10%, 5%, and 1% levels, respectively.
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The cross-sectional dependence tests shown in Table 5 indicate that, with just three
exceptions, the null hypothesis of no cross-sectional dependence is rejected for all countries
in all models at all significant levels. Thus, the results reveal the existence of cross-sectional
dependence among countries, implying that, as a result of the 58 countries’ high degree
of integration, the shock that originated in one of these 58 countries appears to have
propagated to the others. Another significant point is that the unit root tests should be
chosen depending on the cross-sectional dependence test results. Due to the existence of
cross-sectional dependence in the data we employ, the second-generation unit root test
should be employed to ensure that the tests are efficient.

Additionally, Table 5 includes the results of slope homogeneity testing. At all levels
of significance, these tests do not reject the null hypothesis of slope homogeneity across
countries. As a result, the slope is unlikely to vary by country, and the influence of
independent variables on green technology diffusion appears to be homogeneous across
58 countries.

The panel data method that should be utilized is determined by the data’s stationarity
property. Thus, we conduct unit roots tests prior to estimating empirical relationships. We
employ second-generation unit root tests due to the existence of cross-sections in the data.
Among the second-generation unit root tests that allow for cross-sectional dependency, we
use the cross-section augmented Im-Peseran-Shin (CIPS) test of Peseran [87], the modified
CIPS (M-CIPS) tests of Westerlund and Hosseinkouchack [88], the panel analysis of non-
stationarity in idiosyncratic and common components (PANIC) based panel unit root test
(PANIC-Zˆ

e
) of Westerlund and Larsson [89], and the bias adjusted version of the PANIC-Zˆ

e
test (PANIC-Z+

ˆ
e

). The results of the unit root tests are given in Table 6. The results in Table 6

demonstrate that all tests substantially reject the unit root null hypothesis with constant
and constant plus trends specifications at the 1% significance level, with the exception of
LCO2, for which the PANIC-based tests do not strongly reject the unit root null. Given that
the CIPS and M-CIPS tests agree in all cases, we infer that all series are stationary and can
be estimated using the stationary GMM.

Table 6. The panel unit root tests.

Tests with a Constant Tests with a Constant and Trend
Variable CIPS M-CIPS PANIC- Z^

e
PANIC- Z+

^
e

CIPS M-CIPS PANIC- Z^
e

PANIC- Z+
^
e

LETD –3.242 ** –20.948 ** 0.351 –6.539 ** –3.754 ** –22.925 ** –11.739 ** –9.423 **
LDA –2.678 ** –13.952 ** –2.933 ** –0.098 –3.189 ** –18.324 ** –11.557 ** –1.699 *

LEDU –2.524 ** –12.965 ** –8.521 ** –10.696 ** –2.964 ** –16.216 ** –12.564 ** –15.668 **
LFDIR –3.357 ** –22.794 ** –9.841 ** –11.148 ** –3.696 ** –25.112 ** –13.444 ** –8.661 **
LSOC –3.064 ** –18.529 ** –4.000 ** –7.062 ** –3.359 ** –19.583 ** –12.418 ** –10.851 **
LTOP1 –2.536 ** –12.654 ** 0.229 20.017 –3.096 ** –17.190 ** –10.183 ** –10.919 **
LCO2 –1.225 –7.527 ** –0.150 18.714 –1.929 –9.050 ** –10.333 ** 9.327
LEPI –2.604 ** –15.518 ** –3.075 ** –4.206 ** –2.939 ** –13.626 ** –11.114 ** –89.361 **

LGDP –2.243 ** –11.970 ** –6.008 ** –3.786 ** –2.754 ** –17.182 ** –10.324 ** –20.810 **
LGTD –2.612 ** –14.404 ** 9.164 8.626 –3.012 ** –15.136 ** –8.286 ** –10.769 **
LTAI –2.327 ** –11.195 ** 4.408 7.540 –2.763 ** –14.096 ** –7.834 ** –36.558 **

Note: ** and * denote significance at the 1% and 5% significance level, respectively. The null hypothesis for all
tests is the existence of a unit root.

