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Abstract: Many countries have set ambiguous targets for the development of a bioeconomy that
not only ensures sufficient production of high-quality foods but also contributes to decarbonization,
green jobs and reducing import dependency through biofuels and advanced biomaterials. However,
feeding a growing and increasingly affluent world population and providing additional biomass for
a future bioeconomy all within planetary boundaries constitute an enormous challenge for achieving
the Sustainable Development Goals (SDG). Global economic models mapping the complex network
of global supply such as multiregional input–output (MRIO) or computable general equilibrium
(CGE) models have been the workhorses to monitor the past as well as possible future impacts
of the bioeconomy. These approaches, however, have often been criticized for their relatively low
amount of detail on agriculture and energy, or for their lack of an empirical base for the specification
of agents’ economic behavior. In this paper, we address these issues and present a hybrid macro-
econometric model that combines a comprehensive mapping of the world economy with highly
detailed submodules of agriculture and the energy sector in physical units based on FAO and IEA
data. We showcase the model in a case study on the future global impacts of the EU’s bioeconomy
transformation and find small positive economic impacts at the cost of a considerable increase in land
use mostly outside of Europe.

Keywords: bioeconomy; global macro-econometric model; land use change; multiregional input–output

1. Introduction

The bioeconomy (BE) is seen as an important way to promote sustainable development
and achieve ambitious climate change goals [1,2]. Since COP26 in Glasgow, most major
GHG-emitting countries have committed to becoming climate neutral by 2050 (EU, USA),
2060 (China, Russia) or 2070 at the latest (India). Several countries have developed policies
to promote the development of the bioeconomy as a key building block for decarbonizing
the economy and shifting to a renewable resource base while, at the same time, promoting
jobs, innovation and economic competitiveness (see Dietz et al. [3] for a review). The
International Energy Agency (IEA) sees huge potential in bioenergy, in particular for
long-haul road transport, water transport and aviation, but does not expect substantial
contributions to decarbonization from substituting fossil feedstocks in the chemical industry
with biomass [4]. The EU, by contrast, emphasizes the substitution of plastic with bio-based
materials in its plastic strategy and Circular Economy Action Plan, which is part of the
Green Deal [5,6]. Schipfer et al. [7] found that up to 75% of fossil inputs of the EU’s chemical
industry could be substituted by 2050.

However, as a consequence of human biomass consumption, land use-related envi-
ronmental impacts such as the loss of carbon stocks and biodiversity, over-nutrition and
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freshwater withdrawal [8–11] already exceed planetary boundaries [12,13]. The amount of
additional suitable and unprotected land is limited and increasingly threatened by climate
change [14,15]. For this reason, the biomass demand of a large-scale expansion of bioenergy
and advanced biomaterials together with the need to feed a growing and increasingly
affluent world population is one of the challenges for reaching the global Sustainable Devel-
opment Goals [16]. There are initial programs in place to develop monitoring frameworks
for the bioeconomy transformation [17–20].

A major challenge for monitoring the environmental, economic and social impacts of
the bioeconomy transformation as well as for policy design is that a substantial fraction of
these impacts occur along increasingly complex global value chains [21]. Several account-
ing approaches have been developed to link the demand for biomass in one country to
production and related environmental impacts in other countries via international trade
flows. Global environmentally extended multiregional input–output models (EE-MRIO)
rely on national accounts and bilateral trade data in monetary units with environmental
metrics such as GHG emissions or agricultural land use. They provide a comprehensive
mapping of the linkages between consumption and global environmental impacts scattered
across the global supply chain network [22]. A major drawback, however, is that these
frameworks typically offer only a low amount of detail in terms of agricultural products,
energy carriers and, partly, e.g., in the case of using the EXIOBASE database, country
coverage. Furthermore, accounting based on monetary values bears the risk of biased foot-
print results if price differences across different uses of a product are large, thus violating
the homogenous price assumption [23]. Biophysical accounting methods based on the
FAO’s supply utilization accounts and bilateral trade in physical units, by contrast, are of a
much higher product and country resolution, but at the cost of truncation errors, especially
those of non-food use of biomass [24–26]. In recent years, hybrid accounting frameworks
combining physical flows of biomass with monetary input–output relations have been
developed by several authors with the objective to have the best from both worlds [27–30].

A similar trade-off can be observed for projection models used to assess the wider
impacts of the future bioeconomy transformation under climate change scenarios. Partial
equilibrium (PE) models such as GLOBIUM [31] or MagPie [32] offer a high amount of
detail on underlying mechanisms that drive agricultural land use and land use change,
but they do not take general equilibrium effects and feedback from the wider economy
into account [33]. Taking this feedback into account is particularly important as non-food
use of biomass is expected to tremendously increase in the future. Computable general
equilibrium (CGE) models, by contrast, are based on the same data as EE-MRIOs and,
thus, share their shortcomings when it comes to assessing impacts of the bioeconomy
transformation [34–36]. As a consequence, many recent publications favor a combination
of PE and CGE approaches such as MAGNET [37–39]. In recent years, a growing interest in
simpler models allowing better transparency and traceability of the impacts of exogenous
scenario parameters on impact results has been observed [33,40–42]. This development
is also a response to criticisms of a lack of empirics in many CGE models. Their model
parameters such as elasticities of substitution typically result from model calibration rather
than econometric estimates [43].

In this paper, we combine a global macro-econometric input–output model (GINFORS-
E) for mapping macro-economic developments and the evolution of global supply chain
networks, with specific modules based on physical flows describing developments in
critical sectors such as energy or agriculture in greater detail. This allows addressing two
shortcomings. First, a major advantage of the econometric approach compared to CGE
models is that behavioral parameters are empirically validated. Second, in contrast to PE
models, macro-economic feedback mechanisms are accounted for. In the following, we
describe the development of an econometric agriculture module mapping the consumption,
trade, production and land use of 28 crops and livestock products and show how this new
module interacts with both the economic core and an econometric energy module within
the GINFORS-E framework. Our approach follows a similar philosophy to the hybrid
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accounting approaches mentioned above in that commodity flows measured in physical
and monetary units are linked within a combined modeling framework. Thereby, a key
objective of our approach is to map all relevant economic channels based on empirical data
while keeping the overall model transparent and traceable.

The remainder of this paper is organized as follows: Section 2 describes how agri-
culture is modeled in GINFORS-E (Section 2.1), how the demand for biomass is modeled
(Section 2.2), how agriculture, production and trade interact with each other (Section 2.3)
and, finally, how the feedback between GINFORS_E and the agriculture module works
(Section 2.4). In Section 3, a case study is described with details of the scenario settings in
Section 3.1 and general scenario specifications referring to the GINFORS-E model settings
in Section 3.2. Section 4 provides results for land use (Section 4.1), GDP per capita and em-
ployment (Section 4.2) as well as production by production sectors (Section 4.3). Section 5
concludes the paper.

2. Materials and Methods

The assessment of the global environmental and economic impacts of the future
development of the bioeconomy under climate scenarios was based on the Global Inter-
Industry Forecasting System-Energy (GINFORS-E, [44]) linked to a newly developed global
partial model of agricultural production, consumption and trade.

GINFORS-E is a global econometric input–output model covering 64 countries and one
“Rest of World” region with 36 industries each. The model is designed for the assessment of
economic, energy, climate and environmental policies up to the year 2050. The GINFORS-E
modeling setup is shown in Figure 1 and consists of, first, the economic core, in which
64 country-specific macro and input–output models are linked via a world trade model,
and, second, modules linked with the economic core providing further detail on sectors
of high importance, such as energy and agriculture. The arrows show which variables in
each model block are determined by another model block or which variables are entered as
exogenous scenario parameters. The bioeconomy-related scenario parameters are marked
gray and are explained in greater detail below. For example, sector prices are calculated in
the input–output model. The aggregate price is entered into the macro model. In contrast,
the final demand for the components private consumption, government consumption
and investment is determined at the macro-economic level in the macro model and then
allocated to the individual sectors in the input–output model.
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GINFORS-E’s economic core is based on post-Keynesian economics, which means
that markets, especially labor markets, are not assumed to be cleared [43]. It is assumed
that economic agents have myopic expectations and follow past behavioral routines. Most
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of the parameters of these behavioral equations are estimated econometrically based on
time series data from Eurostat, OECD.Stat, the World Bank, the UN and IEA for 1990 up to
2018 [45–53]. As shown in Figure 1, each country model has two main components: (1) The
macro model that projects, on the one hand, the main components of the consumption side
of GDP (household and government spending, capital formation) and, on the other hand,
labor supply and demand, as well as wage rates [54]. (2) Based on the growth paths of
aggregate GDP components and the development of the labor market, the input–output
core projects structural changes in the economies.

The economic core is linked to further modules that project satellite accounts in phys-
ical units, most notably the energy module that is based on IEA energy balances [52].
Demand for energy carriers is driven by economic activities of industries, households
and the government in the economic core. The structural changes in energy generation
(e.g., expansion of renewables) and consumption (e.g., shift to electric vehicles) of 18 energy
carriers are modeled based on energy and carbon prices including assumptions on price
dependency of clean technologies such as renewable energies and electric vehicles. For
some technologies such as nuclear and renewable energy deployment, additional assump-
tions are made in line with the recent IEA Stated Policies Scenario [55]. This approach is
typically used in E3 models [56,57] and has similarities to the way hybrid multiregional
input–output models combine data in monetary and physical units, but without economet-
ric specifications for the behavior of agents [28,29,58].

