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Abstract: While many previous studies have suggested well-defined procedures to find appropriate
supply chains, a limited number of studies have been conducted with uncertain values relating to
transportation costs. Most of these have included only limited detail on multimodal transportation,
or have not considered economic, social, and environmental transportation cost factors together.
The main purpose of this study is to suggest a multi-objective stochastic model for sustainable
biomass transportation, and to identify the impact level of model selection on the transportation
mode. It begins with a deterministic formulation of sustainable transportation, which is then modified
to a stochastic problem with vectorization of cost parameters. Based on the model developed, we
examined four uncertainty cases from a combination of annual capacity and average distance of
biomass transportation. The experimental results provide more cost savings from multimodal
transportation, which can be identified if we analyze transportation costs with stochastic modeling.
Regarding short-distance plant cases, the study reveals that the impact of the utilization of stochastic
methods is insignificant, as the costs savings from multimodal transportation is trivial. Other
findings from the experiments show that multimodal transportation could provide cost savings in
the economic cost factor, except in the case of low annual capacity and short average distance.

Keywords: biomass transportation; stochastic model; multimodal; sustainability; external costs

1. Introduction

While bioenergy has received increased attention as a potential replacement for fossil
fuels in energy production, the share of US energy generated by biomass has remained
the same over the last decade. This is because the implementation of bioenergy can
increase only if it can be justified from an economic, environmental and social perspective.
One of the critical aspects required to increase its usage is cost-effective transportation.
Transportation is critical to bioenergy production, as the intrinsic characteristics of biomass
cause transportation to account for a high proportion of costs in the overall biomass supply
chain. This also makes transportation an important area of study in terms of the bioenergy
supply chain.

Biomass transportation research commonly includes modeling approaches, both in the
form of optimization and simulation. Optimization methods, sometimes called analytical
tools, commonly use data processing through mathematical equations or algebraic expres-
sions. Most optimization models have used a deterministic mathematical programming
approach [1–4]. For example, Devlin and Talbot (2014) [3] used a linear programming
approach to analyze transportation strategies for optimal woody biomass allocation to
meet the co-firing targets of Ireland. Similarly, Sosa et al. (2015) [4] developed a linear
programming model to analyze the optimal wood supply of short wood for the peat-based
electricity sector that minimized harvesting, storage, chipping and transportation costs,
while also considering competition with existing wood-based panel industries. Recently,
stochastic programming models have been suggested to overcome these uncertainties [5–7].
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For instance, Osmani and Zhang (2014) [5] proposed a stochastic programming model
which sought to optimally balance supply from wind and biomass resources considering re-
gional electricity demand and uncertainties in wind speed. While several other researchers
have also chosen a mathematical programming approach to address uncertain parameters,
most studies account for the energy price [5,8], market demand [9], and feedstock supply
quantities [7] as uncertain parameters. A limited number of studies have been conducted
with uncertain values relating to transportation costs. Kim et al. (2011) [10] have tried
to figure out the impact of several uncertain parameters, including transportation cost,
to reduce the design problem to a manageable size. However, they suggested a robustness
and global sensitivity analysis using Monte Carlo simulation, rather than the stochastic
optimization model. Thus, this study seeks to determine the impact on the complete
transportation costs while considering uncertainty parameters.

When it comes to the mode of biomass transportation, most previous papers con-
sidered only a single mode of transport, the truck [11–14], as trucks are the dominant
mode of biomass transportation. Rail transportation possesses unavoidable shortcomings
due to limited accessibility and specific infrastructure needs, such as track, terminals, rail
sidings, and transload facilities/equipment, but does become economically attractive with
higher volumes and/or distances. Especially in the case of a large capacity bioenergy
plant, interest in multimodal transportation using truck and rail may increase as well, since
biomass utilization economics are sensitive to mobilization costs and hauling distances to
markets [15]. Also, inclusion of external cost factors such as social and environmental costs
escalate the share of rail shipments to minimize total sustainable transportation costs [16].
A study by Kumar et al. (2006) [17] also suggests the importance of multimodal trans-
portation by determining the ranking of alternatives for biomass transportation systems
while considering economic, social, environmental, and technical factors. The study
found rail was the best alternative, followed by truck and pipeline for large capacity
bioenergy production.

In this paper, the general integer linear/nonlinear programming models for a simple
biomass transportation network for single and multimodal transportation scenarios is
formulated. The main purposes of this study are to suggest the multi-objective stochastic
model for sustainable biomass transportation system, and to identify the impact level
of model selection (deterministic and stochastic) on a transportation mode (single and
multimodal transportation). The study begins with a deterministic formulation of sus-
tainable transportation which considers economic, social, and environmental cost factors.
Then it is modified to a stochastic problem with vectorization of cost parameters. Four
uncertainty scenarios are developed from different combinations of annual capacity and
average distance of biomass transportation and then examined based on the developed
stochastic model of biomass transportation.

2. Materials and Methods

The objective of this study is to develop a stochastic model of multimodal biomass
transportation considering external cost factors. This model is considered to have three
decision variables in terms of the mode of biomass transportation: X, Y, and Z. Xi indicates
the number of trucks shipped long distance between supply area “i” and the conversion
plant. In the same way, the number of trucks shipped short distance between supply area
“i” to rail siding is expressed by Yi. Lastly, Z indicates the number of unit trains from rail
siding to the conversion plant. Since it is assumed in this study that the total number of cars
in a unit train is 50, the tonnage of biomass feedstock which this unit train can transport at
once is 5000 tons, while each truck has a 28-ton capacity. Total time lag in this model is a
year (365 days).

Unlike a typical single mode transportation system, the inclusion of a new trans-
portation mode “rail” is considered for shipping biomass feedstock. Since multimodal
transportation definitely needs to have intermediate facilities for loading and unloading
between trucks and rail, the storage parameter “a” is added to the model which indicates
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the installment costs of storage facility rail siding. In this perspective of multimodal trans-
portation, trans-loading cost factors should also be considered as new critical parameters.
The variable “l” and “u” are used to indicate transfer costs for loading and unloading work
in rail siding. In addition, since it takes such a long time to load feedstock on to the railcar
of a unit train, the strategy of leasing used rail cars was selected to minimize demurrage
costs in rail siding. While tank car leasing is prevalent in the market of rail car leasing [18],
the leasing rate for grain hopper cars is used as an annual unit cost for rail transportation.

Meanwhile, two kinds of social factors are considered for sustainable biomass trans-
portation: traffic congestions and accident risks. The Government Accountability Office
(GAO) [19] conducted a comparative method for the external costs of road, rail, and wa-
terways freight shipments which are not passed on to consumers. They suggested some
categories for external cost factors of road and rail which are calculated from the trucking-
to-rail ratio in terms of fatalities and cost of delay per ton-miles. In terms of environmental
costs, the price of CO2 emissions, particulate matter (PM), and NOx are also considered.
Therefore, in this research, we also used the same parameters as non-economic sustainable
factors. The summarized explanations about decision variables and parameters for this
model are described in Table 1.

Table 1. Notations for Set, Decision Variables, and Input Parameters.

I = total number of collecting points (supply areas),
Xi = number of trucks shipped between supply area “i” to the conversion plant,

Yi = number of trucks shipped short distances between supply area “i” to the rail siding,
Z = number of unit train from rail siding to the conversion plant,

CX
i , CY

i , Cr = economic transportation costs by mode X, Y at “i”, and Z, respectively,
RX

i , RY
i , Rr = social transportation costs by mode X, Y at “i”, and Z, respectively,

EX
i , EY

i , Er = environmental transportation costs by mode X, Y at “i”, and Z, respectively,
tX , tY , tZ = tonnage shipped by mode X, Y, and Z at one time, respectively,

P = number of demand points (Conversion Plants),
Op = required demand orders that are transported to conversion plant p,
K = dummy variable which value is 0 if the value of Z is 0, 1 otherwise.