Since all series are stationary, and the concerns are of endogeneity, multicollinearity,
autocorrelation, the system GMM method is used. We provide the system GMM estimates
in Table 7, together with their standard errors, which are given in parentheses below
the parameter estimates. Baltagi [90] points out that the system GMM estimator has
the most desirable properties in the presence of endogenous regressors for stationary
dynamic panels with large cross-sectional (N) and short and fixed time (T) dimensions,
which hold in our case with N = 58 and T = 30. The green technology diffusion—the
dependent variable in our study—is largely driven by general technology diffusion and
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innovation. Therefore, some of the regressors, such as the per capita income, CO2 emissions,
environmental performance, technological achievement, and foreign direct investment,
potentially depend on green technology diffusion. None of the other approaches based on
the common correlated effects estimator of Pesaran [91] are appropriate in our case since
they do not account for variable endogeneity. These alternative approaches work better for
long T and large N and at best require weakly exogenous regressors (see e.g., Chudik and
Pesaran [92] and Baltagi [90]). As Sarafidis [93] and Sarafidis and Wansbeek [94] point out,
the GMM estimator can eliminate cross-sectional dependence and maintain its consistency.
Moreover, a consistent GMM estimator is feasible using a subset of the instruments based on
exogenous instruments (Sarafidis [93] and Sarafidis and Wansbeek [94]). Indeed, following
Sarafidis et al. [95], we perform cross-sectional dependence tests on the residuals of the
system GMM estimates (denoted SYR-CD), which are reported in Table 7. The SYR-CD test
results show that the system GMM estimator accounts for all the cross-sectional dependence
in the data, and our results do not suffer from cross-sectional dependence.

The estimates are obtained using a two-step system GMM since standard errors from
a single-step system GMM are always asymptotically inefficient. In system GMM, the de-
pendent variable’s second to third lags and the first differences of all explanatory variables
except lagged dependent variables are employed as instruments for the first differenced
equation. The level equation is estimated using the first differences of endogenous variables
as instruments. Due to the concerns of multicollinearity, autocorrelation, and endogeneity,
we do not include all possible variables in each model; rather, we include a subset, as
described in Table 1. The level and first-differenced models are assessed using the Lagrange
multiplier Arellano-Bond autocorrelation tests for accurate dynamic specification and the
Sargan-Hansen J-test for instrumental variable validity.

For the dynamic system GMM estimation with one lag, we should reject the first
order serial correlation by the Lagrange multiplier Arellano-Bond test—LM-AR(1)—and
not reject the second order serial correlation AR(2) using the LM-AR(2) test. The LM-
AR(1) tests’ results in Table 7 are all significant at the 1% significance, confirming the
AR(1) specification. However, some of the LM-AR(2) tests are significant at the 5% level
(Models 1–3, 6–8). For these cases, we estimate the models with two lags and find that
both LM-AR(2) and LM-AR(3) tests are insignificant, invalidating the AR(2) specification.
Therefore, all models are estimated with one lag of the dependent variable. Additionally,
the Sargan-Hansen J-test results for the validity of over-identification constraints in Table 7
do not reject the null hypothesis of valid over-identification restrictions at all commonly
used significance levels for all models that we estimate. As a result, we conclude that
the specified instrumental variables are valid and that an AR(1) dynamic specification
is sufficient to capture autocorrelation. The SYR-CD cross-sectional dependence test of
Sarafidis et al. [95], reported in Table 7, which is valid for GMM estimates, indicates that
the system GMM estimator adequately accounts for cross-sectional dependence in the data.
As a result, our findings are not subject to cross-sectional dependence.

