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Abstract: Intelligent data analysis based on artificial intelligence and Big Data tools is widely used by
the scientific community to overcome global challenges. One of these challenges is the worldwide
coronavirus pandemic, which began in early 2020. Data science not only provides an opportunity
to assess the impact caused by a pandemic, but also to predict the infection spread. In addition,
the model expansion by economic, social, and infrastructural factors makes it possible to predict
changes in all spheres of human activity in competitive epidemiological conditions. This article
is devoted to the use of anonymized and personal data in predicting the coronavirus infection
spread. The basic “Susceptible–Exposed–Infected–Recovered” model was extended by including a
set of demographic, administrative, and social factors. The developed model is more predictive and
applicable in assessing future pandemic impact. After a series of simulation experiment results, we
concluded that personal data use in high-level modeling of the infection spread is excessive.
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1. Introduction

The real value of modern technologies is their ability to overcome global challenges.
Undoubtedly, an example of such a challenge is the global COVID-19 pandemic, which has
gripped the attention of the world community for more than a year [1,2]. The pandemic
is having a massive impact on all spheres of human activity and all areas of the economy,
which makes it a global challenge to humanity [3]. Social processes are influenced by the
pandemic from various scientific fields.

Of course, the greatest attention to the SARS-CoV-2 virus and the COVID-19 pandemic
is riveted in the fields of medicine, biochemistry and molecular biology, immunology, and
microbiology. During 2020 and early 2021, Scopus indexed more than 139,000 articles on
COVID-19, of which 101,000 were based on the abovementioned areas, which is approxi-
mately 73% of the total number of papers on COVID-19. The most significant research in
these areas is highlighted in review articles [4–6].

However, the attention of the scientific community to the problems of the COVID-19
pandemic is not limited to the fields of biology and medicine. Social and economic sciences
are working to predict the possible consequences of the virus and pandemic in order to
minimize the negative component of these consequences [7,8]. In the most general sense,
the contribution of the social and economic sciences to countering the spread of the virus
lies in the design of changes in social and economic institutions in order to best respond to
the pandemic as a challenge to the world community [9].

Computer science does not stand aside either. Basically, it is used as a tool in medical
and biological research [10,11], but its use is not limited to this. Computer science is used
to analyze personal and generalized data on morbidity in certain territories [12], in contact
tracing [13,14], and to predict the virus spread [15,16].

Artificial intelligence is an area of computer science that is intended to solve the above
problems, but it has its own specifics [17]. There are a number of studies aimed at the
automated detection of COVID-19 cases based on symptoms or other indirect signs [18,19].
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These and other articles describe COVID-19 detection models based on neural networks
designed to reduce the burden of identifying COVID-19 cases.

Another important class of papers consists of articles devoted to predicting the spread
of COVID-19 using artificial intelligence technologies and intelligent data analysis [20,21].
These and other papers are based on the statistical analysis of historical data on morbidity,
the identification of patterns in the virus spread, and the extrapolation of these patterns.
The result of using these models is to forecast estimates on the incidence of COVID-19 in
certain territories. These estimates can be used as a basis for making decisions to counter
the spread of COVID-19 in certain territories, to adopt restrictions on people’s lifestyles,
and to prepare the resources of the healthcare system.

Simulation is the primary data mining tool for predicting the spread of COVID-19 [22].
Simulations are used to model the spread of COVID-19 over large areas [23,24] and within
individual facilities [25,26]. Simulation models describe the structures and behavior of
systems at different levels, highlighting their key elements. As a result of experiments with
this system model, scientists obtain a time series of morbidity data in particular systems.
In addition, simulation models provide the ability to test hypotheses. Researchers have
the opportunity to find out how certain measures of influence on the system will affect
morbidity. This result is important for making management decisions to counter the spread
of COVID-19 in various regions.

The use of traditional methods for predicting morbidity (historical analogies, expert
assessments) does not take into account the complexity of society as a system and ignores
the multiple relationships between various elements of society that affect the spread of the
virus. Thus, historical analogies with the SARS-CoV pandemic in 2002–2003, the H1N1
influenza pandemic in 2009–2010, or the Ebola epidemic in 2014–2016 do not take into
account the individual characteristics of SARS-CoV-2 that affect its ability to spread in
society. In addition, society itself has changed since these epidemics, which makes any
estimates of morbidity based on historical analogies far from reality.

Simple mathematical methods also fail to predict the spread of COVID-19 due to its
non-linear nature. In complex systems, there are many causal relationships, reinforcing
and balancing feedback loops and delays. The system in which the virus spreads is
complicated and, in general, cannot be solved by analytical methods. Nevertheless, the
mathematical description of dependencies within the system can be used as the basis for a
simulation model.

