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Abstract: In this study, an effective intelligent system based on artificial neural networks (ANNs) and
a modified rat swarm optimizer (MRSO) was developed to predict the ultimate bearing capacity of
shallow foundations and their optimum design using the predicted bearing capacity value. To provide
the neural network with adequate training and testing data, an extensive literature review was used
to compile a database comprising 97 datasets retrieved from load tests both on large-scale and
smaller-scale sized footings. To refine the network architecture, several trial and error experiments
were performed using various numbers of neurons in the hidden layer. Accordingly, the optimal
architecture of the ANN was 5 × 10 × 1. The performance and prediction capacity of the developed
model were appraised using the root mean square error (RMSE) and correlation coefficient (R).
According to the obtained results, the ANN model with a RMSE value equal to 0.0249 and R value
equal to 0.9908 was a reliable, simple and valid computational model for estimating the load bearing
capacity of footings. The developed ANN model was applied to a case study of spread footing
optimization, and the results revealed that the proposed model is competent to provide better optimal
solutions and to outperform traditional existing methods.

Keywords: neural network; rat swarm; spread footing; optimization; bearing capacity

1. Introduction

A spread footing is a geotechnical structure that transfers loads to the soil immediately
beneath it. It is one of the most significant and sensitive structural components, and thus it
has received a lot of attention in recent studies. Structures’ functionality can be jeopardized
unless the effective loads are successfully transmitted to the earth by a well-designed
foundation. As a result, the proper design of shallow footings is paramount to ensure
the resilience of the structures they support. Spread footing structures are widely used
and they typically involve large volumes of materials in their construction. Therefore, eco-
nomical design of these structures is essential. However, in most geotechnical engineering
optimization problems, the objective function is discontinuous and has a large number of
design variables. These difficulties and complexity in geotechnical engineering challenges,
such as shallow foundations, pile optimization, and slope stability and liquefaction, have
prompted concerted research to develop new optimization techniques and approaches for
the solution of these problems [1–3].

The ultimate bearing capacity and control of foundation settlement are two require-
ments that must be met by every foundation design. The bearing capacity is the resistance
of the foundation when maximum pressure is applied by the foundation to the soil without
triggering shear failure in the soil. By taking into account these criteria, several models
and techniques have been developed in laboratory and in situ experiments to evaluate the
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ultimate bearing capacity, such as the theories presented by Terzaghi, Meyerhof, Hansen,
Vesic, and others [4].

For both square and rectangular footings, the ultimate bearing capacity is determined
by the foundation size. As a result, in terms of behavior and stress distribution, laboratory-
made miniature models of footings differ from real-world footings. Therefore, when using
the results of extremely small-scale model footing tests instead of full-scale behaviors,
caution should be taken. Testing the actual size footing is necessary to understand true soil-
foundation behavior; nevertheless, this is a time-consuming, experimentally challenging
and expensive procedure. As a result of the scale effect, a majority of researchers have
only focused on small-scale foundations of various sizes in the laboratory to establish
final bearing capacity [5]. In addition, researchers are attempting to evaluate reliable
approaches for predicting ultimate bearing capacity based on load test data from real-size
foundations as well as smaller-scale model footings. Because of the variability of soils and
the limitations of laboratory and field testing, a better approach for estimating bearing
capacity is necessary.

Artificial neural networks (ANNs), which simulate the structure and learning mech-
anism of biological neural networks, are one of the most common prediction methods.
ANNs are a class of parallel processing structures that work together to solve problems
using highly interconnected but simple computing units called neurons. This enables the
evaluation of non-linear correlations between any of the soil and foundation characteristics,
as well as provides faster and more accurate results than earlier techniques. ANNs have
recently been used to solve a variety of geotechnical engineering applications such as
bearing capacity estimation [6,7], rock burst hazard prediction in underground projects [8],
slope stability evaluation [9–11], concrete compressive strength prediction [12], and es-
timation of rock modulus [13]. This suggests that ANNs can be utilized for forecasting
as well as prediction of events by simulating exceedingly complex functions [14]. The
training procedure is one of the most important aspects of neural networks. The goal of this
approach is to find the best possible connection weights and biases to attain the minimal
amount of the objective function, which can be specified as root mean squared error (RMSE)
or sum of squared errors (SSE). Generally, training algorithms can be divided into two
categories: classic deterministic and recent metaheuristic algorithms. Classic optimization
algorithms based on mathematical concepts take a long time or may not obtain the opti-
mum solution at all. To address the aforementioned drawback, in the previous couple of
decades, several metaheuristic optimization algorithms have been developed and applied
for training ANNs. Some of this research includes: application of genetic algorithms [15],
particle swarm optimization [16] and imperialistic competitive algorithms [9]. Although
metaheuristics methods can produce acceptable results, there is no algorithm that can
outperform others in solving all optimization problems. As a result, research has been
conducted in an effort to modify the original algorithms’ performance and efficiency in
some aspects and to apply them to a specific application. [17–22].