Almost all model variables are determined endogenously via identity or economet-
rically estimated behavioral equations. For this reason, GINFORS-E scenario runs are
controlled by only few exogenous variables that drive the model. These are population
growth and demographic changes, international energy prices, interest rates, exchange
rates and tax rates, as well as monetary and non-monetary trade barriers. Additionally,
further scenario-specific parameters are used to model energy and climate policy scenarios,
in particular carbon prices, electric vehicle shares or expansion targets for renewables.

Thus far, GINFORS-E has been used for answering various research questions, such as
for simulations of macro-economic impacts of different electricity price scenarios calculated
for the German Ministry of Economic Affairs and Energy [59], economic impacts of different
international climate regimes [60] and peak oil [61], or explicit modeling of learning curves
for renewable energy technologies [62]. The model was also applied to inform the EU
on the impacts of the GEAR 2030 strategy [63]. In a parallel research activity [64], the
GINFORS-E model serves as a socioeconomic driver to inform a detailed material flow
accounting model that uses EXIOBASE [65] as the main data source.

Therefore, the model is well suited for the projection of the drivers of the bioeconomy,
such as the increased use of biofuels in transportation or the bioplastic/biomass substitute
inputs based on crude oil as the feedstock. However, the model severely lacks detail on
agriculture, which is represented by a single sector in the national IO tables. In the following,
we develop a new partial model describing the production, consumption and trade of
20 crops and 8 animal products (see list in the appendix) in physical quantities and integrate
it into the existing GINFORS-E modeling framework. The list of 20 crops resulted from
the differentiation of aggregated items in FAO statistics (cereals, sugar crops, starchy roots,
pulses, tree nuts, oil crops, vegetables, fruits, stimulants, spices, fiber crops) and added
more details for those crops that are—from a global perspective—most relevant economy
wise and land use wise. A similar approach for animal products resulted in a differentiation
of four types of meat. In the following sections, we first discuss how the agriculture
module conceptionally fits into the GINFORS-E framework. Afterwards, in Section 2.2,
we discuss how demand quantities for agricultural products are derived by means of a
hierarchical approach, followed by a discussion about how corresponding international
trade, production and land use are modeled (Section 2.3). Finally, in Section 2.4, we describe
the iterative solution process of the module and its interaction with the economic core and
the energy module.
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2.1. Modeling Agriculture within the GINFORS-E Framework

The newly developed agriculture module was built on the same theoretical back-
ground as the economic core of GINFORS-E. As shown in Figure 2, the agriculture module
consists of two components. Firstly, the demand block derives demand quantities for
28 crops and livestock products from the intermediate and final consumption expenditures
for food and agriculture in the IO core. Here, we distinguish the expenditures of households
(H; food use), agriculture (1; feed and seed use) and the chemical and textile industries
(6,9,10; other industrial use), which correspond to the utilization categories distinguished
in the FAO’s commodity balance sheets.
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The demand for biofuel feedstocks, by contrast, is driven by the demand for biofuels
in caloric values modeled in the energy module. The second component of the agriculture
module is the trade and production block. It takes the quantities from the demand block as
an input and allocates them across producing countries via import shares, which depend on
the exporter’s competitiveness (measured by unit costs and yields) and trade cost between
the origin and destination country. Afterwards, consumer prices and structural changes in
agriculture markets are fed back into the IO core.

The IO core is, by itself, demand driven in that, first, aggregate GDP components
are broken down into demand for products of the 36 industries. In the default case, the
product structure of government spending as well as of capital formation remains fixed or
is adjusted exogenously, depending on the scenario specifications. The product structure
of household consumption, however, is based on the demand system from Muhammad
et al. [66] and, therefore, depends on the development of income and relative prices
(see Section 2.2). This is particularly important, as especially the budget share of food is
expected to decrease considerably in many fast-growing emerging countries following
Engel’s law.

For a given vector of final demands, yc(t) with the generic element yc
i (t) denoting the

demand in country c for product i in year t, the total output required from industry j can
be computed by the demand-driven quantity input–output model

xc(t) = Lc(t) yc(t) = (I −Ac(t))−1yc(t) (1)

where xc(t) denotes a vector of gross output by the industry in country c and year t and
Lc(t) = (I −Ac(t))−1 is the Leontief inverse of country c and year t, with Ac(t) being a
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matrix of technical coefficients showing the input required from industry i to produce a
unit of output in industry j. Based on total output, value added, labor compensation and
demand for domestic and imported intermediates are computed taking the cost structures
of the industries into account [67]. The resulting final and intermediate demands for
agricultural products then enter the demand side of the agriculture module.

Making use of the duality between the IO quantity and price models [68], the inter-
industry relations are also used to determine how changes in unit cost of production, ucc

i (t),
influence output prices, pc

i (t). It is assumed that the output price of an industry increases
compared to the previous year with the same rate as the total unit cost of production. This
is consistent with the assumption that profits per unit are given by a fixed markup on
production costs. Using the input–output relations, we can express the total unit costs of
production as a weighted average of the price changes of domestic inputs, imported inputs
and labor, i.e.,

ucc
j (t) = ∑i acc

ij pc
j + ∑r

i arc
ij pr

j + vc
i wagec

i , (2)

where acc
ij and arc

ij denote the input requirements from industry i produced domestically
(c) or abroad (r), respectively, per unit output of industry j in country c; pc

j and pr
j denote

the prices for domestic and imported intermediates, respectively; and vc
i and wagec

i are the
labor input requirements and the wage rate, respectively.

2.2. Modeling Household Consumption

Growth in household income affects consumption levels and patterns, depending
on whether the good is normal, inferior or luxury. According to Engel’s law, the share of
food expenditure in total consumption decreases as income increases, as food is an inferior
good [69]. This effect is of particular importance for studying the global development of
food consumption across countries in the long run, as in many major economies, affluence
is expected to increase tremendously up to 2050.

The relationship between private consumption patterns and changing income and
relative prices is typically modeled using demand systems, which are simultaneous equa-
tion systems that explain how households allocate their budget to different consumption
purposes. In GINFORS-E, final consumption expenditures of households are modeled by
means of the Florida Demand System [70], which allows for flexible budget shares under
changing income levels. We used the estimates from Muhammad et al. [66], which are
based on cross-country data from the World Bank’s International Comparison Program.
These estimates, especially the income and own-price elasticities, have been widely used
among researchers to parameterize global economic models, and particularly those models
with a focus on modeling the global demand for food and agricultural products [15,33,41].
In the first stage, the demand system distinguishes nine different product groups, namely,
food (1), clothing (2), housing (3), furnishings and appliances (4), health (5), transport (6),
recreation (7), education (8) and other (9).

To capture the decline in income elasticities for food as income increases, Hertel
et al. [33] and the FAO [15], among others, regressed per capita income on income elasticities
and projected them into the future. Here, we took a different approach: we used the
estimation equations of Muhammad et al. [66] in combination with the parameter estimates
and projected the data, i.e., income and prices, directly into the future. The demand system
has the following form:

wc
i = (αi + βiyc) + (αi + βiyc)

[
log pi

c

pi
−∑j (αi + βiyc) log pi

c

pi

]
+ φ(αi + βi(1 + yc))

[
log pi

c

pi
−∑j (αi + βi(1 + yc)) log pi

c

pi

]
, (3)

where wc
i denotes the budget share of product group i in country c; yc denotes the log of per

capita income; pc
i denotes the price of product group i in country c; pi denotes the global

average price of i; and αi, β j and ϕi are the estimated parameters. Index j is used to refer to
prices of another product group. The first term in Equation (3) captures the linear effect of
real income, the second quadratic term captures the pure price effect and, finally, the third
cubic term captures the substitution effects.
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The predicted budget shares for a country in a future year are used to compute total
expenditures by product group. The budget shares are multiplied by total household expen-
ditures and further broken down into the 36 products distinguished in the GINFORS-E IO
core, assuming constant shares.

2.3. Modeling Demand for Biomass

In this section, we describe the estimation and projection of total domestic consump-
tion of agricultural products in physical units, which is mainly based on the FAO’s com-
modity balance sheets (CBSs). In each CBS, the utilization side consists of three main
use categories, namely, food, feed and industrial use. From OECD/FAO data [71], it is
possible to further split industrial use into biofuels and other industrial uses (e.g., feedstock
for chemicals). Primary commodities that go into the production of another commodity
(e.g., soybeans into vegetable oil) are captured in the category processing. To avoid too
many units of measurement, we decided to express all physical flows of processed agricul-
tural commodities (especially vegetable oil and sugar) as primary crop equivalents using
the FAO’s technical conversion factors [72].

As shown in Figure 3, the estimation and projection were carried out using a two-
step approach: In the first stage, we modeled the consumption separately for aggregate
agricultural commodities that share similar use characteristics, e.g., oil crops used for
fodder. In the second stage, we modeled the substitutions between individual products in
the aggregate category, e.g., soybeans versus rapeseed used as fodder.
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In Stage 1, we distinguish 10 different aggregate product groups, as shown in Table 1.
The first six aggregate categories comprise products that are (almost) exclusively used for
human food consumption. These are basic food crops, fruits and vegetables, spices and
stimulants, meat, milk and eggs. By contrast, feed and fodder crops, comprising maize and
other cereals, are used for feeding animals, for human consumption and, to a much lesser
extent, as a feedstock for biofuels. Oil crops and sugar crops show a highly mixed pattern
with relatively high shares in all four use categories. Finally, fiber crops are only used by
industries, especially the textile industry.
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Table 1. Product groups and their assignment to aggregates, utilization categories and input–output
(IO) components.