In addition to the tools used in predicting the spread of COVID-19, the input data
quality is a key element that affects the quality of the forecast result [27]. It should be
understood that the original data may be incomplete, contradictory, or even partially
inaccurate. There are ways to obtain stable simulation results in the presence of defects in
the original data. These methods are mainly in the areas of computer and data science [28].

Particular attention on the part of researchers and sociologists is focused on the
problem of privacy. Some of the data used by researchers to predict the spread of COVID-
19 are personal data. There are several differing opinions expressed by the scientific
community about this [29–31]. In this paper, the authors try to achieve a balance between
privacy and the potential public benefit from more accurate predictions. The solution of
this dilemma, in a particular case, depends on the formulation of the simulation problem,
the set of data required, the potential increase in forecast accuracy from the personal data
use, and the potential public benefit from the increase in forecast accuracy, which includes
pre-prepared hospital places, time-imposed restrictions, and economic measures. It is not
possible to find a unified solution that is applicable with equal success in various cases due
to the uniqueness of each case with respect to the above set of factors.

2. Materials and Methods
2.1. Simulation Tools

Simulation is proposed as the most practical way to respond to the spread of COVID-19.
According to simulation methodology, the real system (region, city, institution) is replaced
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by a model of this system which has all the properties of the system that affect the spread
of COVID-19; as a result, the model imitates the system’s behavior in similar situations. It
is assumed that carrying out experiments on a model is equivalent to experiments on a
real system. The degree of correspondence of the results of simulation experiments to the
behavior of real systems is determined by the accuracy and realism of the model [32,33].

There are several simulation paradigms that define the rules for formalizing the model,
the notation for describing the model, the type of mathematical patterns description, and
the procedure for conducting simulation experiments [34]. To model the spread of the virus,
two main modeling paradigms are used: system dynamics and agent-based modeling.

Agent-based modeling describes a system as a set of agents placed in certain conditions
capable of performing conditional actions that affect the system [35,36]. Agent-based
modeling is applicable for a relatively small number of agents, which makes it applicable
for use in modeling the spread of the virus in small institutions. In addition, agent-based
modeling allows the researcher to endow agents with special properties that affect their
behavior in various situations; therefore, it is often used in behavior models aimed to predict
the behavior of agents under various restrictions [37,38]. When formalizing the model, it is
required to indicate individual properties of agents, which is often associated with personal
data. Data can be anonymized or aggregated, but this requires additional preprocessing.

In contrast to agent-based modeling, system dynamics does not plunge into the level
of individuals and works with high-level and abstract data [39,40]. The system dynamic
model is structurally represented by the set of stocks, flows, and converters, which together
create feedback loops of different complexity levels. In the mathematical sense, a system
dynamic model is a system of differential equations. In this case, the analytical solution
for the system of differential equations is replaced by a numerical solution; therefore, the
system of differential equations can be arbitrarily complex.

There is a special class of system dynamic models designed to simulate the spread of
viruses. They are called SIR models [41], which means “Susceptible–Infected–Recovered”.
The basic SIR model divides the entire population of a region into 3 categories—susceptible
(S), infected (I), and recovered (R) individuals—and also establishes high-level rules for
the transition between these three groups. The speed of transition of individuals from one
group to another can be determined by the group size at a given time, by external factors,
or by a combination of internal and external factors. To simulate the spread of COVID-19,
various modifications of SIR models are used, including additional groups of individuals:
exposed (E)–SEIR models [42,43], dead (D)–SIRD models [44], and re-susceptible (D)–
SIRS/SIS models [45,46].

As a model for carrying out a simulation experiment, a modified SEIR model with
quarantined individuals is used [47]. The basic SEIR model was extended by including a
set of demographics and social and economic factors. A special part of the quarantined
population was added. The rate of the individuals’ movement between susceptible (S)
and quarantined (Q) groups is determined by administrative and social measures affecting
the spread of COVID-19. Administrative factors are determined by decrees of regional
officials mandating the introduction or removal of restrictions on social and economic
behavior for the population [48]. Social factors include the population’s fatigue from
compliance with control measures and the awareness of their behavior and compliance
with the imposed restrictions.

Adding a new group of individuals corresponds to the process of isolating individuals
who are not exposed or infected in order to separate them from those who are potentially
infected but not yet detected. These measures were applied on a large scale in many
countries at the beginning of the pandemic in 2020 and are now being applied locally to
decelerate the spread of COVID-19 as enormous new waves of infection have occurred in
certain regions.