We estimate the eleven distinct models specified in Table 1 to evaluate the effects
of the variables examined in this study as potential determinants of green technology
diffusion. Our approach is to estimate regression models with key variables from Table 1,
such as democratic accountability, foreign direct investment, socioeconomic conditions,
and income distribution, while also developing instruments with the same subset. The
estimates are summarized in Table 7. The empirical data indicate that the democratic
accountability variable has a positive sign and is statistically significant across all specifica-
tions at the commonly used 10%, 5%, and 1% significance levels. Thus, more democratic
conditions facilitate the adoption of green technologies, a finding that corroborates Zecca
and Nicolli’s [15] empirical evidence. Similarly, except for models 1 and 4, the effect of
foreign direct investment is large with a positive sign in all other models. This empirical
conclusion corroborates Halkos and Skouloudis’s [38] finding that FDI has a beneficial
influence on green technology development in a static panel data model. As a result, this
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finding demonstrates the critical importance of foreign direct investment in a country’s
spread and development of green technologies.

The education index is closely linked with a number of other factors, including the
TAI, per capita GDP, environmental performance index, and CO2 emission. This is because
education is one of the variables used to construct environmental performance and tech-
nological achievement indices. The association between education level and GDP is well
established in the literature on economic growth (e.g., [96,97]). Additionally, a few studies
establish an empirical link between education and CO2 emission (e.g., [98–100]). Taking this
into consideration, we include education in Models 1,3,5, and 7, but not in others, in order
to avoid the identification problem that emerges when education is a sub-component of
another variable, or multicollinearity. With the exception of Model 5, where education has
a positive effect on green technology dissemination but is not statistically significant, the
education index is statistically significant at all usual significance levels and has a positive
sign in all models where education is included. Thus, it is recognized that a country’s edu-
cation level promotes the dissemination and development of green technology, most likely
with a greater influence when combined with other encouraging elements. This finding is
consistent with Bartel and Lichtenberg’s [25] finding that highly educated individuals have
a comparative advantage in adapting to and learning new technologies, which results in an
increase in demand for new technologies.

According to Table 7, the socioeconomic conditions variable has positive coefficients
and is statistically significant in all models except for Model 4, where the parameter
estimate is statistically insignificant. As the empirical evidence indicates, socioeconomic
conditions in countries have a positive effect on green technology diffusion. To gain a better
understanding of the diffusion of green technology, we take another underlying variable
into account: income inequality. In this study, inequality is quantified by the income share
of the top 1% of highest-income households, denoted by the variable TOP1. In all models
in which it is included, the inequality variable has a significant estimate at the 1% level and
a negative sign, with the exception of Model 2, where the coefficient estimate is statistically
insignificant. This finding is consistent with Vona and Patriarca’s [13] empirical findings.
Thus, the findings imply that a more equitable income distribution fosters green innovation
in societies, while increasing economic inequality retards the diffusion and development of
green technologies.

The CO2 emission variable is included in models 2, 7, 9, and 10, but not in others due to
its strong association with the education index, per capita GDP, and the TAI. CO2 emission
has a positive and statistically significant effect on the diffusion of green technologies in
each specification at the 5% level of significance. As a result, in countries with larger CO2
emissions, the diffusion of green technologies is enhanced. According to Alataş [101],
environmental technologies have a statistically insignificant positive influence on CO2
emission in the EU15’s transport sector. In comparison to our findings, this is a reverse
causality, albeit a statistically insignificant one. Due to the fact that we employ system GMM
estimation, this reverse causality does not affect our estimates. However, Du et al. [14]
find contradictory evidence. They demonstrate that whereas green technology advances
have a negligible influence on CO2 emissions in less developed economies, they have a
considerable impact on CO2 emissions in industrialized ones. However, this conclusion
contradicts the findings of Naseem and Guang Ji [102], who find a statistically significant
negative relationship between renewable energy usage and CO2 emissions.