Rat swarm optimizer (RSO) is a relatively new metaheuristic optimization approach
developed by Dhiman in 2020 [23]. Compared with other metaheuristics, RSO has a
simple concept and structure and does not have complicated mathematical functions.
The RSO algorithm mimics the following and attacking performances of rats in nature.
Like the other population-based techniques, RSO, without any information about the
solution, utilizes random initialization to generate the candidate solutions. Compared to
the other metaheuristics, RSO possesses several advantages. It has a very simple structure,
a fast convergence rate, and can be easily understood and utilized. However, like other
metaheuristic algorithms, RSO commonly suffers from getting trapped in local minima
when the objective function is complex and includes a rather large number of variables.

This paper presents an effective modified version of the RSO algorithm to overcome
the mentioned weaknesses and implements a new algorithm for the optimum design of
spread footings. In addition, an ANN model is created and trained using the proposed,
modified RSO for predicting the ultimate bearing capacity of spread footings.
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2. Foundation Optimization

Reinforced spread footings, as a key geotechnical construction, must securely and
reliably support the superstructure, maintain stability against excessive settlement and
failure of the soil’s bearing capacity, and restrict concrete stresses. Aside from these design
goals, spread footings must meet a number of requirements: it must have enough shear and
moment capacities in both long and short dimensions, the foundation’s bearing capacity
cannot be exceeded, and the steel reinforcement design must comply with all design codes.

Mathematically, the general form of a constraint optimization problem can be ex-
pressed as follows:

minimize f (X)
subject to

gi(X) ≤ 0, I = 1, 2, . . . , p,
hj(X) = 0, j = 1, 2, . . . , m,

XL ≤ X ≤ XU

(1)

where X is n dimensional vector of design variables, f (X) is the objective function, g(X)
and h(X) are inequality and equality constraints, respectively. Boundary constraints, XL

and XU, are two n-dimensional vectors containing the design variables’ lower and upper
bounds, respectively.

In the problem of foundation optimization, it is required that the objective function, de-
sign constraint, and design variables be identified, as presented in the following sub-sections.

2.1. Objective Function

The total cost of spread footing construction is used as the objective function in this
study, and it may be represented mathematically as follows:

f (X) = CcVc + CeVe + CbVb + C f A f + CsWs (2)

In Equation (2), Cc, Ce, Cb, Cf and Cs are the unit cost of concrete, excavation, backfill,
formwork, and reinforcement, respectively. Table 1 shows the unit expenses that are being
considered [24].

Table 1. Unit cost of spread footing construction [24].

Item Unit Unit Cost (Euros)

Excavation m3 25.16
Formwork m2 51.97

Reinforcement kg 2.16
Concrete m3 173.96

Compacted backfill m3 3.97

2.2. Design Variables

The design factors for the spread footing model are shown in Figure 1. There are two
types of design variables: those that define geometrical parameters and those that describe
reinforcing steel. The dimensions of the foundation are represented by four geometric
design variables, as illustrated in Figure 1. X1 is the foundation’s length, X2 is the founda-
tion’s width, X3 is the foundation’s thickness and X4 is the depth of embedment. Moreover,
the steel reinforcement has two design variables: X5 is the longitudinal reinforcement and
X6 is the transverse reinforcement.
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Figure 1. Design variables of the footing.

2.3. Design Constraints

The forces operating on the footing are depicted in Figure 1. M and P denote the axial
load and moment imparted to the footing in this figure. The minimum and maximum
bearing pressures on the foundation’s base are qmin and qmax, respectively. The next sub-
sections go over the design restrictions that must be taken into account when optimizing
the spread footing.

Bearing capacity: The foundation’s bearing capacity must be sufficient to withstand the
forces acting along the base. The maximum stress should be less than the soil’s bearing
capacity to ensure a safe design:

qmax ≤
qult
FS

(3)

where qult denotes the foundation’s ultimate bearing capacity and qmax is the maximum
contact pressure at the boundary between the foundation’s bottom and the underlying soil.
In this study, an ANN model is established to estimate the qult in Section 6.

The lowest and highest applied bearing pressures on the foundation’s base are calcu-
lated as follows:

q min
max

=
P

X1X2

(
1± 6 e

X1

)
(4)

where e denotes the eccentricity, which is defined as the ratio of the overturning moments
(M) to the total vertical forces (P).