Aggregate (l’) Product Group (l) Utilization (k) IO Table Element (i)

Basic food crops Wheat, rice, pulses, potatoes,
other starchy roots Food Food industry

and households

Fruits and vegetables
Grapes, other fruits, onions

and tomatoes, other
vegetables, nuts

Food Food industry
and households

Spices and stimulants Spices and stimulants Food Food industry
and households

Meat
Cattle and buffalo meat,
pig meat, poultry meat,

other meat
Food Food industry

and households

Milk Milk Food Food industry
and households

Eggs Eggs Food Food industry
and households

Feed and food crops Maize, other cereals Food, feed, other industrial use
Food industry

and households,
agriculture, chemicals

Oil crops
Soybeans, rapeseed and

mustard seed, palm fruit oil,
other oil crops

Food, feed, other industrial use
Food industry

and households,
agriculture, chemicals

Sugar crops Sugar crops Food, feed, other industrial use
Food industry

and households,
agriculture, chemicals

Fiber crops Fiber crops Other industrial use Textiles

Source: own elaboration.

For each of the 16 combinations of aggregate product groups and utilizations (except
biofuels), we fitted an econometric demand equation, where quantities demanded depend
on total expenditures for agricultural products by the IO sector corresponding to the
utilization, as well as on prices. In addition, we tested further explanatory variables in each
equation, such as price–income interaction terms or share of pigs in a country’s animal herd
for fodder demand. The final specifications included all that were found to be statistically
significant and had the expected sign, i.e., negative for prices and positive for expenditures
in monetary units. The demand equations were specified as follows:

uc
l′k(t) = αl′k + ϑc

l′k + βl′k log yc
lk(t) + γl′k log pc

l′(t) + τX + εc
l′k(t), (4)

where uc
lk(t) denotes the per capita consumption of aggregate product group l for utilization

k in country c and year t; yc
il (t) denotes total expenditures for agricultural products by

IO sectors belonging to utilization category k; and pc
l (t) denotes the aggregate product

group l in country c and year t. The matrix X represents additional covariates that are
used for specific categories, such as the number of pigs for estimating fodder demand, and
αlk, ϑc

lk, βlk and γlk and τ are the coefficient to be estimated. The variables used in each
demand equation and the estimation results are shown in Table S4 in the Supplementary
Information. Overall, the goodness of fit measures show a strong statistical relationship
between the demand quantities and the explanatory variables. The lowest R2 is about 0.83
and found for feed use of oil seeds. For most combinations of aggregate commodity groups
and utilizations, the R2’s are greater than 0.9.

For the demand equations, we loosely followed Muhammad et al. [73] in using panel
specifications to capture country-specific differences in traditions, tastes, etc. However,
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unlike these authors, we did not include squared expenditures or price–expenditure inter-
action terms, as these were found to be either insignificant or to cause consistency issues in
combination with other parameters (i.e., positive responses to price increases).

Thus, the per capita consumption quantities depend on relative prices, the inter-
mediate and final expenditures on agricultural products from the IO core of the sectors
corresponding to the utilization categories and further context-specific covariates. The
growth in demand for biofuel feedstocks, by contrast, is assumed to be proportional to the
demand for biofuels and directly linked with the energy module of GINFORS.

The expenditures of the IO sectors for agricultural products constitute one of the
main links between the input–output core of GINFORS-E and the agriculture module.
For the category food, the expenditures used in Equation (4) are the sum of households’
final consumption and food industries’ intermediate consumption of agricultural products.
We chose this specification rather than the total of agriculture and food consumption
of households, as it is closer to the raw crop equivalents used to measure the physical
flows. For the utilization as feed, we used the within-sector intermediate transactions of
agriculture, whereas for biofuels and other industrial uses of feed and food, and of oil
and sugar crops, we used the intermediate consumption of agricultural products by the
chemical industry. The consumption of fiber crops is mainly driven by the demands of the
textile industry. The prices for each aggregate product group l are measured as dollars per
ton and are computed as a weighted average of the price of domestic products derived from
the FAO’s production statistics and those of imports computed from the FAO’s bilateral
trade matrices, which are both available in weight and value.

In Stage 2, the consumption quantities of aggregate products in each utilization cate-
gory uc

l′k(t) are further broken down into consumption quantities of individual agricultural
products uc

lk(t). For example, oil crops are broken down into soybeans, rapeseed and
mustard seed, palm fruit oil and other oil crops. At this stage, we are particularly interested
in capturing substitution possibilities between the different products within an aggregate
group and how these depend on relative prices. As in Stage 1, the effect of relative prices
was modeled econometrically, and we used separate panel specifications with country fixed
effects for each combination of agricultural product and utilization.

The estimation equations are specified as

uc
lk(t)

uc
l′k(t)

= αlk + ϑc
lk + γlk log

(
pc

l (t)
pc

l′(t)

)
+ εc

lk(t), (5)

where, on the left-hand side, we have the share of product l in the consumption quantity
of aggregate product group l′ by utilization category k in country c and year t and, on
the right-hand side, we have the price per ton of product l relative to the average price
of the aggregate product group. αlk, ϑc

lk and γlk are coefficients to be estimated. The
estimation results are shown in Table S3 in the Supplementary Information. We found
strong statistically significant (at the 10% level) relationships between a product’s share in
the basket and the relative price, all of them also showing the expected negative sign. The
R2’s of at least 0.78 (found for soybeans) indicate a high goodness of fit.

For prediction of demands for future years, we use Equations (4) and (5) in combination
with the covariates for the respective year from the GINFORS IO core. The shares from
Equation (5) are then scaled such that they add up to one. As a last step, for each agricultural
product, we compute total domestic use of product l in country c and year t, dc

l (t), as the
sum of use quantities across utilization categories:

dc
l (t) = ∑l uc

lk(t) (6)

In the following section, we link these demands to production in the same or another
country via bilateral trade flows.
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2.4. Agricultural Production and Trade

Bilateral trade flows and production levels required to satisfy the domestic consump-
tion quantities resulting from the previous section are derived from a structural gravity
model [74]. In this model, bilateral trade flows between an exporting country r and an
importing country c, trc are modeled as a function of total demand of the importer dc, total
supply of the exporter xr and trade cost for shipping one unit of the product from country r
to country c, ϕrc :

πrc = G
Sr

Ωr
Dc

Φc ϕrc (7)

where G is a constant, and Ωr and Φc denote the multilateral resistance terms (MRTs) of
the exporting and the importing country. The term ϕrs is typically a linear combination
of variables that describe the bilateral (monetary and non-monetary) trade cost between
each pair of two countries such as distance, common language, colonial ties or free trade
agreements and can be interpreted as bilateral trade cost elasticities.

The MRTs take the form of

Ωr = ∑c 6=r ϕrcdc

Φc and Φc = ∑r 6=c ϕrcxr

Ωr , (8)

and describe the relative competitiveness of the exporter compared to all other exporting
countries or the relative attractiveness of the importing country, respectively. They were
introduced by Anderson and van Wincoop [74] in order to give the empirically successful
classical gravity model of international trade a theoretical foundation that explains the
spatial allocation of the importing countries’ expenditures as well as the market clearing
conditions for the exporters, arguing that their omission leads to omitted variable bias. For
the estimation of model parameters, exporter and importer fixed effects are commonly
used as proxies for the MRTs [75].

However, as Fally [75] pointed out, the use of exporter and importer fixed effects,
though econometrically convenient, has a significant shortcoming, as they absorb the effects
of other variables that apply to all sales of an exporting country (e.g., production cost)
or to all purchases of an importing country (e.g., per capita income). This means that a
two-step approach must be taken if the effects of supply-side productivity changes were
to be taken into account, such as unit costs of agriculture as an endogenous variable from
GINFORS-E’s IO core, or yields as an exogenous scenario parameter [76,77]. In the first step,
we estimated a gravity equation with importer–time and exporter–time fixed effects (FEs)
for each agricultural product to distinguish between the effects of bilateral trade barriers
and general characteristics of countries in their role as exporters or importers. Then, in the
second step, we regressed yields and unit costs as productivity measures on the exporter
FEs and total domestic consumption as a measure for market size (attractiveness) on the
importer FEs.

In Stage 1, the gravity equation was specified as follows:

πrc
l (t) = e f r

l (t) i f c
l (t) exp

{
θ1

l z1rc + θ2
l z2rc + θ3

l z3rc
}

εrc
l (t) (9)

where πrc
l (t) denotes the quantity of product l produced in country r and consumed in

country c in year t, and e f r
l (t) and i f c

l (t) denote exporter–time and importer–time fixed
effects, respectively. In the third term, the log of the population-weighted distance between
country r and country c, z1rc, as well as dummies for common language, z2rc, and intra-
country trade, z3rc, was used as a proxy for bilateral trade barriers. θ1

l , θ2
l , and θ3

l are
the corresponding coefficients to be estimated. Data for the trade barrier proxies come
from CEPII.

Note that we included within-country trade, i.e., domestic consumption, in our setup,
which avoided a further nest for the consumers’ choice between domestic products and
imports. Domestic consumption for each product was computed as the difference between
total supply (production quantity plus total imports) and total exports. For some countries
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and products, this difference was negative, suggesting the existence of re-exports (export
of imported goods). We corrected for this assuming that the import shares for exports were
the same as for domestic consumption.