This modification of the classical SIR model not only allows the researcher to take into
account the presence of the incubation period of the SARS-CoV-2 virus, but also to model
various scenarios for establishing and removing restrictions in various economy sectors.
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Thanks to this extension, the model is more consistent with reality, and the researcher has
the opportunity to study the impact of various scenarios for establishing and removing
restrictions on the dynamics of morbidity in the region. The model structure is presented
in Figure 1.
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This model assumes a sequential movement between groups from left to right along
the route “S–E–I–R” (Figure 1) with the possibility of temporary isolation in quarantine
(“Q”). ϕ(t) andω(t) in Figure 1 denote scenarios for establishing and removing restrictions,
respectively. The speed of individuals’ transitions along the route “S–E–I–R” is determined
by the coefficients β, γ, and δ. In this case, β corresponds to the intensity of effective con-
tacts, leading to new cases of morbidity, and γ and δ are quantities inversely proportional
to the duration of the incubation period and of the disease, respectively.

Algorithmically, this model is a system of five differential equations [47], each of which
corresponds to its own group of individuals. The modeling process involves numerically
solving a differential equations system for a given set of parameter values. The values
of the parameters are determined during the calibration process in such a way that the
model dynamics of the COVID-19 spread with the greatest degree of accuracy correspond
to the real data on the historical interval. The process of numerically solving a system of
differential equations is implemented in the Python programming language, including the
process of selecting parameters during the calibration process.

2.2. Input Data

To calibrate the model, historical data on the current number of COVID-19 infections in
St. Petersburg, Russian Federation, from 1 August 2020 to 31 October 2020 (three months),
were used. This time interval corresponds to complete and consistent datasets from two
official sources (to be described further). In addition, for a historical perspective, this period
turned out to be the initial stage of a large wave that lasted in St. Petersburg until the
beginning of the summer of 2021. In this regard, it is advisable to identify the characteristics
of the COVID-19 spread over the wave by calibrating the model on the given dataset.

Datasets consist of a single variable: the current number of COVID-19-infected indi-
viduals in the region. This variable is available in several sources, which makes it possible
to compare simulation results with calibration results on datasets from different sources.
The time increment of one day is used.

To assess the impact of personal data on the accuracy of the COVID-19 spread forecast
during modeling, two data sources are used.

Data Source 1: official data of the situational headquarters of the Federal Service for
Surveillance on Consumer Rights Protection and Human Wellbeing (Available online: https:
//coronavirus-monitor.ru/coronavirus-v-sankt-peterburge/, last accessed 15 May 2021).

Data Source 2: official data provided by the regional executive agencies in the field of
healthcare in St. Petersburg.

These two data sources have different methods of collecting and processing data, as
well as different frequency in their updates, which explains the differences in the data
series. However, there is a fundamental difference in the nature of the data. Data from

https://coronavirus-monitor.ru/coronavirus-v-sankt-peterburge/
https://coronavirus-monitor.ru/coronavirus-v-sankt-peterburge/


Sustainability 2022, 14, 1995 5 of 11

Source 1 are initially collected and processed in an aggregated form, which excludes the
possibility of personal data there. Data from Source 2, on the other hand, are collected
with the presence of personal data, before being processed and then depersonalized. For
this reason, data from Source 2 are potentially more accurate. A comparison of data from
Source 1 with data from Source 2 is provided in Figure 2.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 12 
 

to compare simulation results with calibration results on datasets from different sources. 
The time increment of one day is used. 

To assess the impact of personal data on the accuracy of the COVID-19 spread fore-
cast during modeling, two data sources are used. 

Data Source 1: official data of the situational headquarters of the Federal Service for 
Surveillance on Consumer Rights Protection and Human Wellbeing (Available online: 
https://coronavirus-monitor.ru/coronavirus-v-sankt-peterburge/, last accessed 15 May 
2021). 

Data Source 2: official data provided by the regional executive agencies in the field 
of healthcare in St. Petersburg. 

These two data sources have different methods of collecting and processing data, as 
well as different frequency in their updates, which explains the differences in the data 
series. However, there is a fundamental difference in the nature of the data. Data from 
Source 1 are initially collected and processed in an aggregated form, which excludes the 
possibility of personal data there. Data from Source 2, on the other hand, are collected 
with the presence of personal data, before being processed and then depersonalized. For 
this reason, data from Source 2 are potentially more accurate. A comparison of data from 
Source 1 with data from Source 2 is provided in Figure 2. 

 
Figure 2. The comparison of data from Source 1 and Source 2. 