Eccentricity: The following requirements must be met such that tensile forces at the
bottom of the footing are avoided:

e ≤ X1

6
(5)

Settlement: According to the following inequalities, foundation settlement should be
kept within a legal range:

δ ≤ δall (6)

where δall is the permitted settlement and δ is the foundation’s immediate settlement. The
settlement can be estimated as follows using the elastic solution proposed by Poulos and
Davis [25]:

δ =
P(1− ν2)

κzE
√

X1X2
(7)
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where κz is the shape factor, ν is the Poisson ratio and E is modulus of elasticity. In this
research, the shape factor proposed by Wang and Kulhawy [24] is used as follows:

κz = −0.0017(X2/X1)
2 + 0.0597(X2/X1) + 0.9843 (8)

One-way shear: The footing must be viewed as a wide beam for one-way shear. Accord-
ing to ACI [26], the shear strength of concrete measured along a vertical plane extending
the whole width of the base and located at a distance equal to the effective depth of the
footing (Vu) should be less than the nominal shear strength of concrete:

Vu ≤
1
6

φ V
√

f ′cbd (9)

where ϕV is the shear strength reduction factor of 0.75 [26], f′c is the concrete compression
strength, and b is the section width.

Two-way shear: The tendency of the column to punch through the footing slab is called
punching shear. According to Equation (10), the maximum shearing force in the upward
direction (Vu) should be less than the nominal punching shear strength to avoid such
a failure.

Vu ≤ min
{
(1 +

2
βc

)/6,
(

αs d
b0

+ 2
)

/12,
1
3

}
φV
√

f ′cb0d (10)

where b0 is the crucial section’s perimeter taken at d/2 from the column’s face, d denotes the
depth at which steel reinforcement is placed, βc is the ratio of a column section’s long side
to its short side and αs is equal to 40 for interior columns.

Bending moment: The nominal flexural strength of the reinforced concrete foundation
section should be less than the moment capacity [26]:

Mu ≤ φM AS fy

(
d− a

2

)
(11)

where Mu denotes the bending moment of the reaction stresses due to the applied load at
the column’s face, ϕM presents the flexure strength reduction factor equal to 0.9 [26], As
denotes the area of steel reinforcement and fy is the yield strength of steel.

Reinforcements limitation: In each direction of the footing, the amount of steel reinforce-
ment must fulfill minimum and maximum reinforcement area limitations according to the
following inequality [26]:

ρminbd ≤ AS ≤ ρmaxbd (12)

where AS is the cross section of steel reinforcement, ρmin and ρmax are the minimum and
maximum reinforcement ratios based on the following equations [26]:

ρmin = max

{
1.4
fy

, 0.25

√
f ′c

fy

}
(13)

ρmax = 0.85β1
f ′c
fy

(
600

600 + fy

)
(14)

Limitation of embedment’s depth: The depth of embedment should be limited between
0.5 and 2. Therefore:

0.5 ≤ X4 ≤ 2 (15)

To address the above-mentioned limitations and transform a constrained optimization
to an unconstrained one, a penalty function method is used in this paper, according to:
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F(X) = f (X) + r
p

∑
i=1

max{0, gi(X)}l (16)

where F(X) is the penalized objective function, f (X) is the problem’s original objective
function in Equation (2) and r is a penalty factor.

3. Modified Rat Swarm Optimizer

Rat Swarm Optimizer (RSO) is a novel metaheuristic algorithm inspired by the follow-
ing and attacking behaviors of rats [23]. Rats are regional animals that live in a swarm of
both males and females. In many circumstances, the rats’ behavior is extremely aggressive,
which may result in the death of several animals. In this approach, the following and
aggressive actions of rats are mathematically modelled to perform optimization [23]. Simi-
lar to the other population-based optimization techniques, the rat swarm optimizer starts
with a set of random solutions which represent the rat’s position in the search space. This
random population is estimated repeatedly by an objective function and improved based
on following and aggressive behaviors of rats. In the original version of the RSO technique,
the initial positions of eligible solutions (rats’ positions) are determined randomly in the
search space as follows:

xi = xi min + rand× (xi max − xi min), i = 1, 2, . . . , N (17)

where xi min and xi max are the ith variable’s lower and upper limits, respectively. Generally,
rats follow the bait in a group through their social painful behavior. Mathematically, to
describe this performance of rats, it is assumed that the greatest search agent has the
knowledge of bait placement. Therefore, the other search agents can inform their locations
with respect to the greatest search agent obtained until now. The following equation has
been suggested to represent the attacking process of rats using bait and produce the rat’s
updated next position [23]:

→
P i(t + 1) =

∣∣∣∣→P r(t)−
→
P
∣∣∣∣ (18)

where,
→
P i(t + 1) defines the updated positions of ith rats,

→
P r(t) is the best optimal solution

founded so far and t denotes the iteration number. In the above equation,
→
P can be

obtained using Equation (19).