Qi = daily quantitative limitation in a supply area “i”,
DX

i = distance between supply area “i” and the conversion plant (long distance),
DY

i = distance between supply area “i” and the rail siding (short distance),
Dr = distance between rail siding and the conversion plant (railroad),

cX
i , cY

i , cr = unit costs of economic transport by mode X, Y at “i”, and Z, respectively,
u = unit costs of unloading work in a rail siding from truck to storage facility,
l = unit costs of loading work in a rail siding from storage facility to rail cars,

a = unit costs of leasing a railcar for annual contract,
γX

i , γY
i , γr = unit costs of traffic congestions by mode X, Y at “i”, and Z, respectively,

δX
i , δY

i , δr = unit costs of accident risks by mode X, Y at “i”, and Z, respectively,
eX

c , eY
c , er

c = unit costs of CO2 emissions by mode X, Y at “i”, and Z, respectively,
eX

p , eY
p , er

p = unit costs of PM emissions by mode X, Y at “i”, and Z, respectively,
eX

n , eY
n , er

n = unit costs of NOx emissions by mode X, Y at “i”, and Z, respectively,
w1, w2, w3 = weight factors for economic, social and environmental transportation

2.1. Step 1: Define a Deterministic Formulation of Sustainable Transportation Model

The mathematical formulation of the problem in this study can be expressed as
shown below:

MIN

w1

[
I

∑
i=1

{
(CX

i × Xi) +
(
CY

i ×Yi
)}

+ (Cr × Z) + (a× K)
]
+ w2

[
I

∑
i=1

{(
RX

i × Xi
)
+
(

RY
i ×Yi

)}
+ (Rr × Z)

]
+w3

[
I

∑
i=1

{(
EX

i × Xi
)
+
(
EY

i ×Yi
)}

+ (ER × Z)
]

S.T.
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(tX × Xi) + (tY ×Yi) ≤ Qi i ∈ I (1)

(tX × Xi) + (tZ × Z) ≥ Op i ∈ I (2)

I

∑
i=1

(tY ×Yi) = (tZ × Z) i ∈ I (3)

Z ≤ K×M K ∈ {0, 1} (4)

Xi, Yi, Z = Positive Integer ∀ i ∈ I

M = Big positive constant

where
CX

i = DX
i × cX

i × tX i ∈ I

CY
i =

((
DY

i × cY
i

)
+ u

)
× tY i ∈ I

Cr = ((Dr × cr) + l)× tZ

RX
i = DX

i ×
(

γX
i + δX

i

)
× tX i ∈ I

RY
i = DY

i ×
(

γY
i + δY

i

)
× tY i ∈ I

Rr = Dr × (γr + δr)× tZ

EX
i = DX

i ×
(

eX
c + eX

p + eX
n

)
× tX i ∈ I

EY
i = DY

i ×
(

eY
c + eY

p + eY
n

)
× tY i ∈ I

Er = Dr ×
(

er
c + er

p + er
n

)
× tZ

The first constraint (1) indicates weekly quantitative limitation in collecting areas of
biomass feedstock. The second constraint (2) means the minimum quantities of supply to
meet market demands required for this plant. The next constraint (3) identifies all quantities
of biomass feedstock, from collecting areas not used by direct truck shipping, that should be
equal to the total sum of quantities shipped to plants by rail. Finally, constraint (4) relates to
the cost of a rail car lease. The dummy variable “K” expresses the idea that the annual cost
of a rail car lease would occur only if a rail transportation option existed for this problem.
In other words, the value of K is 0 if the value of Z is 0, otherwise the value of K is 1. M is
the big positive constant (Big M). In this study, it is assumed that the daily demurrage cost
in rail siding and operation costs for storage facilities are not needed, because 50 rail cars
are leased by the shipper and these cars are able to function as storage, as well as hauling
by locomotive.

2.2. Step 2: Modification to Stochastic Problem with Vectorization

It will be convenient to work with the following compact notation for aforementioned model:

MIN

w1

(
CT

X(ξ)X + CT
Y(ξ)Y + CZ(ξ)Z + a(ξ)K

)
+ w2

(
RT

X(ξ)X + RT
Y(ξ)Y + RZ(ξ)Z

)
+ w3

(
ET

X(ξ)X + ET
Y(ξ)Y + EZ(ξ)Z

)
S.T.

tXX + tYY ≤ Q(ξ)

tXX + tZZ ≥ O(ξ)

tYY = tZZ

Z ≤ K×M K ∈ {0, 1}
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Xi, Yi, Z = Positive Integer ∀ i ∈ I

M = Big positive constant

Where, CT
X(ξ) = DT

X × cT
X(ξ)× tX

CT
Y(ξ) =

((
DT

Y × cT
Y(ξ)

)
+ u(ξ)

)
× tY

CZ(ξ) = ((DZ × cZ(ξ)) + l(ξ))× tZ

RT
X(ξ) = DT

X × (γX(ξ) + δX(ξ))× tX

RT
Y(ξ) = DT

Y × (γY(ξ) + δY(ξ))× tY

RZ(ξ) = DZ × (γZ(ξ) + δZ(ξ))× tZ

ET
X(ξ) = DT

X ×
(

eX
c (ξ) + eX

p (ξ) + eX
n (ξ)

)
× tX

ET
Y(ξ) = DT

Y ×
(

eY
c (ξ) + eY

p (ξ) + eY
n (ξ)

)
× tY

EZ(ξ) = DZ ×
(

eZ
c (ξ) + eZ

p (ξ) + eZ
n (ξ)

)
× tZ

In this paper, a stochastic program is proposed that considers random vectors of economic,
social, and environmental cost factors, as well as total quantities and demands constraints.
In other words, it considers ξ = (CX, CY, CZ, CK, RX, RY, RZ, EX, EY, EZ, Q, O, a)
as uncertain factors.

The objective function of the aforementioned linear program can be disassembled into
several random vectors as follows:

= w1{CX1(ξ)X1 + CX2(ξ)X2 + · · ·+ CXn(ξ)Xn + CY1(ξ)Y1 + CY2(ξ)Y2 + · · ·+ CYn(ξ)Yn + CZ(ξ)Z + a(ξ)K}

+ w2{RX1(ξ)X1 + RX2(ξ)X2 + · · ·+ RXn(ξ)Xn + RY1(ξ)Y1 + RY2(ξ)Y2 + · · ·+ RYn(ξ)Yn + RZ(ξ)Z}

+ w3{EX1(ξ)X1 + EX2(ξ)X2 + · · ·+ EXn(ξ)Xn + EY1(ξ)Y1 + EY2(ξ)Y2 + · · ·+ EYn(ξ)Yn + EZ(ξ)Z} (5)

Meanwhile, if V is a vector that is consisted with a set of decision variables V = {X, Y, Z, K},
the first and second constraints (which includes the stochastic parameter) can be expressed
as follows:

tX


X1
X2
...

Xn

+ tY


Y1
Y2
...

Yn

 ≤


Q1(ξ)
Q2(ξ)

...
Qn(ξ)



(
tX tX · · · tX

)


X1
X2
...

Xn

+ tzZ ≥ O(ξ)

m

ATV − B(ξ) ≤ 0

where AT is a deterministic coefficient vector and B(ξ) is random vectors defined as right-
hand side values in constraint functions, respectively.