Data from Source 2 have more fluctuations, which are explained by differences in the 
methodology for collecting and processing the data. One of these differences, for example, 
may be weekly seasonality or the peculiarities of accounting for incoming and outgoing 
patients between data fixation points. At the same time, it is noticeable that the overall 
incidence rate according to data from both sources is quite the same, so it is reasonable to 
conclude that the data are not contradictory. 

3. Results and Discussion 
This section is divided into subheadings and aims to provide a concise and precise 

description of the experimental results, their interpretation, and the experimental conclu-
sions that can be drawn. 

Figure 2. The comparison of data from Source 1 and Source 2.

Data from Source 2 have more fluctuations, which are explained by differences in the
methodology for collecting and processing the data. One of these differences, for example,
may be weekly seasonality or the peculiarities of accounting for incoming and outgoing
patients between data fixation points. At the same time, it is noticeable that the overall
incidence rate according to data from both sources is quite the same, so it is reasonable to
conclude that the data are not contradictory.

3. Results and Discussion

This section is divided into subheadings and aims to provide a concise and precise de-
scription of the experimental results, their interpretation, and the experimental conclusions
that can be drawn.

The model was calibrated separately on two datasets: data from Source 1 and data
from Source 2. The model parameters obtained as a result of the calibration are presented
in Table 1.

Table 1. Model parameters.

Model Based on
Data Source 1

Model Based on
Data Source 2

Individuals’ contact rate 3.64 × 10−2 3.58 × 10−2

Isolation efficiency −3.45 × 10−3 −3.43 × 10−3

Determination coefficient (on calibration data) 99.21% 98.39%

A negative value for the isolation efficiency is believed to indicate population tiredness
from complying with the restrictions associated with COVID-19. This phenomenon has
been repeatedly described, for example in the works of [49,50]. Constraint tiredness is
psychological in nature and is associated with the long-term refusal of individuals to
perform habitual social activities during the COVID-19 pandemic.



Sustainability 2022, 14, 1995 6 of 11

The parameters of the models are close to each other due to the fact that the series of
input data show a general trend and differ insignificantly, primarily in terms of fluctuations.
The presence of fluctuations also explains the lower coefficient of determination for the
model based on data from Source 2.

The remaining parameters (the number of individuals in different groups, model-
ing time, other input parameters) for both models coincide with and correspond to the
epidemiological and demographic situation in St. Petersburg as of 1 August 2020.

Simulation experiments were carried out with both models using the original data
obtained as a result of calibration. The main modeled parameter was the current num-
ber of infected. Simulation experiments were carried out using self-made software that
implements the modified SEIR model with quarantined individuals using the Python
programming language. The simulation time included 6 months from the end date of the
input data (from 1 November 2020 to 30 April 2021). The simulation experiment results are
provided in Figure 3.
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The predicted data series obtained as a result of simulation experiments with both
models are of the same nature, which is due to two factors. Firstly, the use of a common
model structure (a modified SEIR model with quarantined individuals) means that, in both
models, the same laws of structural elements interrelation operate; that is, the models are
similar to each other. Secondly, the initial data for modeling in both models differ slightly
from each other. Under such conditions, the different nature of the simulation results is
possible only if the initial data in different models are located on opposite sides of the
bifurcation point, which does not happen in this case.

As the main quantitative forecasting metrics, the peak date of the current number of
infected and the current number of infected on this date are proposed. These indicators are
critical for the healthcare system, as they affect the requirements for available resources
(hospital beds, medical ventilators).

As shown in Figure 3, both models predict the same peak date for the current number
of infections (26 January 2021), but the current number of infections on that date differs
by 6% (91,538 vs. 85,963). This difference is insignificant, as observed in medium-term
forecasts.

Table 2 compares the key quantitative forecast metrics of both models with those
actually observed in St. Petersburg. The observed data are provided by the situational
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headquarters of the Federal Service for Surveillance on Consumer Rights Protection and
Human Wellbeing (Available online: https://coronavirus-monitor.ru/coronavirus-v-sankt-
peterburge/, last accessed 15 May 2021).

Table 2. Key quantitative forecast metrics (forecasted and real).

Forecast of
Model 1

Forecast of
Model 2

Observed
Data

The peak date of the current number of infections 26 January
2021

26 January
2021

20 January
2021

The current number of infections on the peak date 91,538 85,963 104,932

The peak date forecast error (days) 6 6 -

The current number of infections forecast error 12.76% 18.08% -

Comparison of the predicted data series of the infected current number with the
actually observed one is provided in Figure 4.
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When comparing quantitative metrics, it is possible to conclude that the forecasting
accuracy of the peak date of the current infected number is the same for both models, while
the forecasting accuracy of the current infected number on the peak date is better for the
first model. Note that the predicted values of the current infected number on the peak date
for both models are closer to each other than to the actually observed corresponding value.
This means that the predictive accuracy of both models can be considered approximately
the same.