→
P = A×

→
P i(t) + C× (

→
P r(t)−

→
P i(t)) (19)

where,
→
P i(t) defnes the positions of ith rats, and parameters A and C are calculated

as follows:

A = R− t×
(

R
tmax

)
, t = 1, 2, 3, . . . , tmax (20)

C = 2 × rand (21)

The parameter R is a random number between [1,5], C is a random number between
[0,2] [23]. t is the current iteration of optimization process and tmax is the maximum number
of iterations. Equation (18) updates the locations of search agents and saves the best
solution. Even though the performance of RSO to obtain the global optima is better than
other evolutionary algorithms like Moth-fame Optimization (MFO), Grey Wolf Optimizer
(GWO), and Gravitational Search Algorithm (GSA) [23], the algorithm may face some
difficulty in finding better results through exploring complex functions.

To increase the performance and efficiency of RSO, this research presents a modified
version of the algorithm using the idea of opposition-based learning (OBL). As mentioned
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before, RSO, as a member of population-based optimization algorithms, starts with a
set of initial solutions and tries to improve performance toward the best solution. In
the absence of a priori knowledge about the solution, the random initialization method
is used to generate candidate solutions (rat’s initial positions) based on Equation (17).
Obviously, the performance and convergence speed are directly related to the distance
of the initial solutions from the best solution. In other words, the algorithm has a better
performance if the randomly generated solutions have a lower value than the objective
function. According to this idea and in order to improve the convergence speed and chance
of finding the global optima of the standard RSO, this paper proposes a modified version
of the algorithm called modified rat swarm optimization (MRSO). In the new MRSO, in
the first iteration of the algorithm after generating the initial random solutions (i.e., rats’
positions) using Equation (17), the opposite positions of each solution will be generated
based on the concept of opposite number. To describe the new population initialization,
it is required to define the concept of opposite number. Let’s consider an N-dimensional
vector X as follows:

X = (x1, x2, . . . , xN) (22)

where xi ∈ [xi min, xi max]. Then, the opposite point of xi, which denoted by xi, is defined by:

xi = (xi max + xi min)− xi , i = 1, 2, . . . , N (23)

To apply the concept of the opposite number in the population initialization of the
MRSO, consider xi to be a randomly generated solution in N-dimensional problems space
(i.e., candidate solution). For this random solution, its opposite will be generated using
Equation (23) and denoted by xi. Then, both solutions (i.e., xi and xi) will be evaluated by
the objective function f (.). Therefore, if f (xi) is better than f (xi) (i.e., f (xi) < f (xi)), the
agent xi will be replaced by xi; otherwise, we continue with xi. Hence, in the first iteration,
the initial solution and its opposite are evaluated simultaneously to continue with better
(fitter) starting agents.

Despite the fact that MRSO is capable of expressing an efficient performance when
compared to the traditional method, it can still get stuck in local optima and is not ideal for
extremely difficult problems. In other words, during the search process, occasionally some
agents fall into a local minimum and do not move for several iterations. To overcome these
weaknesses and to increase the exploration and search capability, in the proposed MRSO
at each iteration, the worst solution yielding the largest fitness value (in minimization
problems) is replaced by a new solution according to the following equation:

xworst =

{
rand1 ×

→
P r(t) i f rand3 ≤ 0.5

(xi max + xi min)− xi i f rand3 > 0.5
(24)

where, xworst is the solution with the maximum value of the objective function, rand1,
rand2 and rand3 are random numbers between 0 and 1. The new approach exchanges the
position vector of a least ranked rat with its opposite or based on the best solution found

so far (
→
P r(t)) in each generation. This process attempts to modify the result by preserving

population diversity and exploring new locations across the problem search area.
In summary, the suggested MRSO algorithm’s phases are implemented as follows:

first, the initial random solutions and their opposites are generated, and then these solutions
are evaluated according to the objective function to start the algorithm with fitter (better)
solutions. Second, the population updating phase is conducted by updating the current
solutions and then these solutions are evaluated again to replace the worst solution with a
new one. Algorithm 1 shows the pseudo code for the proposed MRSO.
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Algorithm 1 Modified Rat Swarm Optimization.