If we change Equation (5) to F(ξ)V, this deterministic optimization program can be a
multi-objective stochastic linear program, which is a problem of the following type:

MIN F(ξ)V

S.T. V ∈ D(ξ)
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D(ξ) =
{

V ∈ Rn : ATV − B(ξ) ≤ 0
}

tYY = tZZ

Z ≤ K×M

V = {Xi, Yi, Z, K} = Positive Integer ∀ i ∈ I, K ∈ {0, 1}

M = Big positive constant

where F(ξ) = {C(ξ), R(ξ), E(ξ), a(ξ)} is a set of random vectors defined on a probability space
(Ω, F, P). That is, it is assumed that the original three objective functions are aggregated in
the form of F(ξ) × V. Based on Kampempe and Luhandjula (2012) [20]’s approach, we can
say that V*∈ Rn is an (α, β)-satisfying solution to the problem if (V*, s*) is optimal for the
following optimization problem:

MIN s

S.T. P[F(ξ)V ≤ s] ≥ β (6)

P
[

ATV − B(ξ) ≤ 0
]
≥ α

tYY = tZZ

Z ≤ K×M

V = {Xi, Yi, Z, K} = Positive Integer ∀ i ∈ I, K ∈ {0, 1}

M = Big positive constant

where α = ( ∝1, · · · ∝m) with ∝i∈ (0, 1] and βi ∈ (0, 1] are probability levels a priori fixed
by the decision maker.

One of the most important aspects of the conceptual background in this approach is
that it tried to find a solution that satisfied non-deterministic conditions rather than finding
an optimal goal clearly.

From now on, this form will be changed into another expression which leads us to
solve this problem easily. See Kampempe and Luhandjula (2012) [20] to review the detailed
process of the transformation.

It must be assumed that all random vectors F(ξ) = {C(ξ), R(ξ), E(ξ), a(ξ)} are inde-
pendent and normally distributed. This requirement indicates that our economic, social,
and environmental cost factors from three objective functions are independent to each other.
Suppose also that right-hand side value B(ξ) is independent and normally distributed. This
means we assume the constraint of feedstock quantities from supply areas are independent
to the demand constraint of the processing plant.

Then, the first constraint of the transformed model (6) can be expressed as:

P(F(ξ)V ≤ 0)

= P

(
F(ξ)V − E[F(ξ)V]√

Var[F(ξ)V]
≤ s − E[F(ξ)V]√

Var[F(ξ)V]

)

= Φ

(
s − E[F(ξ)V]√

Var[F(ξ)V]

)

where Φ(x) = 1√
2π

x∫
−∞

e−y2/2dy. Because, F(ξ)V− E[F(ξ)V]√
Var[F(ξ)V]

is normally distributed with mean

0 and variance 1. Therefore, the first constraint of this transformed model (6) becomes
as follows:

Φ

(
s − E[F(ξ)V]√

Var[F(ξ)V]

)
≥ β
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That is,
s − E[F(ξ)V]√

Var[F(ξ)V]
≥ Φ−1(β)

which is equivalent to:

E[F(ξ)V] + Φ−1(β)
√

Var[F(ξ)V] ≤ (7)

Meanwhile, the second constraint transformed model (6) can also be established in a
new formulation using the same method. Let random vector

G(ξ) = ATV − B(ξ)

and G(ξ) is independent and normally distributed too. The expected value of G(ξ) is

E(G(ξ)) = ATV − E(B(ξ)) (8)

and its variance is as follows:

Var(G(ξ)) = Var(B(ξ)) (9)

Then, second constraint of transformed model (5) can also be expressed as

P (G(ξ) ≤ 0)

=

(
G(ξ)− E(G(ξ))√

Var(G(ξ))
≤ − E(G(ξ))√

Var(G(ξ))

)

= Φ

(
− E(G(ξ))√

Var(G(ξ))

)

where Φ(x) = 1√
2π

x∫
−∞

e−y2/2dy. Therefore, the second constraint of this transformed model

(6) becomes Φ
(
− E(G(ξ))√

Var(G(ξ))

)
≥ α. That is − E(G(ξ))√

Var(G(ξ))
≥ Φ−1(α) which is equivalent to:

E(G(ξ)) + Φ−1(α)
√

Var(G(ξ) ≤ 0.

We can replace E(G(ξ)) and Var(G(ξ)) by their values given by (8) and (9), then
we obtain

ATV − E(B(ξ)) + Φ−1(α)
√

Var(B(ξ)) ≤ 0 (10)

With combining Equations (7) and (10), we can finally get a transformed optimization
model considering stochastic variables as follows:

MIN s

S.T. E[F(ξ)V] + Φ−1(β)
√

Var[F(ξ)V] ≤ s (11)

ATV − E(B(ξ)) + Φ−1(α)
√

Var(B(ξ)) ≤ 0

tYY = tZZ

Z ≤ K×M

V = {Xi, Yi, Z, K} = Positive Integer ∀ i ∈ I, K ∈ {0, 1}

M = Big positive constant
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The expected value and variance of F(ξ)V in formulation (11) can be developed as
follows: (The rest of detail calculation about transformations of the first constraint are
described in Appendix A).

E[F(ξ)V] = w1[dX1tX1E(cX(ξ))X1 + dX2tX2E(cX(ξ))X2 + · · ·+ dXntXnE(cX(ξ))Xn + {dY1E(cY(ξ))
+E(u(ξ))}tY1Y1 + {dY2E(cY(ξ)) + E(u(ξ))}tY2Y2 + · · ·+ {dYnE(cY(ξ)) + E(u(ξ))}tYnYn
+{dZE(cZ(ξ) + E(l(ξ))} tZZ + E(a(ξ))K]

+w2[dX1tX1{E(γX(ξ)) + E(δX(ξ))}X1 + dX2tX2{E(γX(ξ)) + E(δX(ξ))}X2 + · · ·+ dXntXn{E(γX(ξ))
+E(δX(ξ))}Xn + dY1tY1{E(γY(ξ)) + E(δY(ξ))}Y1 + dY2tY2{E(γY(ξ)) + E(δY(ξ))}Y2 + · · ·
+dYntYn{E(γY(ξ)) + E(δY(ξ))}Yn + dZtZ{E(γZ(ξ)) + E(δZ(ξ))}Z]

+w3
[
dX1tX1E

(
eC

X(ξ)
)
+ E

(
eP

X(ξ)
)
+ E

(
eN

X (ξ)
)
X1 + dX2tX2E

(
eC

X(ξ)
)
+ E

(
eP

X(ξ)
)
+ E

(
eN

X (ξ)
)
X2 + · · ·

+dXntXn
{

E
(
eC

X(ξ)
)
+ E

(
eP

X(ξ)
)
+ E

(
eN

X (ξ)
)}

Xn + dY1tY1
{

E
(
eC

Y(ξ)
)
+ E

(
eP

Y(ξ)
)

+E
(
eN

Y (ξ)
)}

Y1 + dY2tY2
{

E
(
eC

Y(ξ)
)
+ E

(
eP

Y(ξ)
)
+ E

(
eN

Y (ξ)
)}

Y2 + · · ·+ dYntYn
{

E
(
eC

Y(ξ)
)

+E
(
eP

Y(ξ)
)
+ E

(
eN

Y (ξ)
)}

Yn + dZtZ
{

E
(
eC

Z(ξ)
)
+ E

(
eP

Z(ξ)
)
+ E

(
eN

Z (ξ)
)}

Z
]

Var[F(ξ)V] = w2
1
[{

d2
X1t2

X1Var(cX(ξ))X2
1 + d2

X2t2
X2Var(cX(ξ))X2

2 + · · ·+ d2
Xnt2

XnVar(cX(ξ))X2
n

+
{

d2
Y1Var(cY(ξ)) + Var(u(ξ))