The discrepancy between the predicted and observed incidence values could arise for
a number of reasons associated with changes in the modeled system during the modeling
process. Despite the fact that the general nature of the observed data is homogeneous (i.e.,
corresponds to the one wave of the spread of the disease), there are small unaccounted
administrative changes in the region that affect the dynamics of the COVID-19 spread.
In addition, a limitation of the model is that it does not take into account a number of
unknown factors, such as the psychology of the population [51,52], the weather [53,54], or
other factors [55–57].
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As a rule, the accuracy of forecasting the spread of viral diseases decreases with an
increase in the forecasting period [58]. This is because the predictive power of any model
decreases over time. There are models for predicting the spread of COVID-19, the accuracy
of which can reach 98–99% in the perspective of 7 days in the absence of significant events
that change the characteristics of the spread of the disease [59,60]. Predicting the spread of
COVID-19 over the longer term presents the challenges of a changing system. When the
epidemiological situation changes, administrative measures are taken and the behavior
of the population changes; therefore, long-term forecasts often lose their relevance. For
example, achieving an accuracy of 90–92% when forecasting for a period of 1 month is only
possible if no new administrative measures are taken and the behavior of the population
does not change significantly [61]. In this regard, achieving an accuracy of 82–88% in
predicting the peak incidence in St. Petersburg 3 months in advance can be considered a
successful result.

Thus, a comparison of two models based on different types of data (public and private)
demonstrated that the use of more accurate data containing personal information does
not give a significant increase in accuracy when predicting the spread of infection. This is
presumably because the processes of the infection spread are not critically dependent on
low-level data associated with personal data. At the regional level, statistical processing of
data averages all the characteristics of individuals, presenting society as a whole.

The class of SIR models does not go deep into the individual characteristics of each
person, such as gender, age, social status, occupation, health characteristics, and others.
Modeling the infection spread in large societies allows the researcher to ignore the differ-
ences between individuals, assuming that the entire population of the region consists of
the same average individuals. This assumption greatly simplifies the modeling process
without significantly reducing the forecast accuracy. The use of personal data in such mod-
els does not improve the quality of the forecast results, as shown by a series of simulation
experiments in this paper.

This conclusion concerns only system dynamic models, based on their common
features. At the same time, in the class of agent-based models, the significance of personal
data can be fundamentally different. This is due to the fact that, in agent-based models,
each individual is modeled as an agent with inherent characteristics that, according to the
researcher’s intention, can affect the spread of infection. Among these characteristics, data
belonging to the class of personal data can also be distinguished. In this case, it is critically
important for the researcher to find a balance between adhering to the rules for working
with personal data and increasing the accuracy of their predictions, which, in the event of
dangerous infections, can cost human lives.

4. Conclusions

This paper proposes an approach to assess the need to use personal data to predict
infection spread. Within the framework of this approach, a forecast of the current number
of those infected with COVID-19 in St. Petersburg was carried out based on two datasets.
The first dataset was initially collected and processed in an aggregated form, and the second
one was based on personal data. To perform the forecast, a modified SEIR model with
quarantined individuals was used, which, in comparison with the traditional SEIR model,
allowed us to take into account the restrictions applied in the region.

However, the model does not consider other factors influencing the spread of COVID-19.
The main such factors are vaccination and re-infection. These factors add new groups of
individuals to the model and new flows between groups of individuals. There are also
less significant factors that affect the rate of transition of individuals between groups,
for example, weather, behavioral characteristics of the population, and the duration of
treatment for the disease. Extending the model with these factors will make the forecast
results more accurate and realistic.

The modeling results showed that the use of personal data is excessive for predicting
the infection spread using models of system dynamics, which is also explained by the
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peculiarities of system dynamic modeling in general. The use of models of other classes
presumably increases the need for the use of personal data, which, on the one hand, is a
limitation for the use of models by individual researchers, but on the other hand has the
potential to improve the accuracy of forecasts. Better forecasts can enable the healthcare
system and the government to better prepare for rising incidences by applying the necessary
restrictions and preparing the necessary resources to counter the infection spread, which
can save many human lives. At the same time, the researcher must not forget about the
norms for working with personal data, which is also one of the highest values at the
present time.
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