Define algorithm parameters: N, tmax
For i =1 to N //generate initial population
Initialize the rats’ position, xi, using Equation (17)
Evaluate opposite of rats’ position, xi, based on Equation (23)
If f (xi) < f (xi)
Replace xi with xi
End if
End for
Initialize parameters A, C, and R //algorithm process
Calculate the fitness value of each search agent
→
Pr ←best search agent
While t <tmax //rats’ movement
For i =1 to N
Update parameters A and C by Equations (20) and (21)
Update the positions of search agents using Equation (18)
Calculate the fitness value of each search agent
If the search agent goes beyond the boundary limits adjust it
End for
Change the worst agent with a new one using Equation (24)

Update best agent
→
P r

t = t + 1
End While

4. Artificial Neural Network

Artificial Neural Networks (ANNs) are parallel connectionist structures that are used
to model the human brain’s functional network of neurons. ANNs are made up of neurons,
which are extremely complicated mathematical processing units [27]. Weights and biases
connect neurons. The input layer, hidden layer, and output layer all make up an ANN
network [27]. Figure 2 illustrates a typical ANN model with one hidden layer. The input
layer neurons receive data and transfer the data to the hidden layer, which conducts
computation and sends the results to the last layer. The output layer is made up of neurons
that send the system’s output to the user.

Figure 2. Typical ANN model.

The number of hidden layers used in an ANN is determined by the complexity of the
problem. If the network structure is small, it cannot reach a good level of effectiveness.
Moreover, if it is too large, it will lead to redundant internal connections, loss of general-
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izability, and unnecessary complexity. According to the results of previous studies, one
or two hidden layers are found to be sufficient and suitable for most situations and can
solve any complex function [13,28]. The ANN models in this work are created using one
hidden layer.

Furthermore, the most crucial task in the ANN architecture is determining neuron
numbers in the hidden layer, which is dependent on the nature of the problem [13]. As
suggested by Caudill [29], the number of neurons in the hidden layer required to map any
function with R inputs has an upper limit of 2R+1.

In the network, the information passes from the input layer to the hidden layer
and then to the output layer. As shown in Figure 2, in the presence of a bias, each neuron
evaluates the sum of the weighted inputs and sends this sum through an activation function
to generate the output. To get the optimum performance in training and testing, different
transfer functions such as log-sigmoid and tan-sigmoid are examined. This process can be
expressed as follows:

hoj = f j(
R

∑
i=1

iwj,ixi + hbj) (25)

where iwj,i is the weight connected between neurons i = (1, 2, . . . , R) and j = (1, 2, . . . , N),
hbj is a bias in hidden layer, R is the total number of neurons in the input layer, xi is the
corresponding input data and f is the transfer function.

In the output layer, the output of the neuron is obtained by the following equation:

yk = fk

(
N

∑
j=1

hwk,jhoj + obk

)
(26)

where hwk,j is the weight connected between neurons j = (1, 2, . . . , N) and k = (1, 2, . . . , S),
obk is a bias in output layer, N denotes the total number of neurons in the hidden layer, and
S represents the total number of neurons in the output layer.

Following the formation of the ANN’s structure, training with known input and
output data sets is carried out to determine the network’s appropriate weights and biases.
The term “network training” refers to the process of determining the best values for the
network’s weights and biases. Various techniques are typically used to determine the
appropriate weights and biases for the ANN.

The ANN training is an unconstrained optimization problem involving the minimiza-
tion of the global error by adjusting the values of synaptic weights and biases. A learning
algorithm iteratively updates the values of the network parameters for provided training
data, which consists of input–output vectors, to approach the target. This update procedure
is commonly performed by back-propagating the error signal, layer by layer, and adjusting
the parameters with respect to the magnitude of error signal. Back-propagation is the most
widely utilized of various developed learning algorithms, and it has been used to represent
many phenomena in the field of geotechnical engineering with considerable success. It re-
quires less memory than the other algorithms and typically reaches an acceptable error level
rapidly, although it can take a long time to converge properly on an error minimum. The
network is trained by adjusting the weights and biases based on the differences between
the actual and desired output values.

The prediction performance of the overall ANN model can be assessed by the correla-
tion coefficient, R and the root mean squared error (RMSE). The coefficient of correlation is
a measure that is used to determine the relative correlation and goodness-of-fit between
the predicted and observed data. The following guide is suggested for values of R between
0.0 and 1.0 [30]:

R ≥ 0.8 strong correlation exists between two sets of variables;
0.2 < R < 0.8 correlation exists between the two sets of variables; and
R ≤ 0.2 weak correlation exists between the two sets of variables.
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The RMSE is the most widely accepted measure of error and has the advantage that
large errors receive much greater attention than small errors [29]. If R is 1.00 and RMSE is
0, the model’s predictive capability is treated as excellent. Therefore, a well-trained ANN
model should have a R value near to 1 and low RMSE values.