We followed the estimation strategy of Santos Silva and Tenreyro [78] and estimated
Equation (9) in its multiplicative form using the Poisson pseudo-maximum likelihood
estimator rather than using OLS on the log transformation. The main reason for this
approach was that the log transformation would require omitting observations when
two countries were not trading, which would lead to biased results. Since we estimated
Equation (9) at the product level, the case of zero trade flows should be quite common.

The estimation results are shown in Table S4 in the Supplementary Information. As
goodness of fit measures, we used McFadden’s pseudo-R2. The results show a very high
goodness of fit across all commodity groups. Whereas the coefficients for distance and
the intra-country trade dummy all have the expected sign and are highly significant in
all gravity equations (except for sugar crops, where all variables except fixed effects are
insignificant), the dummy for common language is insignificant in the gravity equations
for other rice, palm fruit oil, starchy roots, sugar crops and wool and silk. For wool and
silk, we observed a negative sign for the effect of common language.

In Stage 2, we estimated the product-specific exporter–time and importer–time fixed
effects, which measure the temporal development of the relative competitiveness of export-
ing countries, and the market attractiveness of importing countries. On the supply side,
it was assumed that an exporter’s relative competitiveness in the world market increases
if yields in a country (or animal productivity) increase relative to the global average but
decreases if unit costs of production increase. We followed Reimer and Li [77] and used the
relative yields instead of absolute ones. The estimation equation is

e f r
l (t) = α + β yieldr

l (t) + γ ucr(t) + δ t + εr
l (10)

where yieldr
l (t) denotes the yield (tons per area harvested) or animal productivity (tons

per herd size) of exporting country r and product l, and ucr(t) denotes the unit cost of the
agriculture sector from the OECD’s STAN database. We also included a linear time trend.

On the demand side, we regressed total demand by country and product on the
importer–time fixed effects, assuming that market attractiveness increases with market size.
The estimation equation is

i f c
l (t) = α + β dc

l (t) + εc
l (11)

The estimation results for Equations (7) and (11) are shown in Tables S5 and S6 in the
Supplementary Information. In the regression the exporter fixed effects (Equation (10)),
we found that, as expected, relative yields have a positive effect on the exporter’s compet-
itiveness, while the effect of the unit costs of production is negative. Both estimates are
significant at the 1% level, and the R2 of about 0.9 shows a high goodness of fit. For the
importer’s market attractiveness, total demand quantities have a highly significant impact
and explain about 88% (adj. R2 = 0.8763) of the variance in the importer fixed effects.

2.5. Interaction between GINFORS-E and the Agriculture Module

GINFORS-E solves iteratively for each year, with ten within-year iterations. As shown
in Figure 1, the agriculture module takes information demand for agricultural products and
production costs from GINFORS-E and feeds back on consumer price indices and updated
trade shares to GINFORS-E. Each iteration involves the following steps:

On the demand side:

1. Computation of new final and intermediate demands in monetary terms for agri-
cultural products in each country using the projection from the demand system
(Equation (1)) and the IO quantity model (Equation (2));

2. Computation of new total demand quantities for each crop and animal product using
Equations (3)–(5);

3. Computation of the new importer–time fixed effects using Equation (11).
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On the supply side:

4. Computation of unit costs using the IO price model;
5. Computation of new exporter–time fixed effects using Equation (10).

International trade:

6. Computation of new import shares using Equation (9), and production quantities
using import shares and total demand quantities;

7. Computation of output prices for each crop and animal product by assuming that
they change anti-proportionally with the exporter–time fixed effect ∆pc

l = −∆e f c
l ;

8. Computation of new consumer prices using import shares and output prices;
9. Return to Step 1 until the ten within-year iterations are completed and start with the

next projection year until the end of the projection horizon is reached.

3. Case Study

As a first application of the new model, we considered comparatively simple scenarios
to understand general impact mechanisms and inter-relationships. In this case study, we
analyzed the impacts on cropland use, GDP and employment in two different scenarios:
a “business as usual” scenario with rather low market penetration rates of biofuels and
advanced biomaterials, and an alternative scenario, where market penetration rates were
high. The specification of the main scenario variables is shown in Table 2.

3.1. Scenario Specifications for Bioeconomy

The bioeconomy scenarios were specified via three exogenous variables reflecting
technological change on the supply and demand sides of the bioeconomy: firstly, on
the supply side, the impacts of technological and climate change on yields and animal
productivity; secondly, on the demand side, the share of biofuels in the transportation
sector; and thirdly, the share of advanced biomaterials versus fossil-based materials in the
chemical industry. The increased use of biomass in traditional applications, e.g., paper or
construction, is not within the scope of this paper. Hence, our scenario results show the
impacts on the use of cropland (area harvested) and GDP under the assumption that the
respective exogenously set scenario pathways for these drivers are followed. Generally,
the pathways may reflect policy targets or can be the outcome of another model. For this
test case, we used outcomes from the FAO [15] and IEA scenarios [4], as well as from the
literature [7].

Technological change in agriculture and climate change impacts on productivity were
captured via yields or animal productivity, respectively. Future pathways for both variables
were taken from the FAO [15] and are compound variables reflecting technological change,
such as farming practices, as well as the impacts of climate change. For the reference
scenario, we used the developments of yields and animal productivity from the FAO
“business as usual” scenario, which assumes that yield improvements are limited in the
future, as land degradation is only partially handled. On the other hand, the bioeconomy
scenario takes the developments from the FAO’s “towards sustainability scenario”, where
it is assumed that land degradation is stopped through sustainable farming practices.
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Table 2. Specification of main scenario variables.

Variable/Country Group
Reference Bioeconomy

2030 2040 2030 2040

Share of biofuels in road transport [%]

Africa 3.17 4.99 9.01 19.39

Asia and Pacific 5.19 7.70 13.57 26.79

Brazil 22.95 25.32 36.14 45.57

China 3.26 5.28 10.11 23.93

Europe 6.78 9.75 13.64 30.37

India 5.58 7.89 12.44 24.01

North America 4.83 7.31 12.41 27.88

Russia 2.98 4.79 9.09 20.72

South America 6.97 9.22 14.41 27.59

Share of advanced biofuels in conventional biofuels [%]

Africa 36.73 57.47 36.73 57.47

Asia and Pacific 36.73 57.47 36.73 57.47

Brazil 36.73 57.47 36.73 57.47

China 36.73 57.47 36.73 57.47

Europe 36.73 57.47 36.73 57.47

India 36.73 57.47 36.73 57.47

North America 36.73 57.47 36.73 57.47

Russia 36.73 57.47 36.73 57.47

South America 36.73 57.47 36.73 57.47

Share of biomass in the chemical industry [%]

Europe - - 12.00 36.00

Share of advanced biomass to conventional biomass in chemical industry [%]

Europe - - 36.73 57.47
Source: own elaboration, based on data from the IEA and Schipfer et al. (2017).

The biofuel settings were based on the Energy Technology Perspectives 2017 (ETP 2017)
report of the IEA. We distinguished two main scenario variables: firstly, the blending share
and, secondly, the market share of second-generation biofuels. Both determined the de-
mand for fresh biomass inputs in the agriculture module. The ETP 2017 report considers
three scenarios showing different energy technology and policy pathways until 2060: a
baseline scenario (Reference Technology Scenario (RTS)), a central climate mitigation sce-
nario (2 ◦C Scenario (2DS)) and a more ambitious climate mitigation scenario (Beyond 2 ◦C
Scenario (B2DS)) [4]. For this case study, we used the RTS for the reference scenario and
the B2DS for the bioeconomy scenario. The RTS includes countries’ current ambitions and
commitments to limit emissions and improve energy efficiency and requires significant
policy and technology changes by 2060 and further subsequent emission cuts, resulting
in an average temperature increase of 2.7 ◦C by 2100 [4]. This scenario can be interpreted
as the most probable development under the status quo and was therefore integrated
in the reference scenario. The B2DS attempts to estimate what would happen if known
clean energy technologies were pushed to the limit to achieve carbon neutrality by 2060.
The result is a 50% chance of limiting the average future temperature increase to 1.75 ◦C
by 2100 [4]. The role of bioenergy in the transport sector is of major importance in this sce-
nario. Biofuels decarbonize long-haul transport and complement the role of electrification
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in short-haul transport applications. Furthermore, biofuel production is shifting towards
advanced biofuels. The IEA provides scenario data for the following countries and country
groups from 2025 to 2060: ASEAN, Brazil, China, the European Union, India, Mexico,
Russia, South Africa and the United States, as well as OECD and non-OECD countries.

Similarly, the development of advanced biomaterials in the chemical industry was
modeled via, firstly, the share of fossil feedstocks that were substituted by biomass feed-
stocks and, secondly, the share by which these feedstocks came from fresh biomass versus
the use of advanced feedstocks. In Schipfer et al. [7], the authors identified five groups of
chemical products where biomass can substitute fossil feedstocks to a large extent: these
were surfactants and lubricants based on vegetable oil, plastics and solvents based on
glucose from sugar or starchy crops and bio-bitumen based on lignin from wood. The first
four product groups were integrated in the bioeconomy scenario setting. Bio-bitumen was
not considered. More precisely, we assumed that the shares of fossil feedstocks substituted
by biomass were 12% by 2030 and 36% by 2040 for all EU28 countries. These assumptions
were in the range of the two scenarios in Schipfer et al. [7]. For the shares of advanced
feedstocks, we assumed they are the same as for advanced biofuels.