Due to the substantial association between education index and per capita GDP, the
EPI is included in Models 3, 7–11, but not in others to avoid potential identification and
multicollinearity. The results reveal that the EPI is statistically significant at the 1% level
of significance in each model. Thus, our study establishes that in those countries where
environmental performance is high the diffusion of green technologies is also stronger, indi-
cating that prioritizing environmental issues causes faster adaptation of green technologies.
GDP per capita is included in models 3, 9, and 11 because of its strong association with
the education index, CO2 emission, environmental performance index, and socioeconomic
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conditions index. Except for Model 11, in which the effect of GDP is shown to be statisti-
cally insignificant, the GDP variable shows a positive sign and statistical significance at
usual significance levels in relation to the diffusion of green technologies. It is inferred
that countries with a higher per capita income will invest more in green technology and
inventions, as well as file more patent applications. The conclusion is consistent with Vona
and Patriarca [13] and Zecca and Nicolli [15], who demonstrate a positive and statistically
significant association between GDP and environmental technology. Thus, adaptability
and dissemination of green products and technologies are related to the per-capita income
level and income distribution in all countries. Models 5, 10, and 11 include the general
technology diffusion variable. The coefficient estimates for the general technology diffusion
is positive and significant at the 1% level in all model specifications. Thus, the empirical ev-
idence supports the notion that green technologies have a strong relationship and increase
concurrently with the general diffusion of technology.

Lastly, the TAI, which is calculated by the authors, appears in Models 6 and 8, and
is excluded from others due to its high correlation with the education, CO2, GDP, and
general technology diffusion variables. The estimates in Table 7 reveal that the technology
achievement index has a positive effect on green technology diffusion, which is significant
at the 1% level. Green technology adoption occurs more rapidly in countries with a high
level of TAI because these countries have a track record of easily resolving environmental
issues, minimizing environmental degradation, and enhancing environmental quality.

In summary, green technology diffusion is related to a society’s per capita income,
education level and investment profile, socioeconomic conditions and democratic account-
ability, CO2 emissions, environmental performance, and general technology diffusion and
innovation adaption. As a result, we use the system GMM technique to estimate parameters
for various model specifications while taking into account the relationship between green
technology diffusion and its determinants. As demonstrated in the table, adaption to green
technology diffusion is positive and significant for all variables except inequality. The TOP1
variable’s coefficient is statistically significant (except in model 2) and has a negative sign.
This finding indicates that the diffusion of green technologies is strongly tied to the income
distribution among countries. Additionally, among the 11 models, the most statistically
significant specifications of model 3, model 6, and model 8 might be picked. All param-
eter coefficients are expected and statistically significant at the 1% level of significance
in these models. The technical achievement score and the environmental performance
index, in particular, are significant and favorably connected with the dissemination of
green technologies.

In summary, green technology diffusion is related to the per capita income, education
level, and investment profile of a country. Socio-economic conditions and democratic
accountability, CO2 emissions, environmental awareness, and adaptation of general in-
novations are also significant determinants of green technology diffusion. We estimate
various model specifications using the system GMM method considering the interaction
between green technology diffusion and its determinants, which may lead to endogeneity
issues. Our estimates show that green technology diffusion relates positively and signif-
icant to all variables except for income inequality, for which the relationship is negative
and significant. This conclusion demonstrates a substantial relationship between green
technology dissemination and income distribution across countries, which is one of the
study’s novel results. Two further novel findings concern the technical achievement index
and the environmental performance index, both of which are examined for the first time in
our study. We demonstrate that these variables are major predictors of green technology
diffusion. With rare exceptions, the majority of parameter estimates in the 11 models we
estimate are statistically significant at traditional significance levels.
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Table 7. The parameter estimates for various model specifications.