The RMSE criteria is derived based on the neural network’s prediction of the training
dataset, which can be obtained using the following equation:

RMSE =

√√√√ 1
M

M

∑
i=1

(y− ŷ)2 (27)

where y and ŷ are the actual and the predicted values obtained by the model and M is total
number of samples.

The ideal solution, which is considered as the weights and biases of the network
associated with the minimized value of RMSE, is finally attained by continuous iterations.
At the end of the training phase, the neurons’ associated trained weights and biases are
stored in the network’s memory. The neural network is then tested using a different set
of data in the next phase. In the testing phase, using the trained parameters, the network
produces the target output values for the test data.

5. Performance Verification of MRSO

The effectiveness of the proposed method (MRSO) will be investigated in this section.
On a set of benchmark test functions from the literature, the performance of MRSO is
compared to that of the standard version of the algorithm (RSO) as well as some well-
known metaheuristic algorithms. These are all minimization problems that can be used to
evaluate new optimization algorithms’ robustness and search efficiency. The mathematical
formula and characteristics of these test functions are shown in Table 2.

Table 2. Benchmark functions’ details.

Function Range Fmin n (Dim) 3D View

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30

F2(X) = ∑n
i=1|xi |+ ∏n

i=1|xi | [−10, 10]n 0 30

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30

F4(X) = max
i
{|xi |, 1 ≤ i ≤ n } [−100, 100]n 0 30
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Table 2. Cont.

Function Range Fmin n (Dim) 3D View

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n 0 30

F6(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n 0 30

F7(X) = ∑n
i=1−xi sin

(√
|xi |
)

[−500, 500]n 428.9829 × n 30

F8(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30

F9(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
−exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20

+e

[−32, 32]n 0 30

F10(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30

F11(X) =
π
n {10 sin(πy1) +∑n−1

i=1 (yi − 1)2[1
+10 sin2(πyi+1)

]
+(yn − 1)2

}
+∑n

i=1 u(xi , 10, 100, 4)
yi = 1 + xi+4

4 u(xi , a, k, m)

=

 k(xi − a)m xi > a
0 a < xi < a

k(−xi − a)m xi < −a

[−50, 50]n 0 30

F12(X) = 0.1
{

sin2 (3πx1)

+∑n
i=1(xi − 1)2[1

+ sin2(3πxi + 1)
]

+(xn − 1)2[1 + sin2(2πxn)
]}

+∑n
i=1 u(xi , 5, 100, 4)

[−50, 50]n 0 30
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The performance and robustness of the proposed MRSO are compared with the
original RSO and some well-established optimization techniques, including Particle Swarm
Optimization (PSO) [31], Moth-flame Optimization (MFO) [32] and Multi-Verse Optimizer
(MVO) [33]. According to the literature [23] and to have a fair comparison between the
selected methods, for all algorithms, the size of solutions (N) and maximum iteration
number (tmax) are considered equal to 50 and 1000, respectively.

Because metaheuristics approaches are stochastic, a single run’s results may be incor-
rect. As a result, statistical analysis should be performed to provide a fair comparison and
evaluate the effectiveness of the algorithms. To address this issue, 30 independent runs for
the stated algorithms are performed, with the results presented in Table 3.

Table 3. Comparison of different methods in solving test functions.

Function Statistics MRSO RSO PSO MFO MVO

F1 Mean 0.000 6.09 × 10−32 4.98 × 10−9 3.15 × 10−4 2.81 × 10−1

Std. 0.000 5.67 × 10−35 1.40 × 10−8 5.99 × 10−4 1.11 × 10−1

F2 Mean 0.000 0.000 7.29 × 10−4 3.71 × 10+1 3.96 × 10−1

Std. 0.000 0.000 1.84 × 10−3 2.16 × 10+1 1.41 × 10−1

F3 Mean 0.000 1.10 × 10−18 1.40 × 10 4.42 × 10+3 4.31 × 10
Std. 0.000 4.47 × 10−19 7.13 3.71 × 10+3 8.97 × 10