}
t2
Y1Y2

1 +
{

d2
Y2Var(cY(ξ)) + Var(u(ξ))

}
t2
Y2Y2

2 + · · ·
+
{

d2
YnVar(cY(ξ)) + Var(u(ξ))

}
t2
YnY2

n +
{

d2
ZVar(cZ(ξ) + Var(l(ξ))

}
t2
ZZ2 + Var(a(ξ))K2}]

+w2
2
[{

d2
X1t2

X1{Var(γX(ξ)) + Var(δX(ξ))}X2
1 + d2

X2t2
X2{Var(γX(ξ)) + Var(δX(ξ))}X2

2 + · · ·
+d2

Xnt2
Xn{Var(γX(ξ)) + Var(δX(ξ))}X2

n + d2
Y1t2

Y1{Var(γY(ξ)) + Var(δY(ξ))}Y2
1

+d2
Y2t2

Y2{Var(γY(ξ)) + Var(δY(ξ))}Y2
2 + · · ·+ d2

Ynt2
Yn{Var(γY(ξ)) + Var(δY(ξ))}Y2

n
+d2

Zt2
Z{Var(γZ(ξ)) + Var(δZ(ξ))}Z2}]

+w2
3
[{

d2
X1t2

X1Var
(
eC

X(ξ)
)
+ Var

(
eP

X(ξ)
)
+ Var

(
eN

X (ξ)
)
X2

1 + d2
X2t2

X2Var
(
eC

X(ξ)
)
+ Var

(
eP

X(ξ)
)

+Var
(
eN

X (ξ)
)
X2

2 + · · ·+ d2
Xnt2

XnVar
(
eC

X(ξ)
)
+ Var

(
eP

X(ξ)
)
+ Var

(
eN

X (ξ)
)
X2

n
+d2

Y1t2
Y1Var

(
eC

Y(ξ)
)
+ Var

(
eP

Y(ξ)
)
+ Var

(
eN

Y (ξ)
)
Y2

1 + d2
Y2t2

Y2Var
(
eC

Y(ξ)
)
+ Var

(
eP

Y(ξ)
)

+Var
(
eN

Y (ξ)
)
Y2

2 + · · ·+ d2
Ynt2

Yn
{

Var
(
eC

Y(ξ)
)
+ Var

(
eP

Y(ξ)
)
+ Var

(
eN

Y (ξ)
)}

Y2
n

+d2
Zt2

Z
{

Var
(
eC

Z(ξ)
)
+ Var

(
eP

Z(ξ)
)
+ Var

(
eN

Z (ξ)
)}

Z2}]
2.3. Numerical Example: 4 Cases

As shown in Figure 1, a total of 187 bio-electricity plants currently use woody biomass
in a form of woods solids (WDS) as a plant primary fuel in the US. In terms of plant
nameplate capacity, the annual capacity of 75% of the 187 plants is less than 47 MW [21].
As seen in Figure 1, most of the bio-electricity plants using wood solids do not currently
need high quantities of woody feedstock. The average capacity of all these plants is 37 MW.
Considering a typical case of biomass plants, less than 500,000 tons of woody feedstocks
are procured from collecting areas to produce about 50 MW capacity annually.

In this study, 60% and 99% percent of a plant’s capacity were considered as target
example cases. Plants at these percentile capacities normally need about 350,000 and
1,200,000 tons of annual woody biomass, respectively.

Meanwhile, the average procurement distance for biomass feedstock is also a critical
criterion to classify bio-electricity plants. The breakpoints of economic distance for each
mode of transportation are presented variously in previous studies as shown in Table 2.
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Figure 1. The name plate capacity (MW) of bio-electricity plants in US [21].

Table 2. The Economic Distances by Modes for Biomass Transportation.

Feedstock Truck Rail Ship Region Reference

Forest ~100 km< <100 km~ Natherland [22]

Forest ~50 km< <50~200 km< <200~1200 km< Spain [23]

Woodchip ~145 km< <145 km~ Canada (Unit Train) [24]

Woodchip ~386 km< <386 km~ US (Unit Train) [25]

Woodchip ~500 km< <500 km~ <800 km~ Canada (Unit Train) [26]

straw ~170 km< <170 km~ Canada (Unit Train) [24]

straw ~500 km< <500 km~ <1500 km~ Canada (Unit Train) [26]

corn stover ~500 km< <500 km~ <1500 km~ US (Unit Train) [26]

corn stover ~170 km< <170 km~ Canada (Unit Train) [24]

Grain ~161 km< <161 km~ US (Unit Train) [25]

Grain ~338 km< <338 km~ US (Unit Train) [25]

In this study, we selected 75 miles (120 km) and 150 miles (240 km) as average distance
criteria for procurement, considering a marginal economic distance of the trucking system
for forest and woody biomass. A numerical analysis is then possible for a total of four
different cases using two conditions for classification: annual capacity of feedstock and
average procurement distance, as follows:

• Case A: Low annual capacity and Short procurement distance for feedstock;
• Case B: High annual capacity and Short procurement distance for feedstock;
• Case C: Low annual capacity and Long procurement distance for feedstock;
• Case D: High annual capacity and Long procurement distance for feedstock.

Table 3 indicates these example cases of four strategies for bio-electricity plants in
this study.

Table 3. Numerical example cases of bio-electricity plants for this study.

Annual Capacity

Avg. Distance
350,000 Tons 1,200,000 Tons

75 miles Case: A Case: B

150 miles Case: C Case: D
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The next step is to relate the identification of input sources to their values used in this
sustainable biomass transportation model. Since most of the data under basic conditions
are case-specific, such as the kind of mode type that is possible to use and the number
of conversion plants or collecting areas, operational data need to be assumed based on
the four different cases above. The values of three sustainable factors are mainly utilized
from previous research which suggested some pertinent rules of thumb and empirical data
with regards to biomass transportation. Table 4 presents the list of input data for four
example cases with uncertainty. Note that it is assumed there are three areas to collect
biomass feedstocks. In all cases, it is also assumed that a quantity of each market demand is
covered with their processing quantities from each collecting area. All uncertain parameters
ξ = (CX, CY, CZ, CK, RX, RY, RZ, EX, EY, EZ, Q, O, a) are regarded as independent of
each other, as well as normally distributed.

Note that available estimates used different methods and assumptions for determining
the average of each factor, and variations are also assumed by the authors. Unit costs per
tonnage for hauling and transloading are based on previous studies [16–18]. For social
cost factors, we selected traffic congestion and accident risk from the research of the US
Governmental Accountability Office (GAO) [19]. The environmental cost factors are based
on air emissions (GHG, PM, and NOx) from feedstock transportation by truck and rail [16].