3.2. Remaining Scenario Specifications for the GINFORS-E—Baseline

The bioeconomy development occurred within the broader GINFORS-E scenario
framework, which reflected global population growth, economic development and climate
policy. Assumptions for exogenous variables for the baseline stemmed from population
projections. For the EU28 member states, the 2018 Ageing Report [79] was used. Develop-
ments of other countries including world totals were provided by the UN World Population
Prospects 2019 [51]. Projections of international energy prices were taken from the IEA
World Energy Outlook 2018 [80].

GDP development is endogenous in GINFORS-E. Developments were, however,
calibrated to match long-term projections of economic development from the IEA [80]. For
EU countries, projections from the 2020 EU [81] Reference Scenario were used. Calibration
means that mainly gross fixed capital formation, which is modeled endogenously, is
adjusted through a multiplicative adjustment so that GDP is close to the target values.

Regarding energy-related GHG emissions, we applied a baseline scenario with low am-
bition to mitigate climate change. The EU reached its old NDC target (−40% against 2005)
with the policies in place. NDC targets from 2020 were also reached by major emitting
countries and regions including China, India and Russia due to their low ambition. Climate
protection efforts were not intensified after 2030.

4. Results
4.1. Agricultural Land Use

The bioeconomy scenario affected the land use of the country groups in three different
ways: (1) an intensification of the already increasing area harvested, (2) a continuous decline
in land use to a lesser extent and (3) an inversion of the declining trend. According to
Figure 4, the first effect applies to the country groups Africa and Asia and Pacific. In 2040,
the area harvested was 7 and 54% higher than in the reference scenario (for the numbers,
see also Table S8 in the Supplementary Information). This means an extra need for 2
and 93 million hectares of land in 2040. The second effect could be observed for Europe,
India and Russia. Even though the area harvested diminished as in the reference scenario,
the area needed was 15, 6 and 2% higher in 2040, representing an increase of 14, 11 and
1 million hectares. The third effect was present for Brazil, China, North America and South
America. Here, the declining demand for land in the reference scenario was more than
offset in the bioeconomy scenario. In 2040, the area needed for harvesting crops was 19, 29,
24 and 53% larger than under the reference scenario. This corresponds to an increase of 10,
59, 26 and 13 million hectares in 2040.
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of the respective continent, e.g., Africa only consists of 3 out of 55 countries. The complete list of
countries considered in the estimations can be found in Table S7. In general, a comparison with other
model results is difficult and only possible to a very limited extent. Popp et al. [82] compared three
models and their calculated impacts of bioeconomy production land use. The authors found that
disparities in the projection of bioenergy cropland mostly resulted from plausible model assumptions
regarding agricultural yields, economic growth, available technologies, etc. Additionally, the initial
amount of land use in the base year can vary considerably depending on the data source, definitions
and categorizations [82]. However, one important result was that “bioenergy croplands expands
significantly” [82] (p. 504), supporting our scenario results.

The high increase in land use in the Asia and Pacific country group was mainly
attributable to New Zealand, Malaysia, Korea and Indonesia: 285, 132, 85 and 69% more
land was cultivated in the bioeconomy scenario compared to the reference. This additional
land use added up to 74 million hectares, or 80% of the additional harvested area needed
in the Asia and Pacific country group.

In total, an area of almost 1120 million hectares was cultivated in the bioeconomy
setting in 2040. Compared to a total land use of less than 900 million hectares in the
reference scenario, 300 additional million hectares were needed, or 26%.

The estimated percentage differences in land use for crops are considerably larger
than those in Nong et al. [35], whose results suggest relative changes between −0.3 and
7.9%. However, Nong et al. [35] only focused on biochemical production. Including
other components of the bioeconomy as in this study would most probably lead to higher
percentage deviations in their study as well.

A comparison with ten different models conducted by Schmitz et al. [83] showed that
cropland would increase by an average of 200 million ha between 2005 and 2050, although
the individual results were subject to a very high range and could deviate from the mean
by between −40 and +100 million ha. The high standard deviation was explained by the
model structure and assumptions regarding trade, elasticities of substitution, available
land restrictions, substitution possibilities, bioeconomy, climate change and socioeconomic
developments [83]. A direct comparison with the results is not possible for several reasons:
The cropland 2005 reference value in Schmitz et al. of about 1500 million hectares repre-
sented physical area. The land values used here were measured in harvested area and had
a value of about 1250 million hectares in 2005. For the projection, we excluded the “Rest of
the World” aggregate, which reduced the value for 2005 to 904 million hectares. Until 2040,
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the area harvested in our model remained almost stable in the reference (−1.5% 2005–2040).
In the bioeconomy scenario, land use increased by 24% between 2005 and 2040. In Schmitz
et al. [83], the land use values of 2040 showed a broad range of behavior including decreas-
ing and stable. Thus, the findings of Schmitz et al. [83] at least support the plausibility of
our results.

The additional hectares in the bioeconomy scenario are not equally needed for different
groups of crops. As can be seen in the additional charts in Figures S1–S3 in the Supplemen-
tary Information, the area harvested with sugar plants only showed comparably minor
changes in land use between the reference and the bioeconomy scenario. The absolute
differences were below one million hectares for all countries. The only exception was the
country group Asia and Pacific, with a maximum difference of 6 million hectares in 2040.
Compared to that, the differences in area harvested for grains and oleiferous fruits yielded
much higher effects, with mean values of about 6 million hectares. Again, the results could
be split into two different cases: while Asia and Pacific, Europe and South America showed
high absolute differences for oleiferous fruits, in China and North America, the absolute
effects were particularly high for grains.

4.2. GDP per Capita and Total Employment

The higher need for land and the increase in harvesting activities do not necessarily
translate into additional growth for a country group. Nevertheless, some countries would
profit from a change towards a bioeconomy: Asia and Pacific, North America, South
America and Europe would have a higher GDP per capita in a bioeconomic world; in 2030,
the GDP per capita in these country groups would be between 0.1 and 0.4% higher than
in the reference scenario (see Figure 5 and Table S9 in the Supplementary Information).
In 2040, the positive difference even increased for Asia and Pacific, North America and
Europe, reaching 1, 0.4 and 0.1%. For South America, the percentage difference between
the reference and the bioeconomy scenario remained at 0.3% between both years. In China,
the bioeconomy only developed positive effects at a late stage: In 2030, there was almost no
difference in GDP per capita between the reference and the bioeconomy scenario. In 2040,
however, the GDP per capita was 0.1% higher with a bioeconomic structure in China.
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Africa, Russia, India and Brazil would be worse off in a bioeconomic world in terms
of GDP per capita. In 2030, their GDP per capita was 0.1 to 0.3% lower than in the reference
scenario. The range of the negative percentage difference does not change until 2040, i.e., it
remained between 0.1 and 0.3%, even if the negative difference in GDP per capita became
somewhat larger for Russia and Brazil.

The magnitudes of the percentage differences are similar to the scenario outcomes
published by Nong et al. [35]. In their study, the percentage difference varied between
−0.3 and 0.4%. The results only differ at the country level. In contrast to the findings at
hand, Nong et al. [35] found a (very low) negative percentage deviation from the reference
scenario for the European countries, the North American countries and China. The reverse
applies to Africa, being positively affected in Nong et al. [35].

The level and direction of the differences in total employment displayed in Figure 6
corresponded, in most parts, to the results for GDP per capita. The relative differences
were slightly smaller, but the composition of the groups with positive and negative effects
stayed the same.
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4.3. Production by Production Sectors

The reason for the partly negative effects in GDP per capita and employment lies in the
different country-specific production structures, the composition of intermediate demand,
import shares, price elasticities and feedback effects between the production sectors.

Figure 7 shows the effect of the bioeconomy relative to the reference for different
production sectors. In general, the total effects were larger in 2040 than in 2030. Sectors
not directly affected by the bioeconomy were aggregated to “other industries” and “other
services”. These sectors displayed only minor changes in production output in all country
groups, with less than 0.4% on average (more details can be found in Table S10 in the
Supplementary Information).
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The highest percentage differences between the reference and bioeconomy scenarios
could be found for the production sector “Agriculture, forestry and fishing” due to the
higher demand for these products. In total, in the bioeconomy scenario, production was
25% (2030) and 36% (2040) higher than in the reference scenario. The output increased in
a bioeconomy setting in Asia and Pacific, China and Europe, whereas Africa, Brazil and
India produced less output. The production in North America, Russia and South America
stayed almost unaffected with deviations of less than 1%.

Related to this, the food industry represented by “Food products, beverages and
tobacco”, as a downstream sector with a high degree of interdependence with “Agriculture,
forestry and fishing”, also showed corresponding deviations (at a lower level) in production.
In 2030, the total percentage deviation summed up to 6%, and in 2040, to 5%. The highest
relative differences between the scenarios could be found for Asia and Pacific (6% in 2030
and 5% in 2040) and Brazil (−2% in 2030 and 2040).

Production in the sector “Mining and extraction of energy producing products” was,
in total, 0.2% higher in 2030 and 0.1% lower in 2040. At the country level, the effects had
a range of −1% (India) to 3% (Europe) in 2030 and −2% (Russia) to 1% (South America)
in 2040.