F4 Mean 0.000 4.67 × 10−7 6.00 × 10−1 6.70 × 10 8.80 × 10−1

Std. 0.000 1.96 × 10−8 1.72 × 10−1 1.06 × 10 2.50 × 10−1

F5 Mean 4.71× 10−3 6.13 4.93 × 10 3.50 × 10+3 1.18 × 10+2

Std. 0.000 7.97 × 10−1 3.89 × 10 3.98 × 10+3 1.43 × 10+2

F6 Mean 6.32× 10−7 9.49 × 10−6 6.92 × 10−2 3.22 × 10−1 2.02 × 10−2

Std. 4.75× 10−7 1.83 × 10−5 2.87 × 10−2 2.93 × 10−1 7.43 × 10−3

F7 Mean −1.25× 10+4 −8.57 × 10+3 −6.01 × 10+3 −8.04 × 10+3 −6.92 × 10+3

Std. 2.60 4.23 × 10+2 1.30 × 10+3 8.80 × 10+2 9.19 × 10+2

F8 Mean 0.000 1.57 × 10+2 4.72 × 10+1 1.63 × 10+2 1.01 × 10+2

Std. 0.000 7.39 × 10 1.03 × 10 3.74 × 10 1.89 × 10
F9 Mean 8.88 × 10−16 7.40× 10−17 3.86 × 10−2 1.60 × 10 1.15 × 10

Std. 0.000 6.42 2.11 × 10−1 6.18 × 10 7.87 × 10−1

F10 Mean 0.000 0.000 5.50 × 10−3 5.03 × 10−2 5.74 × 10−1

Std. 0.000 0.000 7.39 × 10−3 1.74 × 10−1 1.12 × 10−1

F11 Mean 2.90× 10−3 5.52 × 10−1 1.05 × 10−2 1.26 × 10 1.27 × 10
Std. 4.00× 10−3 8.40 2.06 × 10−2 1.83 × 10 1.02 × 10

F12 Mean 2.15× 10−2 6.05 × 10−2 4.03 × 10−1 7.24 × 10−1 6.60 × 10−1

Std. 3.72× 10−2 7.43 × 10−1 5.39 × 10−1 1.48 × 10 4.33 × 10−2

Table 3 shows that, when compared to conventional RSO and alternative optimization
methods for all functions, MRSO can deliver better solutions in terms of the mean value
of the objective functions. The results also reveal that the MRSO algorithm’s standard
deviations are substantially smaller than those of the other techniques, indicating that the
algorithm is stable. Based on the findings, it can be inferred that MRSO outperforms the
standard algorithm as well as alternative optimization methods.

6. ANN for Prediction of Factor of Safety

In this section, an ANN model is developed and tested to forecast the shallow founda-
tions’ ultimate bearing capacity. The determination of characteristics that affect bearing
capacity is one of the more significant processes in model creation for bearing capacity
estimation. Regardless of whether the values of bearing capacity produced using differ-
ent traditional approaches vary significantly, the essential form of the equation is almost
the same. The general form of the bearing capacity formula for foundations rested on
cohesionless soil is presented in Equation (28).

qult = γDNqSqdq + 0.5γBNγSγdγ (28)
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where γ is the unit weight of the soil, B denotes the width of the footing and D is the
depth of soil above the foundation base. Nq and Nγ are bearing capacity factors that are
dependent on the internal friction angle of the base soil, dq and dγ are depth factors, and sq
and sγ are shape factors [4].

Several researchers have introduced different equations for the evaluation of these
factors. The equations for bearing capacity factors, shape factors and depth factors based
on Meyerhof’s theory are presented in the following equations:

Nq = eπtan∅tan2
(

45 +
∅
2

)
(29)

Nγ =
(

Nq − 1
)
tan(1.4∅) (30)

sq = sγ = 1 + 0.1tan2
(

45 +
∅
2

)
B
L

(31)

dq = dγ = 1 + 0.1tan2
(

45 +
∅
2

)
D
B

(32)

As shown in Equations (28)–(32), the bearing capacity of a foundation is governed by
a range of physical characteristics of the foundation and the soil in which it is embedded.
Among the variables related to the foundation geometry, the following are the primary
elements influencing the bearing capacity: footing’s width (B), footing’s length (L), footing’s
shape, and depth of embedment (D). In addition, the angle of shearing resistance of the
soil (φ) and the unit weights (γ) are the most important parameters with regard to the
soil that affect the bearing capacity. Based on the above, the five input parameters for the
ANN model creation in this study include: footing’s width (B), depth of embedment (D),
geometry of footing (L/B), soil’s unit weight (γ), and friction angle (φ). The single output
variable of the ANN is the footing’s ultimate bearing capacity (qult). The proposed ANN
model to predict the qult is shown in Figure 3.

Figure 3. Neural model for qult prediction.

The data for calibrating and validating the neural network model was gathered from
prior experimental research in the literature, which included load test data on real-sized
foundations, as well as the footing and soil information. There are 97 data sets in all, with
47 dealing with load tests on large-scale footings and 50 with lower scale model footings.