If the decision maker is interested in a satisfying solution with α = 0.99 and β = 0.99
for all cases, then it is possible to solve the following problem by using the stochastic
optimization model (11). For example, Case A would be transformed to non-linear integer
program as follows:

MIN

((w1 × 55 × 28 × 0.224) + (w2 × 55 × 28 × (0.0066 + 0.0166)) + (w3 × 55 × 28 × (0.0071 + 0.0071 + 0.0022))) × X1 +

((w1 × 75 × 28 × 0.224) + (w2 × 75 × 28 × (0.0066 + 0.0166)) + (w3 × 75 × 28 × (0.0071 + 0.0071 + 0.0022))) × X2 +

((w1 × 95 × 28 × 0.224) + (w2 × 95 × 28 × (0.0066 + 0.0166)) + (w3 × 95 × 28 × (0.0071 + 0.0071 + 0.0022))) × X3 +

(w1 × ((10 × 28 × 0.224) + (28 × 4.8)) + w2 × (10 × 28 × (0.0066 + 0.0166)) + w3 × ((10 × 28 × (0.0071 + 0.0071 + 0.0022)))) × Y1 +

(w1 × ((20 × 28 × 0.224) + (28 × 4.8)) + w2 × (20 × 28 × (0.0066 + 0.0166)) + w3 × ((20 × 28 × (0.0071 + 0.0071 + 0.0022)))) × Y2 +

(w1 × ((30 × 28 × 0.224) + (28 × 4.8)) + w2 × (30 × 28 × (0.0066 + 0.0166)) + w3 × ((30 × 28 × (0.0071 + 0.0071 + 0.0022)))) × Y3 +

(w1 × ((60 × 5000 × 0.048) + (5000 × 4.8)) + w2 × (60 × 5000 × (0.00015 + 0.00018)) + w3 × ((60 × 5000 × (0.0019 + 0.0019 + 0.0005)))) × Z +

(w1 × 4800 × K) +

2.33 × (((w1ˆ2 × 55ˆ2 × 28ˆ2 × 0.01) + (w2ˆ2 × 55ˆ2 × 28ˆ2 × (0.2 + 2)) + (w3ˆ2 × 55ˆ2 × 28ˆ2 × (0.5 + 0.5 + 0.5))) × X1ˆ2 +

((w1ˆ2 × 75ˆ2 × 28ˆ2 × 0.01) + (w2ˆ2 × 75ˆ2 × 28ˆ2 × (0.2 + 2)) + (w3ˆ2 × 75ˆ2 × 28ˆ2 × (0.5 + 0.5 + 0.5))) × X2ˆ2 +

((w1ˆ2 × 95ˆ2 × 28ˆ2 × 0.01) + (w2ˆ2 × 95ˆ2 × 28ˆ2 × (0.2 + 2)) + (w3ˆ2 × 95ˆ2 × 28ˆ2 × (0.5 + 0.5 + 0.5))) × X3ˆ2 +

(w1ˆ2 × ((10ˆ2 × 28ˆ2 × 0.01) + (28ˆ2 × 0.4)) + (w2ˆ2 × 10ˆ2 × 28ˆ2 × (0.2 + 2)) + (w3ˆ2 × 10ˆ2 × 28ˆ2 × (0.5 + 0.5 + 0.5))) × Y1ˆ2 +

(w1ˆ2 × ((20ˆ2 × 28ˆ2 × 0.01) + (28ˆ2 × 0.4)) + (w2ˆ2 × 20ˆ2 × 28ˆ2 × (0.2 + 2)) + (w3ˆ2 × 20ˆ2 × 28ˆ2 × (0.5 + 0.5 + 0.5))) × Y2ˆ2 +

(w1ˆ2 × ((30ˆ2 × 28ˆ2 × 0.01) + (28ˆ2 × 0.4)) + (w2ˆ2 × 30ˆ2 × 28ˆ2 × (0.2 + 2)) + (w3ˆ2 × 30ˆ2 × 28ˆ2 × (0.5 + 0.5 + 0.5))) × Y3ˆ2 +

((w1ˆ2 × (60ˆ2 × 5000ˆ2 × 0.001) + (5000ˆ2 × 0.4)) + (w2ˆ2 × 60ˆ2 × 5000ˆ2 × (0.1 + 0.5)) + (w3ˆ2 × 60ˆ2 × 5000ˆ2 × (2 + 2 + 1))) × Zˆ2 +

100 × Kˆ2)ˆ0.5;

S.T.

[R1] (28 × X1) + (28 × Y1) − 300,000 + (2.33 × 10,000ˆ0.5) <= 0;
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[R2] (28 × X2) + (28 × Y2) − 400,000 + (2.33 × 50,000ˆ0.5) <= 0;

[R3] (28 × X3) + (28 × Y3) − 700,000 + (2.33 × 200,000ˆ0.5) <= 0;

[R4] (28 × X1) + (28 × X2) + (28 × X3) + (5000 × Z) − 350,000 + (2.33 × 1000ˆ0.5) >= 0;

[R5] (28 × Y1) + (28 × Y2) + (28 × Y3) = (5000 × Z;

[R6] Z <= K × 10,000,000;

V = {Xi, Yi, Z, K} = Positive Integer ∀ i ∈ I, K ∈ {0, 1}

Table 4. Example values of input parameters for stochastic optimization model.

Input Category
Values of Each Case

Case A Case B Case C Case D

Conditions

Possible Mode types Truck Truck, Truck, Truck,
Rail Rail Rail Rail

Number of collecting areas 3 3 3 3

Annual capacity of each
collecting areas (Tons)

N~(300,000, 10,000) N~(300,000, 10,000) N~(300,000, 10,000) N~(300,000, 10,000)
N~(400,000, 50,000) N~(400,000, 50,000) N~(400,000, 50,000) N~(400,000, 50,000)
N~(500,000, 200,000) N~(500,000, 200,000) N~(500,000, 200,000) N~(500,000, 200,000)

Number of
1 1 1 1conversion plants

Distance (Mile) from
collecting area and plant Avg. 75 Avg. 75 Avg. 150 Avg. 150

Distance (Mile) from
collecting area rail siding Avg. 20 Avg. 20 Avg. 40 Avg. 40

Distance (Mile) from rail
siding and plant Avg. 60 Avg. 60 Avg. 120 Avg. 120

Economic cost

Demand quantities N~(350,000, 1000) N~(1,200,000, 5000) N~(350,000, 1000) N~(1,200,000, 5000)(Tons)

Supply quantities N~(350,000, 1000) N~(1,200,000, 5000) N~(350,000, 1000) N~(1,200,000, 5000)(Tons)

Unit costs per tonnage for
hauling Truck: N~(0.14, 0.01) Truck: N~(0.14, 0.01) Truck: N~(0.14, 0.01) Truck: N~(0.14, 0.01)

factors

(US $/Dry ton/km, [17]) Rail: Rail: Rail: Rail:
N~(0.03, 0.001) N~(0.03, 0.001) N~(0.03, 0.001) N~(0.03, 0.001)

Unit costs of
loading/unloading for rail N~(4.8, 0.4) N~(4.8, 0.4) N~(4.8, 0.4) N~(4.8, 0.4)

(US $/Dry ton, [16])

unit costs of
N~(400, 100) N~(400, 100) N~(400, 100) N~(400, 100)leasing a railcar

(US $/month, [18])

Social cost
Traffic Congestion Truck: N~(0.66, 0.2) Truck: N~(0.66, 0.2) Truck: N~(0.66, 0.2) Truck: N~(0.66, 0.2)

Rail: Rail: Rail: Rail:

(US cent/ton-mile, [19]) N~(0.015, 0.1) N~(0.015, 0.1) N~(0.015, 0.1) N~(0.015, 0.1)

factors Accident Risk
Truck: N~(1.66, 2) Truck: N~(1.66, 2) Truck: N~(1.66, 2) Truck: N~(1.66, 2)

Rail: Rail: Rail: Rail:
(US cent/ton-mile, [19]) N~(0.018, 0.5) N~(0.018, 0.5) N~(0.018, 0.5) N~(0.018, 0.5)

Environmental
cost

Costs of Emissions Truck: N~(0.71, 0.5) Truck: N~(0.71, 0.5) Truck: N~(0.71, 0.5) Truck: N~(0.71, 0.5)
: PM and NOx Rail: Rail: Rail: Rail:

(US cent/ton-mile, [16]) N~(0.19, 2) N~(0.19, 2) N~(0.19, 2) N~(0.19, 2)

factors
Costs of Emissions Truck: N~(0.22, 0.5) Truck: N~(0.22, 0.5) Truck: N~(0.22, 0.5) Truck: N~(0.22, 0.5)

: CO2 Rail: Rail: Rail: Rail:
(US cent/ton-mile, [16]) N~(0.05, 1) N~(0.05, 1) N~(0.05, 1) N~(0.05, 1)
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3. Results and Discussions

The mathematical model was applied to the four numerical examples described in
Table 4. In all cases, the analysis was conducted with four combinations in terms of
orientation of sustainable factors: (1) economic only, (2) economic and social oriented,
(3) economic and environmental oriented, and (4) economic, social, and environmental
oriented. Each combination can be controlled by weighting factors w1 (Economic), w2
(Social), and w3 (Environmental). When external costs (social cost and environmental cost)
are fully considered, weighting factors w1 = w2 = w3 = 1. If we calculate the transportation
cost excluding the external costs, weighting factor w1 = 1 and w2 = w3 = 0. Figure 2
presents the results of the optimization problem for four cases which are combined with
deterministic and stochastic analyses. For all cases, we compared the cost difference
between single mode (truck only) and multimodal (truck and rail) biomass transportation.