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11

L.LETD 0.582 *** 0.546 *** 0.544 *** 0.544 *** 0.237 *** 0.536 *** 0.535 *** 0.533 *** 0.515 *** 0.258 *** 0.246 ***
(0.030) (0.021) (0.011) (0.024) (0.015) (0.012) (0.014) (0.017) (0.027) (0.018) (0.019)

LDA 0.075 *** 0.140 *** 0.068 ** 0.093 *** 0.038 * 0.075 *** 0.057 * 0.068 ** 0.081 *** 0.057 *** 0.034 *
(0.022) (0.024) (0.023) (0.012) (0.015) (0.021) (0.024) (0.024) (0.012) (0.011) (0.015)

LEDU 2.138 *** 1.852 *** 0.064 1.753 ***
(0.087) (0.097) (0.106) (0.106)

LFDIR 0.006 0.014 *** 0.011 ** 0.004 0.005 * 0.006 * 0.011 ** 0.014 *** 0.007 * 0.006 * 0.007 **
(0.003) (0.003) (0.004) (0.003) (0.002) (0.003) (0.004) (0.003) (0.003) (0.003) (0.002)

LSOC 0.134 *** 0.242 *** 0.145 *** 0.020 0.044 *** 0.197 *** 0.160 *** 0.195 *** 0.046 ** 0.037 ** 0.035 **
(0.019) (0.029) (0.021) (0.012) (0.010) (0.020) (0.022) (0.022) (0.016) (0.012) (0.012)

LTOP1 −0.249 *** 0.002 −0.257 *** −0.270 *** −0.218 *** −0.230 *** −0.245 *** −0.223 *** −0.289 *** −0.244 *** −0.211 ***
(0.027) (0.030) (0.023) (0.033) (0.035) (0.030) (0.023) (0.023) (0.033) (0.047) (0.039)

LCO2 0.227 ** 0.083 0.015 0.001
(0.073) (0.045) (0.078) (0.033)

LEPI 0.335 *** 0.355 *** 0.663 *** 0.176 *** 0.232 *** 0.192 ***
(0.032) (0.034) (0.035) (0.030) (0.039) (0.044)

LGDP 0.580 *** 0.548 *** 0.033
(0.018) (0.034) (0.028)

LGTD 0.566 *** 0.564 *** 0.550 ***
(0.008) (0.007) (0.012)

LTAI 0.635 *** 0.458 ***
(0.042) (0.037)

Constant 1.321 *** 0.537 *** 0.038 *** −4.794 *** −2.021 *** 1.530 *** −0.263 *** −1.378 *** −5.232 *** −3.093 *** −3.014 ***
(0.051) (0.097) (0.190) (0.179) (0.096) (0.099) (0.212) (0.153) (0.327) (0.214) (0.309)

N 1682 1682 1682 1682 1682 1682 1682 1682 1682 1682 1682
ˆ
σ

2
0.279 0.271 0.268 0.268 0.166 0.269 0.266 0.268 0.260 0.170 0.167

χ2 2239.752
***

2976.453
***

4325.612
***

5742.501
***

70672.990
***

20843.800
***

4251.478
***

18074.680
***

4778.272
***

23848.040
***

26126.06
***0

LM-AR(1) −4.613 *** −4.637 *** −4.570 *** −4.665 *** −4.418 *** −4.588 *** −4.526 *** −4.618 *** −4.617 *** −4.383 *** −4.430 ***
LM-AR(2) 2.458 ** 2.387 ** 2.378 ** 2.408 * 1.872 * 2.389 ** 2.350 ** 2.387 ** 2.363* 1.944 * 1.910 *

J-stat. 56.914 56.885 57.431 55.380 50.096 56.516 56.501 55.739 56.406 47.691 49.086
SYR-CD 1.672 1.285 0.501 1.032 1.285 0.599 0.055 1.020 0.251 0.055 1.349

Note: The table reports system GMM estimates with Windmeijer-corrected standard errors in parentheses. N

denotes number of observations,
ˆ
σ

2
denotes residual variance, χ2 denotes Chi-square statistic for joint significance

of all slope parameters, and LM-AR(1) and LM-AR(2) denote the Arellano-Bond test for first and second order
serial correlation in the first-differenced residuals, respectively. Sargan J stat is the Sargan test of the overidentifying
restrictions. SYR-CD is the cross-sectional dependence test of Sarafidis et al. [95]. *, **, and *** denote significance
at 10%, 5%, and 1% levels, respectively.