The remaining production sectors “Coke, refined petroleum, chemicals and phar-
maceutical products”, “Electricity, gas, water supply, sewerage, waste and remediation
services” and “Transportation and storage” showed only minor changes in production
compared with the reference scenario, both overall and for most country groups, with
values of up to 1%. An exception was Asia and Pacific, where the bioeconomy had notable
(positive and negative) effects between 1 and 2% on the aforementioned production sectors.
Additionally, effects of −1% in 2040 could be found for Europe in the production of “Coke,
refined petroleum, chemicals and pharmaceutical products”, which are partly substituted
by biomass.
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4.4. Discussion of the Results

The estimated increase in agricultural land use will have a considerable impact on
biodiversity, biogeochemistry, biogeophysics and ecosystem functioning [84]. According
to Usubiaga-Liaño et al. [85], the findings of other studies suggest that the maximum
allowable area of cropland is 13 to 15% of the terrestrial area. Their more pessimistic results
suggest much lower admittable values. With a current value of 12% [85,86], there is little
scope left. Dinerstein et al. [87] even came to a more rigid conclusion that at least half of
the global natural habitat needs to be conserved to guarantee biodiversity and a resilient
climate. Though the effects of less biodiversity could not be considered in the model, the
increasing demand for harvested area in the bioeconomy scenario already suggests massive
drops in biodiversity with the associated consequences for ecosystem functioning.

However, Heck et al. [86] showed that a cropland of 2000 Mha combined with low
carbon losses and a low risk to biodiversity can be achieved under certain conditions, such
as a massive reduction in grazing land and abandoning of crop and pasture land in tropical
and boreal zones. In the bioeconomy scenario at hand, the harvested land summed up to
1300 Mha. Thus, consequent policy interventions complementing the transition towards a
bioeconomy could prevent losses in biodiversity.

Put differently, our results suggest that based on biofuels and advanced biomaterials,
the goals of decarbonization, green job creation and reduced import dependence can only
be achieved at the expense of increased land use, especially in Brazil, China and North
and South America. Without additional policy measures, this would mean the destruction
of valuable land areas such as the Amazon Forest. Thus, in order to achieve the optimal
result suggested by [86], far-reaching international coordination is necessary, which can
certainly be viewed skeptically. Against this background, the bioeconomy scenario must be
evaluated quite critically. In particular, the economic benefits in terms of GDP growth are
quite low in almost all countries, while, at the same time, the expansion of the bioeconomy
leads to a strong increase in cropland use and associated environmental impacts. In regions
and countries such as Asia and China, the bioeconomy promotes the expansion of the
agricultural sector and thus tends to inhibit the country’s progressive development. In
other words, these countries are making little economic progress with the bioeconomy, as
they primarily remain biomass producers but need significantly more land than before to
satisfy the additional demand from other countries, and, to a large extent, are endangering
their ecosystems.

Although not explicitly modeled, the results also provide evidence of a possible
conflict with the achievement of the Sustainable Development Goals (SDG) against the
background of the resource nexus. As land is addressed in SDG 7 (affordable and clean
energy), SDG 2 (zero hunger), SDG 11 (sustainable cities and communities) and SDG 13
(climate action) [88], the high increase in land use for energy in the scenario outcomes
suggests an aggravating competition for land if natural habitat should not be transformed
into agricultural land.

5. Conclusions

In this paper, we presented a hybrid approach to model the global environmental and
economic impacts of the future transformation of the bioeconomy under climate mitigation
scenarios. Similar to hybrid accounting models that simultaneously map commodity flows
in physical and monetary units, our approach aims at combining the comprehensiveness
of global economic models, such as CGE or econometric input–output models, with the
high degree of detail in the mapping of agricultural consumption, trade, production and
land use typical for partial equilibrium models. The integration of the agriculture module
into a broader multisectoral economic model is implemented in the Global Inter-Industry
Forecasting System-Energy (GINFORS-E). The GINFORS-E already features a detailed
energy module based on IEA energy balances, which makes the overall system ideal for
projecting the future biomass demand of increased bioenergy and biochemical production.
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Nonetheless, the approach presented here is generally applicable to a broad range of
multisectoral global models.

One of the main advantages of the agricultural module developed here and its inte-
gration in the GINFORS-E is the parsimonious and transparent specification of scenarios
for the bioeconomy transformation. This was achieved by focusing on the future develop-
ment of four key variables, namely, (1) the share of biofuels in total fuel consumption for
transportation, (2) the share of fossil feedstocks in chemicals replaced by biomass, (3) the
share of fresh biomass through which these additional demands are satisfied and (4) yields
and animal productivity determining the market share of a country in the global market
for agricultural products.

Finally, we showcased these features in a scenario experiment, where we assessed the
impacts of a rapid expansion of biofuel and biochemical production in the EU27 on global
land use, GDP, employment and production by industries. Our findings suggest that, while
the impacts on GDP and employment are positive for the EU, its increased biomass demand
would lead to a tremendous increase in agricultural land use outside of Europe, especially
in Latin America and the Asia-Pacific region. Although not directly comparable due to
differences in the scenario settings, our results are essentially in line with those of other
authors (e.g., Nong et al. [35]) who found that savings in GHG emissions from substituting
fossil feedstocks with biomass in industry would be more than offset by land use- and
land use change-related emissions. Certainly, appropriate scenarios can be refined in the
future, and appropriate policies should be considered that limit land use and reduce GHG
emissions. In this respect, it is important to warn against making too great demands on
the bioeconomy from a silo perspective. The limits of the bioeconomy must be considered
holistically. The bioeconomy will have to be prioritized in the face of limited land also in
other parts of the world and will not be able to serve all demands.

As mentioned in Section 3, the estimated scenario was a first case study to test the
model behavior. The results therefore show the implications of a bioeconomy without any
further policy measures and stress the need for additional policy interventions when the
bioeconomy is pursued as a decarbonization strategy.

For future research, we aim at increasing the scope of more models in two directions:
Firstly, we aim to add modules for forestry as well as fisheries and aquaculture, in order to
cover a wider range of biomass applications and impacts. Secondly, the model results will
be evaluated in more detail with respect to the SDGs, to the extent that they are quantified in
the model. This would make it easier to identify synergies and trade-offs between different
policy measures and objectives. The absolute planetary boundaries make it necessary
for institutions and stakeholders to better coordinate their goals with regard to limited
biomass in order to prevent the shifting of burdens from one policy area to another. For
future research, model comparisons on a set of common bioeconomy scenarios represent
an important undertaking for finding common ground across different model philosophies
and identifying best practices. In particular, the impact of assumptions about the economic
behavior of agents and market imperfections on the scenario outcomes has already been
identified as critical in other contexts (see [43]) (Table S1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14041976/s1. Table S1: Crops and livestock products dis-
tinguished in the agriculture module. Table S2: Mid-layer coefficients of the agriculture module.
Table S3: Bottom-layer coefficients of the agriculture module. Table S4: Estimation results of the struc-
tural gravity model. Table S5: Estimation results of the exporter fixed effects. Table S6: Estimation
results of the importer fixed effects. Table S7: List of countries and country groups used in the model.
Table S8: Area harvested for crops in million hectares for 2017 and 2040 (including absolute and
relative differences between the bioeconomy and reference scenarios). Table S9: GDP per capita for
2017, 2030 and 2040 (including absolute and relative differences between bioeconomy and reference
scenarios). Table S10: Percentage difference between the bioeconomy and reference scenarios for
2030 and 2040 for different aggregate production sectors and country groups. Figure S1: Absolute
difference in area harvested for sugar between the reference and bio-economy scenarios in million
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hectares. Figure S2: Absolute difference in area harvested for oleiferous fruits between the reference
and bioeconomy scenarios in million hectares. Figure S3. Absolute difference in area harvested for
grains between the reference and bioeconomy scenarios in million hectares.
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18. Ronzon, T.; Piotrowski, S.; M’Barek, R.; Carus, M.; Tamošiūnas, S. Jobs and Wealth in the EU Bioeconomy/JRC-Bioeconomics.
European Commission, Joint Research Centre (JRC). 2020. Available online: http://data.europa.eu/89h/7d7d5481-2d02-4b36-
8e79-697b04fa4278 (accessed on 29 November 2021).

19. Lier, M.; Aarne, M.; Kärkkäinen, L.; Korhonen, K.T.; Yli-Viikari, A.; Packalen, T. Synthesis on Bioeconomy Monitoring Systems in the
EU Member States—Indicators for Monitoring the Progress of Bioeconomy; Natural Resources Institute Finland: Helsinki, Finland, 2018.

20. Robert, N.; Giuntoli, J.; Araujo, R.; Avraamides, M.; Balzi, E.; Barredo, J.I.; Baruth, B.; Becker, W.; Borzacchiello, M.T.;
Bulgheroni, C.; et al. Development of a bioeconomy monitoring framework for the European Union: An integrative and collabo-
rative approach. New Biotechnol. 2020, 59, 10–19. [CrossRef] [PubMed]

21. Ronzon, T.; Sanjuán, A.I. Friends or foes? A compatibility assessment of bioeconomy-related Sustainable Development Goals for
European policy coherence. J. Clean. Prod. 2020, 254, 119832. [CrossRef] [PubMed]

22. Wiedmann, T.; Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 2018, 11, 314–321. [CrossRef]
23. Weisz, H.; Duchin, F. Physical and monetary input–output analysis: What makes the difference? Ecol. Econ. 2006, 57, 534–541.

[CrossRef]
24. Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food.

Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [CrossRef]
25. Hubacek, K.; Feng, K. Comparing apples and oranges: Some confusion about using and interpreting physical trade matrices

versus multi-regional input–output analysis. Land Use Policy 2016, 50, 194–201. [CrossRef]
26. Kuempel, C.D.; Frazier, M.; Nash, K.L.; Jacobsen, N.S.; Williams, D.R.; Blanchard, J.L.; Cottrell, R.S.; McIntyre, P.B.; Moran, D.;

Bouwman, L.; et al. Integrating Life Cycle and Impact Assessments to Map Food’s Cumulative Environmental Footprint. One
Earth 2020, 3, 65–78. [CrossRef]

27. Bruckner, M.; Fischer, G.; Tramberend, S.; Giljum, S. Measuring telecouplings in the global land system: A review and comparative
evaluation of land footprint accounting methods. Ecol. Econ. 2015, 114, 11–21. [CrossRef]

28. Bruckner, M.; Wood, R.; Moran, D.; Kuschnig, N.; Wieland, H.; Maus, V.; Börner, J. FABIO-The Construction of the Food and
Agriculture Biomass Input-Output Model. Environ. Sci. Technol. 2019, 53, 11302–11312. [CrossRef]

29. Többen, J.; Wiebe, K.S.; Verones, F.; Wood, R.; Moran, D.D. A novel maximum entropy approach to hybrid monetary-physical
supply-chain modelling and its application to biodiversity impacts of palm oil embodied in consumption. Environ. Res. Lett. 2018,
13, 115002. [CrossRef]

30. Ye, Q.; Bruckner, M.; Wang, R.; Schyns, J.F.; Zhuo, L.; Yang, L.; Su, H.; Krol, M.S. A hybrid multi-regional input-output model of
China: Integrating the physical agricultural biomass and food system into the monetary supply chain. Resour. Conserv. Recycl.
2022, 177, 105981. [CrossRef]

31. Valin, H.; Peters, D.; van den Berg, M.; Frank, S.; Havlik, P.; Forsell, N.; Hamelinck, C.; Pirker, J.; Mosnier, A.; Balkovic, J.; et al.
The Land Use Change Impact of Biofuels Consumed in the EU: Quantification of Area and Greenhouse Gas Impacts; ECOFYS Netherlands
B.V.: Utrecht, The Netherlands, 2015.

32. Lotze-Campen, H.; Müller, C.; Bondeau, A.; Rost, S.; Popp, A.; Lucht, W. Global food demand, productivity growth, and the
scarcity of land and water resources: A spatially explicit mathematical programming approach. Agric. Econ. 2008, 39, 325–328.
[CrossRef]

33. Hertel, T.W. Economic perspectives on land use change and leakage. Environ. Res. Lett. 2018, 13, 75012. [CrossRef]
34. Escobar, N.; Haddad, S.; Börner, J.; Britz, W. Land use mediated GHG emissions and spillovers from increased consumption of

bioplastics. Environ. Res. Lett. 2018, 13, 125005. [CrossRef]
35. Nong, D.; Escobar, N.; Britz, W.; Börner, J. Long-term impacts of bio-based innovation in the chemical sector: A dynamic global

perspective. J. Clean. Prod. 2020, 272, 122738. [CrossRef]
36. Escobar, N.; Britz, W. Metrics on the sustainability of region-specific bioplastics production, considering global land use change

effects. Resour. Conserv. Recycl. 2021, 167, 105345. [CrossRef]
37. Philippidis, G.; Bartelings, H.; Helming, J.; M’Barek, R.; Ronzon, T.; Smeets, E.; van Meijl, H.; Shutes, L. The MAGNET Model

Framework for Assessing Policy Coherence and SDGs: Application to the Bioeconomy; Publications Office of the European Union:
Luxembourg, 2018. [CrossRef]

38. Philippidis, G.; Bartelings, H.; Helming, J.; M’Barek, R.; Smeets, E.; van Meijl, H. The Good, the Bad and the Uncertain: Bioenergy
Use in the European Union. Energies 2018, 11, 2703. [CrossRef]

39. Sturm, V.; Banse, M. Transition paths towards a bio-based economy in Germany: A model-based analysis. Biomass Bioenergy 2021,
148, 106002. [CrossRef]

40. Wiebe, K.S.; Bjelle, E.L.; Többen, J.; Wood, R. Implementing exogenous scenarios in a global MRIO model for the estimation of
future environmental footprints. Econ. Struct. 2018, 7, 20. [CrossRef]

41. Saget, C.; Vogt-Schilb, A.; Luu, T. Jobs in a Net-Zero Emissions Future in Latin America and the Caribbean; BID: Washington, DC, USA;
Geneva, Switzerland, 2020. [CrossRef]

42. Asada, R.; Krisztin, T.; Di Fulvio, F.; Kraxner, F.; Stern, T. Bioeconomic transition?: Projecting consumption-based biomass and
fossil material flows to 2050. J. Ind. Ecol. 2020, 24, 1059–1073. [CrossRef]

43. Meyer, B.; Ahlert, G. Imperfect Markets and the Properties of Macro-economic-environmental Models as Tools for Policy
Evaluation. Ecol. Econ. 2019, 155, 80–87. [CrossRef]

http://data.europa.eu/89h/7d7d5481-2d02-4b36-8e79-697b04fa4278
http://data.europa.eu/89h/7d7d5481-2d02-4b36-8e79-697b04fa4278
http://doi.org/10.1016/j.nbt.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32622862
http://doi.org/10.1016/j.jclepro.2019.119832
http://www.ncbi.nlm.nih.gov/pubmed/32362729
http://doi.org/10.1038/s41561-018-0113-9
http://doi.org/10.1016/j.ecolecon.2005.05.011
http://doi.org/10.1073/pnas.1117054109
http://doi.org/10.1016/j.landusepol.2015.09.022
http://doi.org/10.1016/j.oneear.2020.06.014
http://doi.org/10.1016/j.ecolecon.2015.03.008
http://doi.org/10.1021/acs.est.9b03554
http://doi.org/10.1088/1748-9326/aae491
http://doi.org/10.1016/j.resconrec.2021.105981
http://doi.org/10.1111/j.1574-0862.2008.00336.x
http://doi.org/10.1088/1748-9326/aad2a4
http://doi.org/10.1088/1748-9326/aaeafb
http://doi.org/10.1016/j.jclepro.2020.122738
http://doi.org/10.1016/j.resconrec.2020.105345
http://doi.org/10.2760/560977
http://doi.org/10.3390/en11102703
http://doi.org/10.1016/j.biombioe.2021.106002
http://doi.org/10.1186/s40008-018-0118-y
http://doi.org/10.18235/0002509
http://doi.org/10.1111/jiec.12988
http://doi.org/10.1016/j.ecolecon.2017.06.017


Sustainability 2022, 14, 1976 23 of 24

44. Lutz, C.; Meyer, B.; Wolter, M.I. The global multisector/multicountry 3-E model GINFORS. A description of the model and a
baseline forecast for global energy demand and CO 2 emissions. Int. J. Glob. Environ. Issues 2010, 10, 25–45. [CrossRef]

45. Eurostat. Annual National Accounts (Nama10). 2019. Available online: https://ec.europa.eu/eurostat/web/national-accounts/
data/database (accessed on 14 January 2022).

46. OECD. Average Annual Wages. 2019. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=AV_AN_WAGE
(accessed on 14 January 2022).

47. OECD. Structural Analysis (STAN) Databases. 2019. Available online: https://www.oecd.org/sti/ind/stanstructuralanalysisdatabase.
htm (accessed on 14 January 2022).

48. OECD. Input-Output Tables. 2019. Available online: https://www.oecd.org/sti/ind/input-outputtables.htm (accessed on
14 January 2022).

49. World Bank. World Development Indicators (WDI). 2019. Available online: https://databank.worldbank.org/source/world-
development-indicators (accessed on 14 January 2022).

50. United Nations Statistics Division. National Accounts—Analysis of Main Aggregates (AMA); United Nations Statistics Division:
New York, NY, USA, 2019.

51. United Nations. World Population Prospects 2019: Medium Variant. 2019. Available online: https://population.un.org/wpp/
Download/Standard/Population (accessed on 14 January 2022).

52. IEA. World Energy Balances; 2019. Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-
balances (accessed on 14 January 2022).

53. IEA. CO2 Emissions from Fuel Combustion. 2019. Available online: https://www.iea.org/data-and-statistics/data-product/
greenhouse-gas-emissions-from-energy (accessed on 14 January 2022).

54. Großmann, A.; Mönnig, A.; Wolter, M.I. TINFORGE—Trade in the INterindustry FORecasting GErmany Model. In Proceedings
of the 23rd International Input-Output Conference, Mexico City, Mexico, 22–26 June 2015.

55. IEA. World Energy Outlook 2020; OECD Publishing: Paris, France, 2020. [CrossRef]
56. Mercure, J.-F.; Knobloch, F.; Pollitt, H.; Paroussos, L.; Scrieciu, S.S.; Lewney, R. Modelling innovation and the macroeconomics of

low-carbon transitions: Theory, perspectives and practical use. Clim. Policy 2019, 19, 1019–1037. [CrossRef]
57. Lutz, C.; Becker, L.; Kemmler, A. Socioeconomic Effects of Ambitious Climate Mitigation Policies in Germany. Sustainability 2021,

13, 6247. [CrossRef]
58. Wiebe, K.S.; Lutz, C.; Bruckner, M.; Giljum, S. The Global Resource Accounting Model (GRAM). In The Sustainability Practitioner’s

Guide to Multi-Regional Input-Output Analysis; Murray, J., Lenzen, M., Eds.; Common Ground Research Networks: Champaign, IL,
USA, 2013; ISBN 9781612291918.