Figure 2. Results of Optimized transportation costs for each case.
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This figure also suggests the different results of optimized annual number of truck
and rail hauling, as well as minimized transportation costs regarding four different cases in
perspective of annual capacity and procurement distance options.

According to this result, the optimized cost of biomass transportation considering the
economic factor only is generally less than when under consideration of other sustainable
factors. The trend of increasing costs, however, is various for each case. Particularly for the
case of multi modal with stochastic analysis for Case D (D_S_M in Figure 2), the optimized
cost is highest when we only consider economic factors. This may be related to the findings
of Ko et al. (2016) that external costs of transportation are strongly associated with distance
and tonnage [16]. In other words, shipments using rail can significantly decrease the
external costs in cases where high volume is transported for long distance between origins
and destinations.

Figure 3 describes the cost savings between single and multimodal transportation
for each case. Along with increased distance and volume, cost savings from utilizing
multimodal transportation increase for all scenarios. The results indicate that inclusion of
external transportation costs and growth of plant capacity both escalate the share of rail
shipments while trying to minimize total transportation costs.

Figure 3. Cost Savings between Single and Multimodal Transportation.

We found that more cost savings from multimodal transportation can be identified if
we analyze transportation costs with stochastic modeling. This effect is more remarkable
when the bioenergy plant is located far from the biomass collecting site (Case C and D).
In the case of short-distance cases (Case A and B), it reveals that the impact of utilization of
stochastic methods is insignificant, as the costs savings from multimodal transportation
is trivial.

In general, most industries are interested in optimization costs in the economic per-
spective only. Figure 4 shows the optimized transportation costs when we regard economic
parameters as the only sustainable factor. Note that experimental results from the deter-
ministic approach (blue color) is distinguished with the results from the stochastic model
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(orange color) by their colors. In most cases, it shows that multimodal transportation could
provide cost savings in the economic cost factor, except in the case of A (low annual capacity
and short procurement distance for feedstock). In particular, if we analyze this problem
with uncertainty, the cost increases instead (in A_S_M). We surmise that this result may
arise since the economic benefit of multimodal transportation cannot cover the variance of
increased parameters. When it comes to the effect of the stochastic method, there is also no
great difference in optimized costs with deterministic analysis in all cases. Strange as it may
seem, it is understandable because these cost gaps are covered with other combinations of
transportation modes. In other words, selecting the stochastic method has more significant
effects on the modal share than on the whole economic costs savings.

Figure 4. Optimized transportation costs considering economic factor only.

Figure 5, which shows the annual number of rail shipping for each multimodal case,
can support this assumption. It can be seen that rail transportation can be used in various
cases as a multimodal option for the achievement of optimized costs. This means the
modal share between truck and rail varies for each case. The result of Case A reveals an
interesting point: that the need for rail shipment arises when the analysis is conducted by
stochastic approach, while other cases show reversed patterns. If we compare the results
between Figures 3 and 5, we can see the number of rail shipments in Case B is much higher
than Case C, though the cost savings of Case B are lower than Case C. This means that
the increase of rail shipments does not lead to an increase in cost savings. Thus, it can be
concluded that the distance between plant and biomass collecting sites is a more significant
factor which affects the benefit of multimodal transportation with rail compared to the
capacity of bioenergy plants. Figure 5 also indicates that there would be very little chance
of rail shipments for Case A_D_M. This is evident from a previous study [16] that found
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that direct truck haulage dominates shipment scenarios that cover short distances with
small-capacities, as delivery by rail is selected only for large-capacity scenarios.

Figure 5. Annual number of rail shipments for each multimodal case.

4. Conclusions

This study investigates transportation costs when using biomass feedstock for electric-
ity plants. More specifically, it attempts to identify and minimize transportation costs, using
either single or multimodal transportation. The analysis was conducted through deter-
ministic and stochastic mathematical models that minimize transportation costs, including
economic and/or external costs.

The models were tested with four cases classified in terms of a bioenergy plant’s
annual capacity and the average distance between biomass collecting sites and the plant.
The experimental results show that while the optimized costs of biomass transportation that
consider only economic factors is generally less than when under consideration for other
sustainable factors, the trend of increasing costs are various for each case. It is also found
that more cost savings from multimodal transportation can be identified if we analyze
transportation costs with stochastic modeling. This effect is more remarkable when the
bioenergy plant is located far from the biomass collecting site. In the case of short-distance
plant cases, this reveals that the impact of utilization of stochastic methods is insignificant,
as the cost savings from multimodal transportation is trivial. Other findings from our
experiments include how multimodal transportation may provide cost savings in the
economic cost factor, except in the case of low annual capacity and short average distance.
When it comes to the effect of the stochastic method, there is also no great difference in
optimized costs with deterministic analysis in all cases. This is understandable because we
found that selecting the stochastic method more significantly effects the modal share than
the entire economic cost savings. Finally, the experimental results reveal the modal share
between truck and rail varies for each case, as rail transportation can be used in various
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cases as a multimodal option to achieve optimized costs. One of the interesting points is
that increase of rail shipments does not necessarily lead to the increase of cost savings. This
tells us that the distance between the plant and biomass collecting site is a more significant
factor which affects the benefit of multimodal transportation with rail compared to the
capacity of the bioenergy plant.

The main contributions of this study include the development of a simple approach to
the multi-objective stochastic model for sustainable biomass transportation systems. We
also identified the impact level of model selection (deterministic and stochastic)
on transportation mode (single and multimodal transportation). Though this study tried
to use as much actual experimental data as possible, it is recognized that several assump-
tions were made, such as the truck and rail operations. In addition, there were certain
limitations that should be noted when interpreting the results. For example, exclusion
of feedstock seasonality, and the loading/unloading process. In future studies, access to
more actual cost data would facilitate the development of more accurate tools to figure out
the role of the stochastic method, as well as the benefits of multimodal transportation for
bioenergy production.
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Appendix A

According to the principal properties of random vectors in terms of expected value
and variance-covariance matrix, if a random matrix is a matrix of random variable Z = (Zij),
its expectation is given by E[Z] = (E[Zij]). Therefore, the expected value and variance of
F(ξ)V in formulation (11) can be developed as follows:

Appendix A.1. E[F(ξ)V]

E



w1


(

CX1(ξ) CX2(ξ) · · · CXn(ξ)
)


X1
X2
...

Xn

+
(

CY1(ξ) CY2(ξ) · · · CYn(ξ)
)


Y1
Y2
...

Yn

+ CZ(ξ)Z + a(ξ)K


+w2


(

RX1(ξ) RX2(ξ) · · · RXn(ξ)
)


X1
X2
...