4.2. Discussion

The determinants of green technology diffusion were examined empirically in the
context of the general technology diffusion trends, environmental performance, democratic
accountability, income distribution, income level, socioeconomic conditions, and technolog-
ical achievement of nations using a large panel of 58 nations. Our empirical results indicate
that the relationships between green technology diffusion and income level, education level,
investment profile, socioeconomic conditions, democratic accountability, CO2 emission,
environmental performance, brow technology diffusion, and technological achievements
are statistically significant and positive in selected countries. Thus, improvements in these
factors help increase the adaptation and spread of green technologies. Firstly, the income
level of countries is a predominant factor for enhancing green products and sustainable
development. Fatima et al. [103] find that the ratio of consumption of renewable energy to
CO2 emission descends when income rising. At the same time, some studies [15,16,104]
conclude that higher GDP increases carbon emissions. Secondly, the investment profiles
of countries play an important role in the adaption of green innovations. Khan et al. [105]
show significant causal relationships between policies of exports and imports, income
level, and green innovation that have resulted in changes to consumption-based CO2 emis-
sion levels in G7 countries. Likewise, Shahzad et al. [106] find that export diversification
greatly decreases CO2 emissions in selected developed and developing countries. These
outcomes are comparable to the conclusion of Andersson [107] on Chinese exports. In
this respect, our results are complimentary to the empirical evidence presented in these
studies, but in a more extensive coverage of countries, which includes both developing and
developed countries.
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Thirdly, economic development, socio-economic conditions, democratic accountabil-
ity, technological innovation, and environmental performance are particularly prominent
factors shaping green technologies. Wang et al. [108] indicate that political freedom and
institutional quality help to reduce CO2 emission levels when GDP growth and financial de-
velopment are enhancing environmental degradation. The result is in line with the findings
of [109,110]. Zuhair and Kurian [111] recognize some socio-economic barriers which affect
the diffusion of green products, such as the gender gap, lack of human and financial capac-
ity, loss of community spirit, and lack of environmental awareness. Moreover, Chaudhry
et al. [112] find that technological innovations have a significantly positive relationship
with environmental indicators in higher-income East-Asian and Pacific countries.

Energy-efficient and environmentally friendly technologies, as well as patents, pro-
mote environmental technology development. Paramati et al. [113] show that green tech-
nology helps to decrease energy consumption and improve energy efficiency. These results
are similar to the outcomes of [114,115]. Another study by Arbolino et al. [116] concludes
that economic variables have an important role in the diffusion of green technology policies
by using the EPI.

Overall, our empirical analysis demonstrates how the determinants of green tech-
nology diffusion make a positive contribution to attaining a sustainable environment as
described in the relevant literature. However, our results go beyond the previous studies by
including a larger set of factors that affect environmental technology diffusion. Our study
obtains complimentary evidence to previous literature from a broader range of time periods
and a larger number of countries that includes both developing and developed economies.
More importantly, our study is the first to obtain evidence that green technology does
not independently develop and diffuse from the general or brown technology trends and
technological achievement of countries. The general technology diffusion and achievement
trends in a country are significant drivers of the green technology trends.

5. Concluding Remarks and Policy Implications

The main objective of this paper is to identify the major economic, social, political, so-
cial, and environmental determinants of green technology diffusion. We consider per capita
income, income inequality, education level, foreign direct investment, socio-economic
conditions, democratic accountability, CO2 emissions, environmental performance, general
technology diffusion trends, and technology achievement index of nations as potential
factors affecting green technology diffusion. We use the two-step system GMM estimation
method proposed by Arellano and Bover [63] and Blundell and Bond [64] to estimate
various dynamic panel data models. An annual frequency panel dataset for the period
of 1990–2019 is used to examine the links between green technology diffusion and its ex-
planatory factors. Our empirical findings show that inequality has a statistically significant
and negative relationship with green technology diffusion. However, other independent
and instrumental variables have a significant and positive correlation with the adaptation
process to green technologies across countries over the period from 1990 to 2019.