59. Lutz, C.; Lehr, U.; Ulrich, P. Economic Evaluation of Climate Protection Measures in Germany. Int. J. Energy Econ. Policy 2014,
4, 693–705.

60. Lutz, C.; Meyer, B. Environmental and economic effects of post-Kyoto carbon regimes: Results of simulations with the global
model GINFORS. Energy Policy 2009, 37, 1758–1766. [CrossRef]

61. Lutz, C.; Lehr, U.; Wiebe, K.S. Economic effects of peak oil. Energy Policy 2012, 48, 829–834. [CrossRef]
62. Wiebe, K.S.; Lutz, C. Endogenous technological change and the policy mix in renewable power generation. Renew. Sustain. Energy

Rev. 2016, 60, 739–751. [CrossRef]
63. European Commission. Commission Staff Working Document Impact Assessment Report SWD (2021) 25 Final; European Commission:

Brussels, Belgium, 2021.
64. Hennenberg, K.J.; Gebhardt, S.; Wimmer, F.; Distelkamp, M.; Lutz, C.; Böttcher, H.; Schaldach, R. Germany’s Agricultural Land

Footprint and the Impact of Import Pattern Allocation. Sustainability 2022, 14, 105. [CrossRef]
65. Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.-J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernández, J.; Kuenen, J.;

Bruckner, M.; et al. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output
Tables. J. Ind. Ecol. 2018, 22, 502–515. [CrossRef]

66. Muhammad, A.; Seale, J.L.J.; Meade, B.; Regmi, A. International Evidence on Food Consumption Patterns: An Update Using 2005
International Comparison Program Data; Technical Bulletin, No. 1929; United States Department of Agriculture: Washington, DC,
USA, 2011.

67. Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, NY,
USA, 2009; ISBN 0511651031.

68. Oosterhaven, J. Leontief versus Ghoshian Price and Quantity Models. South. Econ. J. 1996, 62, 750–759. [CrossRef]
69. Chakrabarty, M.; Hildenbrand, W. How should Engel’s law be formulated? Eur. J. Hist. Econ. Thought 2016, 23, 743–763.

[CrossRef]
70. Seale, J.L.J.; Regmi, A.; Bernstein, J. International Evidence on Food Consumption Patterns; Technical Bulletin, No. 1904; United States

Department of Agriculture: Washington, DC, USA, 2003. [CrossRef]
71. OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; OECD Publishing: Paris, France, 2020; ISBN 9789264317673. [CrossRef]
72. FAOSTAT. Technical Conversion Factors for Agricultural Commodities; Food and Agriculture Organization of the United Nations,

Statistics Division: Rome, Italy, 1972.
73. Muhammad, A.; D’Souza, A.; Meade, B.; Micha, R.; Mozaffarian, D. The Influence of Income and Prices on Global Dietary Patterns by

Country, Age, and Gender; United States Department of Agriculture: Washington, DC, USA, 2017. [CrossRef]

http://doi.org/10.1504/IJGENVI.2010.030567
https://ec.europa.eu/eurostat/web/national-accounts/data/database
https://ec.europa.eu/eurostat/web/national-accounts/data/database
https://stats.oecd.org/Index.aspx?DataSetCode=AV_AN_WAGE
https://www.oecd.org/sti/ind/stanstructuralanalysisdatabase.htm
https://www.oecd.org/sti/ind/stanstructuralanalysisdatabase.htm
https://www.oecd.org/sti/ind/input-outputtables.htm
https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
https://population.un.org/wpp/Download/Standard/Population
https://population.un.org/wpp/Download/Standard/Population
https://www.iea.org/data-and-statistics/data-product/world-energy-balances
https://www.iea.org/data-and-statistics/data-product/world-energy-balances
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy
http://doi.org/10.1787/557a761b-en
http://doi.org/10.1080/14693062.2019.1617665
http://doi.org/10.3390/su13116247
http://doi.org/10.1016/j.enpol.2009.01.015
http://doi.org/10.1016/j.enpol.2012.05.017
http://doi.org/10.1016/j.rser.2015.12.176
http://doi.org/10.3390/su14010105
http://doi.org/10.1111/jiec.12715
http://doi.org/10.2307/1060892
http://doi.org/10.1080/09672567.2015.1050045
http://doi.org/10.22004/AG.ECON.33580
http://doi.org/10.1787/1112c23b-en
http://doi.org/10.22004/AG.ECON.256711


Sustainability 2022, 14, 1976 24 of 24

74. Anderson, J.E.; van Wincoop, E. Gravity with Gravitas: A Solution to the Border Puzzle. Am. Econ. Rev. 2003, 93, 170–192.
[CrossRef]

75. Fally, T. Structural gravity and fixed effects. J. Int. Econ. 2015, 97, 76–85. [CrossRef]
76. Eaton, J.; Kortum, S. Technology, Geography, and Trade. Econometrica 2002, 70, 1741–1779. [CrossRef]
77. Reimer, J.; Li, M. Yield Variability and Agricultural Trade. Agric. Resour. Econ. Rev. 2009, 38, 258–270. [CrossRef]
78. Santos Silva, J.; Tenreyro, S. The Log of Gravity. Rev. Econ. Stat. 2006, 88, 641–658. [CrossRef]
79. European Commission. Directorate General for Economic and Financial Affairs. In The 2018 Ageing Report: Economic & Budgetary

Projections for the 28 EU Member States (2016–2070); Publications Office of the European Union: Luxembourg, 2018. [CrossRef]
80. IEA. World Energy Outlook 2018; OECD Publishing: Paris, France, 2018. [CrossRef]
81. European Commission, Directorate General for Energy; European Commission, Directorate General for Climate Action; European

Commission, Directorate General for Mobility and Transport. EU Reference Scenario 2020: Energy, Transport and GHG Emissions:
Trends to 2050; Publications Office of the European Union: Luxembourg, 2021. [CrossRef]

82. Popp, A.; Rose, S.K.; Calvin, K.; van Vuuren, D.P.; Dietrich, J.P.; Wise, M.; Stehfest, E.; Humpenöder, F.; Kyle, P.; van Vliet, J.; et al.
Land-use transition for bioenergy and climate stabilization: Model comparison of drivers, impacts and interactions with other
land use based mitigation options. Clim. Chang. 2014, 123, 495–509. [CrossRef]

83. Schmitz, C.; van Meijl, H.; Kyle, P.; Nelson, G.C.; Fujimori, S.; Gurgel, A.; Havlik, P.; Heyhoe, E.; d’Croz, D.M.; Popp, A.; et al.
Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agric. Econ. 2014, 45, 69–84.
[CrossRef]

84. Hurtt, G.C.; Chini, L.; Sahajpal, R.; Frolking, S.; Bodirsky, B.L.; Calvin, K.; Doelman, J.C.; Fisk, J.; Fujimori, S.; Klein Goldewijk, K.; et al.
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020,
13, 5425–5464. [CrossRef]

85. Usubiaga-Liaño, A.; Mace, G.M.; Ekins, P. Limits to agricultural land for retaining acceptable levels of local biodiversity. Nat.
Sustain. 2019, 2, 491–498. [CrossRef]

86. Heck, V.; Hoff, H.; Wirsenius, S.; Meyer, C.; Kreft, H. Land use options for staying within the Planetary Boundaries—Synergies
and trade-offs between global and local sustainability goals. Glob. Environ. Chang. 2018, 49, 73–84. [CrossRef]

87. Dinerstein, E.; Vynne, C.; Sala, E.; Joshi, A.R.; Fernando, S.; Lovejoy, T.E.; Mayorga, J.; Olson, D.; Asner, G.P.; Baillie, J.E.M.; et al.
A Global Deal for Nature: Guiding principles, milestones, and targets. Sci. Adv. 2019, 5, eaaw2869. [CrossRef]

88. Bleischwitz, R.; Spataru, C.; VanDeveer, S.D.; Obersteiner, M.; van der Voet, E.; Johnson, C.; Andrews-Speed, P.; Boersma, T.; Hoff,
H.; van Vuuren, D.P. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain.
2018, 1, 737–743. [CrossRef]

http://doi.org/10.1257/000282803321455214
http://doi.org/10.1016/j.jinteco.2015.05.005
http://doi.org/10.1111/1468-0262.00352
http://doi.org/10.1017/S1068280500003245
http://doi.org/10.1162/rest.88.4.641
http://doi.org/10.2765/615631
http://doi.org/10.1787/weo-2018-en
http://doi.org/10.2833/35750
http://doi.org/10.1007/s10584-013-0926-x
http://doi.org/10.1111/agec.12090
http://doi.org/10.5194/gmd-13-5425-2020
http://doi.org/10.1038/s41893-019-0300-8
http://doi.org/10.1016/j.gloenvcha.2018.02.004
http://doi.org/10.1126/sciadv.aaw2869
http://doi.org/10.1038/s41893-018-0173-2

	Introduction 
	Materials and Methods 
	Modeling Agriculture within the GINFORS-E Framework 
	Modeling Household Consumption 
	Modeling Demand for Biomass 
	Agricultural Production and Trade 
	Interaction between GINFORS-E and the Agriculture Module 

	Case Study 
	Scenario Specifications for Bioeconomy 
	Remaining Scenario Specifications for the GINFORS-E—Baseline 

	Results 
	Agricultural Land Use 
	GDP per Capita and Total Employment 
	Production by Production Sectors 
	Discussion of the Results 

	Conclusions 
	References