Xn

+
(

RY1(ξ) RY2(ξ) · · · RYn(ξ)
)


Y1
Y2
...

Yn

+ RZ(ξ)Z


+w2


(

RX1(ξ) RX2(ξ) · · · RXn(ξ)
)


X1
X2
...

Xn

+
(

RY1(ξ) RY2(ξ) · · · RYn(ξ)
)


Y1
Y2
...

Yn

+ RZ(ξ)Z




This can be disassemble into several random vectors as follows:
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= w1

{(
E(CX1(ξ)) E(CX2(ξ)) · · · E(CXn(ξ))

)


X1
X2
...

Xn

+
(
E( CY1(ξ)) E(CY2(ξ)) · · · E(CYn(ξ))

)


Y1
Y2
...

Yn


+E(CZ(ξ))Z + E(a(ξ))K

}

+w2


(
E( RX1(ξ)) E(RX2(ξ)) · · · E(RXn(ξ))

)


X1
X2
...

Xn

+
(
E( RY1(ξ)) E(RY2(ξ)) · · · E(RYn(ξ))

)


Y1
Y2
...

Yn

+E(RZ(ξ))Z



+ w3


(
E( EX1(ξ)) E(EX2(ξ)) · · · E(EXn(ξ))

)


X1
X2
...

Xn

+
(
E( EY1(ξ)) E(EY2(ξ)) · · · E(EYn(ξ))

)


Y1
Y2
...

Yn

+ E(EZ(ξ))Z


= w1{E(CX1(ξ))X1 + E(CX2(ξ))X2 + · · ·+ E(CXn(ξ))Xn + E(CY1(ξ))Y1 + E(CY2(ξ))Y2 + · · ·+ E(CYn(ξ))Yn

+E(CZ(ξ))Z + E(a(ξ))K}

+w2{E(RX1(ξ))X1 + E(RX2(ξ))X2 + · · ·+ E(RXn(ξ))Xn + E(RY1(ξ))Y1 + E(RY2(ξ))Y2 + · · ·+ E(RYn(ξ))Yn
+E(RZ(ξ))Z}

+w3{E(EX1(ξ))X1 + E(EX2(ξ))X2 + · · ·+ E(EXn(ξ))Xn + E(EY1(ξ))Y1 + E(EY2(ξ))Y2 + · · ·+ E(EYn(ξ))Yn
+E(EZ(ξ))Z}

= w1[dX1tX1E(cX(ξ))X1 + dX2tX2E(cX(ξ))X2 + · · ·+ dXntXnE(cX(ξ))Xn + {dY1E(cY(ξ)) + E(u(ξ))}tY1Y1
+{dY2E(cY(ξ)) + E(u(ξ))}tY2Y2 + · · ·+ {dYnE(cY(ξ)) + E(u(ξ))}tYnYn + {dZE(cZ(ξ)
+E(l(ξ))} tZZ + E(a(ξ))K]

+w2[dX1tX1{E(γX(ξ)) + E(δX(ξ))}X1 + dX2tX2{E(γX(ξ)) + E(δX(ξ))}X2 + · · ·+ dXntXn{E(γX(ξ)) + E(δX(ξ))}Xn
+dY1tY1{E(γY(ξ)) + E(δY(ξ))}Y1 + dY2tY2{E(γY(ξ)) + E(δY(ξ))}Y2 + · · ·+ dYntYn{E(γY(ξ))
+E(δY(ξ))}Yn + dZtZ{E(γZ(ξ)) + E(δZ(ξ))}Z]

+w3
[
dX1tX1E

(
eC

X(ξ)
)
+ E

(
eP

X(ξ)
)
+ E

(
eN

X (ξ)
)
X1 + dX2tX2E

(
eC

X(ξ)
)
+ E

(
eP

X(ξ)
)
+ E

(
eN

X (ξ)
)
X2 + · · ·

+dXntXnE
(
eC

X(ξ)
)
+ E

(
eP

X(ξ)
)
+ E

(
eN

X (ξ)
)
Xn + dY1tY1E

(
eC

Y(ξ)
)
+ E

(
eP

Y(ξ)
)
+ E

(
eN

Y (ξ)
)
Y1

+dY2tY2E
(
eC

Y(ξ)
)
+ E

(
eP

Y(ξ)
)
+ E

(
eN

Y (ξ)
)
Y2 + · · ·+ dYntYnE

(
eC

Y(ξ)
)
+ E

(
eP

Y(ξ)
)
+ E

(
eN

Y (ξ)
)
Yn

+dZtZ
{

E
(
eC

Z(ξ)
)
+ E

(
eP

Z(ξ)
)
+ E

(
eN

Z (ξ)
)}

Z
]

(∵ All uncertain parameters are independent each other)

Appendix A.2. Var[F(ξ)V]

Var



w1


(

CX1(ξ) CX2(ξ) · · · CXn(ξ)
)


X1
X2
...

Xn

+
(

CY1(ξ) CY2(ξ) · · · CYn(ξ)
)


Y1
Y2
...

Yn

+ CZ(ξ)Z + a(ξ)K


+w2


(

RX1(ξ) RX2(ξ) · · · RXn(ξ)
)


X1
X2
...

Xn

+
(

RY1(ξ) RY2(ξ) · · · RYn(ξ)
)


Y1
Y2
...

Yn

+ RZ(ξ)Z


+w2


(

RX1(ξ) RX2(ξ) · · · RXn(ξ)
)


X1
X2
...

Xn

+
(

RY1(ξ) RY2(ξ) · · · RYn(ξ)
)


Y1
Y2
...

Yn

+ RZ(ξ)Z
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= w2
1


(

X1 X2 · · · Xn
)
Var

(
CX1(ξ) CX2(ξ) · · · CXn(ξ)

)


X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)
Var

(
CY1(ξ) CY2(ξ) · · · CYn(ξ)

)


Y1
Y2
...

Yn

+ ZVar(CZ(ξ))Z

+KVar(a(ξ))K}

+w2
2


(

X1 X2 · · · Xn
)
Var

(
RX1(ξ) RX2(ξ) · · · RXn(ξ)

)


X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)
Var

(
RY1(ξ) RY2(ξ) · · · RYn(ξ)

)


Y1
Y2
...

Yn

+ ZVar(RZ(ξ))Z



+w2
3


(

X1 X2 · · · Xn
)
Var

(
EX1(ξ) EX2(ξ) · · · EXn(ξ)

)


X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)
Var

(
EY1(ξ) EY2(ξ) · · · EYn(ξ)

)


Y1
Y2
...

Yn

+ ZVar(EZ(ξ))Z


(∵ All uncertain parameters are independent each other)

= w2
1


(

X1 X2 · · · Xn
)


Var(CX1(ξ)) Cov(CX1(ξ), CX2(ξ)) · · · Cov(CX1(ξ), CXn(ξ))
Cov(CX2(ξ), CX1(ξ)) Var(CX2(ξ)) · · · Cov(CX2(ξ), CXn(ξ))

...
...

. . .
...

Cov(CXn(ξ), CX1(ξ)) Cov(CXn(ξ), CX2(ξ)) · · · Var(CXn(ξ))




X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)


Var(CY1(ξ)) Cov(CY1(ξ), CY2(ξ)) · · · Cov(CY1(ξ), CYn(ξ))
Cov(CY2(ξ), CY1(ξ)) Var(CY2(ξ)) · · · Cov(CY2(ξ), CYn(ξ))

...
...

. . .
...

Cov(CYn(ξ), CY1(ξ)) Cov(CYn(ξ), CY2(ξ)) · · · Var(CYn(ξ))




Y1
Y2
...