In the light of our findings, it appears that macro conditions at country levels may
impede the promotion of green technology development and diffusion. Several of our
findings require careful consideration. Our findings suggest that the Popper hypothesis in
favor of democracy’s favorable impact in environmental technology innovation also applies
to environmental technology diffusion. All specifications covered in this paper exemplify
democracy’s proactive role. The findings of country-level empirical research conducted
using dynamic GMM estimation demonstrate that increased educational attainment has
an independent, positive effect on the diffusion of green technologies. This is true after
controlling for a variety of other variables, such as income, socioeconomic conditions, and
so on. These findings demonstrate that improving environmental conditions amplify the
effect of increasing educational attainment on labor productivity and economic well-being.
This approach could be used in conjunction with or in substitution of already available
methods of sustainable development. Additionally, our findings indicate that there are



Sustainability 2022, 14, 2008 19 of 23

increased benefits associated with more equitable income distribution and environmental
performance enhancements, as they amplify the adoption of environmentally friendly tech-
nologies that promote sustainable development and aid in mitigating the effects of climate
change. More importantly, our empirical results have some more important implications.

Our findings have implications for policy makers. We find that technological achieve-
ment and trends in the diffusion of brown technologies are important drivers of green
technology diffusion. If the green technologies are not adopted through widespread diffu-
sion, the environmental benefits of environmental technology innovations do not realize.
Therefore, policies such as public R&D activity spending, environmental tax implemen-
tations, preferential tariffs, investment incentives, voluntary programs, and environment
certificates that aim to help companies adopt green technologies and produce in an envi-
ronmentally friendly manner may not be successful, because national-level factors such as
technological achievement, human capital, and general technology diffusion are the main
drivers of green technology diffusion.

Our findings suggest that national policies promoting brown technology innovation
and diffusion benefit not only brown technology, but also contribute to climate change
mitigation through green technology diffusion. Likewise, this holds true for a nation’s
technological achievement. Thus, investing in technology may be a less distorting option
than enacting climate-related regulations and rules. In this sense, our findings imply that
environmental conservation is a significant additional social externality associated with
investments in both green and brown technologies. Global and national policymakers
must gain a better understanding of the critical determinants defining national terrains
that affect the effective development and diffusion of environmental technologies. This
is especially critical for less developed countries, as assessments can help to inform the
portfolio of structural adjustment policies. Policymakers should consider carefully whether
macroeconomic factors could result in a rebound effect or a lock-in mechanism. As a result,
they should prioritize non-price policies over carbon taxation. Increased incentives and
subsidies should be used to accelerate the adoption of green technologies.

Finally, it may be worthwhile to investigate the phenomenon from a variety of an-
gles, employing appropriate variables at various levels of analysis and examining their
interactions. Clearly, dynamic specifications applied to longer time series can assist in this
endeavor by examining the rate of diffusion and the effect of time on the development
and dissemination of environmental technology. Our findings, we believe, establish a
foundation for a more nuanced understanding of the factors influencing country-level
patterns in a variety of technology domains.
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Appendix A

List of countries included in the data set.
Argentina Hungary Portugal
Australia Iceland Romania
Austria India Russia
Belarus Ireland Saudi Arabia
Belgium Israel Serbia
Brazil Italy Singapore
Bulgaria Japan Slovakia
Canada Kazakhstan Slovenia
China Latvia South Africa
Colombia Lithuania Spain
Croatia Luxembourg Sweden
Cyprus Mexico Switzerland
Czechia Moldova Thailand
Denmark Morocco Turkey
Egypt Netherlands United Kingdom
Estonia New Zealand United States
Finland Norway Uruguay
France Peru Venezuela
Germany Philippines
Greece Poland
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