Yn


+ZVar(CZ(ξ))Z + KVar(a(ξ))K}
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+w2
2


(

X1 X2 · · · Xn
)


Var(RX1(ξ)) Cov(RX1(ξ), RX2(ξ)) · · · Cov(RX1(ξ), RXn(ξ))
Cov(RX2(ξ), RX1(ξ)) Var(RX2(ξ)) · · · Cov(RX2(ξ), RXn(ξ))

...
...

. . .
...

Cov(RXn(ξ), RX1(ξ)) Cov(RXn(ξ), RX2(ξ)) · · · Var(RXn(ξ))




X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)


Var(RY1(ξ)) Cov(RY1(ξ), RY2(ξ)) · · · Cov(RY1(ξ), RYn(ξ))
Cov(RY2(ξ), RY1(ξ)) Var(RY2(ξ)) · · · Cov(RY2(ξ), RYn(ξ))

...
...

. . .
...

Cov(RYn(ξ), RY1(ξ)) Cov(RYn(ξ), RY2(ξ)) · · · Var(RYn(ξ))




Y1
Y2
...

Yn


+ZVar(RZ(ξ))Z}

+w2
3


(

X1 X2 · · · Xn
)


Var(EX1(ξ)) Cov(EX1(ξ), EX2(ξ)) · · · Cov(EX1(ξ), EXn(ξ))
Cov(EX2(ξ), EX1(ξ)) Var(EX2(ξ)) · · · Cov(EX2(ξ), EXn(ξ))

...
...

. . .
...

Cov(EXn(ξ), EX1(ξ)) Cov(EXn(ξ), EX2(ξ)) · · · Var(EXn(ξ))




X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)


Var(EY1(ξ)) Cov(EY1(ξ), EY2(ξ)) · · · Cov(EY1(ξ), EYn(ξ))
Cov(EY2(ξ), EY1(ξ)) Var(EY2(ξ)) · · · Cov(EY2(ξ), EYn(ξ))

...
...

. . .
...

Cov(EYn(ξ), EY1(ξ)) Cov(EYn(ξ), EY2(ξ)) · · · Var(EYn(ξ))




Y1
Y2
...

Yn


+ZVar(EZ(ξ))Z}

= w2
1


(

X1 X2 · · · Xn
)


Var(CX1(ξ)) 0 · · · 0
0 Var(CX2(ξ)) · · · 0
...

...
. . .

...
0 0 · · · Var(CXn(ξ))




X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)


Var(CY1(ξ)) 0 · · · 0
0 Var(CY2(ξ)) · · · 0
...

...
. . .

...
0 0 · · · Var(CYn(ξ))




Y1
Y2
...

Yn


+ZVar(CZ(ξ))Z + KVar(a(ξ))K}

+w2
2


(

X1 X2 · · · Xn
)


Var(RX1(ξ)) 0 · · · 0
0 Var(RX2(ξ)) · · · 0
...

...
. . .

...
0 0 · · · Var(RXn(ξ))




X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)


Var(RY1(ξ)) 0 · · · 0
0 Var(RY2(ξ)) · · · 0
...

...
. . .

...
0 0 · · · Var(RYn(ξ))




Y1
Y2
...

Yn


+ZVar(RZ(ξ))Z}
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+w2
3


(

X1 X2 · · · Xn
)


Var(EX1(ξ)) 0 · · · 0
0 Var(EX2(ξ)) · · · 0
...

...
. . .

...
0 0 · · · Var(EXn(ξ))




X1
X2
...

Xn



+
(

Y1 Y2 · · · Yn
)


Var(EY1(ξ)) 0 · · · 0
0 Var(EY2(ξ)) · · · 0
...

...
. . .

...
0 0 · · · Var(EYn(ξ))




Y1
Y2
...

Yn


+ZVar(EZ(ξ))Z}

= w2
1
{

Var(CX1(ξ))X2
1 + Var(CX2(ξ))X2

2 + · · ·+ Var(CXn(ξ))X2
n + Var(CY1(ξ))Y2

1 + Var(CY2(ξ))Y2
2 + · · ·

+Var(CYn(ξ))Y2
n + Var(CZ(ξ))Z2 + Var(a(ξ))K2}

+w2
2
{

Var(RX1(ξ))X2
1 + Var(RX2(ξ))X2

2 + · · ·+ Var(RXn(ξ))X2
n + Var(RY1(ξ))Y2

1 + Var(RY2(ξ))Y2
2 + · · ·

+Var(RYn(ξ))Y2
n + Var(RZ(ξ))Z2}

+w2
3
{

Var(EX1(ξ))X2
1 + Var(EX2(ξ))X2

2 + · · ·+ Var(EXn(ξ))X2
n + Var(EY1(ξ))Y2

1 + Var(EY2(ξ))Y2
2 + · · ·

+Var(EYn(ξ))Y2
n + Var(EZ(ξ))Z2}

= w2
1
[{

d2
X1t2

X1Var(cX(ξ))X2
1 + d2

X2t2
X2Var(cX(ξ))X2

2 + · · ·+ d2
Xnt2

XnVar(cX(ξ))X2
n +

{
d2

Y1Var(cY(ξ))
+Var(u(ξ))}t2

Y1Y2
1 +

{
d2

Y2Var(cY(ξ)) + Var(u(ξ))
}

t2
Y2Y2

2 + · · ·+
{

d2
YnVar(cY(ξ))

+Var(u(ξ))}t2
YnY2

n +
{

d2
ZVar(cZ(ξ) + Var(l(ξ))

}
t2
ZZ2 + Var(a(ξ))K2}]

+w2
2
[{

d2
X1t2

X1{Var(γX(ξ)) + Var(δX(ξ))}X2
1 + d2

X2t2
X2{Var(γX(ξ)) + Var(δX(ξ))}X2

2 + · · ·
+d2

Xnt2
Xn{Var(γX(ξ)) + Var(δX(ξ))}X2

n + d2
Y1t2

Y1{Var(γY(ξ)) + Var(δY(ξ))}Y2
1

+d2
Y2t2

Y2{Var(γY(ξ)) + Var(δY(ξ))}Y2
2 + · · ·+ d2

Ynt2
Yn{Var(γY(ξ)) + Var(δY(ξ))}Y2

n
+d2

Zt2
Z{Var(γZ(ξ)) + Var(δZ(ξ))}Z2}]

+w2
3
[{

d2
X1t2

X1Var
(
eC

X(ξ)
)
+ Var

(
eP

X(ξ)
)
+ Var

(
eN

X (ξ)
)
X2

1 + d2
X2t2

X2Var
(
eC

X(ξ)
)
+ Var

(
eP

X(ξ)
)

+Var
(
eN

X (ξ)
)
X2

2 + · · ·+ d2
Xnt2

XnVar
(
eC

X(ξ)
)
+ Var

(
eP

X(ξ)
)
+ Var

(
eN

X (ξ)
)
X2

n + d2
Y1t2

Y1Var
(
eC

Y(ξ)
)
+ Var

(
eP

Y(ξ)
)

+Var
(
eN

Y (ξ)
)
Y2

1 + d2
Y2t2

Y2Var
(
eC

Y(ξ)
)
+ Var

(
eP

Y(ξ)
)
+ Var

(
eN

Y (ξ)
)
Y2

2 + · · ·
+d2

Ynt2
YnVar

(
eC

Y(ξ)
)
+ Var

(
eP

Y(ξ)
)
+ Var

(
eN

Y (ξ)
)
Y2

n
+d2

Zt2
Z
{

Var
(
eC

Z(ξ)
)
+ Var

(
eP

Z(ξ)
)
+ Var

(
eN

Z (ξ)
)}

Z2}]
(∵ All uncertain parameters are independent each other)
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