The data used are presented in Appendix A. These data were implemented for network
training and validating.

Neural network training can be made more efficient, if an adequate normalization is
performed for the network input and output variables previous to the training process.
Normalizing the data generally eliminates variations in input and output parameters,
speeds up learning, leads to faster convergence, and significantly reduces calculation
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time [34]. In the current study, before training, the following normalization expression is
used to scale the input and output data to lie between −1 and 1.

Xnorm =
X− Xmin

Xmax − Xmin
(33)

where X represents the measured value, Xnorm is the normalized value of the measured
parameter, Xmin and Xmax are the minimum and maximum values for the measured pa-
rameters. In the training process of the network, the available dataset is split into two
sections: training and testing. The training data is used to adjust the network parameters
and the testing data is used to verify the performance of the model. Usually, 80% of the
data are suggested for model training and 20% for testing [35]. Accordingly, we randomly
divided the dataset into training and testing sub-classes that have the respective amounts
of 0.8 (i.e., 78 data sets) and 0.2 (i.e., 19 data sets).

An experimental investigation was used to identify the optimal number of neurons
in the model’s hidden layer. In this experiment, the performance of the model (i.e., RMSE
and R) was evaluated with a different number of neurons by considering tan-sigmoid as
the transfer function. The network’s parameters were evaluated using both MRSO and
RSO algorithms to minimize the error between the real and predicted values of qult. To
compare the performance of these algorithms for training the network, 30 independent
runs were conducted using both algorithms and the best values of the Root Mean Square
Error (RMSE) and the correlation coefficient (R) for all training samples are collected and
presented in Table 4. From Table 4, it is shown that the optimum number of the neurons in
the hidden layer is equal to 10. Moreover, the results indicate that the best values of RMSE
and R obtained by MRSO are lower than those evaluated by RSO and the new algorithm
apparently performs better than RSO in the model training.

Table 4. Effects of different neurons numbers in predicting qult.

Neurons Number Algorithm RMSE R

1 MRSO
RSO

0.152
0.348

0.8043
0.7539

2 MRSO
RSO

0.135
0.248

0.8275
0.7902

3 MRSO
RSO

0.106
0.181

0.8910
0.8386

4 MRSO
RSO

0.087
0.142

0.9102
0.8779

5 MRSO
RSO

0.069
0.105

0.9444
0.8991

6 MRSO
RSO

0.056
0.095

0.9505
0.9272

7 MRSO
RSO

0.044
0.078

0.9727
0.9403

8 MRSO
RSO

0.034
0.060

0.9828
0.9764

9 MRSO
RSO

0.0291
0.0414

0.9888
0.9795

10 MRSO
RSO

0.0289
0.0342

0.9908
0.9875

11 MRSO
RSO

0.0314
0.0408

0.9817
0.9786
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Following determination of the model’s structure, the parameters of the ANN model
(i.e., the connecting weights and biases) need to be determined. In this study, the proposed
MRSO as an effective optimization algorithm was implemented to determine the weights
and biases of the network associated with the minimum value of RMSE. Thereafter, using
the trained parameters, the network produced the target output values (i.e., qult).

Figures 4 and 5 display the actual values of qult together with their predicted values
obtained by MRSO and RSO for training and testing datasets, respectively. According
to these figures, the MRSO model can predict better results for both training and testing
datasets and it can be introduced as a new hybrid model in this field.

Figure 4. Relationship between real and predicted qult from the ANN model trained by MRSO.

Figure 5. Relationship between real and predicted qult from the ANN model trained by RSO.

In addition, to obtain a consistent data division of the developed model, several
combinations of the training and testing sets are considered. This is to ensure the reliability
and repeatability of the trained network when it comes to forecasting the testing dataset.

In this experiment, the data presented in Appendix A is partitioned into five groups.
Each group is randomly split into two groups: the first group is used for training the
neural network model, and the other (20% of the data set) for testing. Then, the mean
value of the RMSEs obtained on five different testing subsets is estimated, which is equal to
0.0298 in this experiment. The results of this experiment could verify the reliability of the
proposed model.
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7. Model Application

In this section, the optimum design of an interior spread footing in dry sand is con-
ducted using the proposed MRSO. This problem was solved previously by
Khajehzadeh et al. [36] using the modified particle swarm optimization (MPSO) technique.
Khajehzadeh et al. [36] applied Meyerhof’s method for evaluation of ultimate bearing
capacity. However, in the current study, the ultimate bearing capacity is predicted using
the developed ANN model based on in situ test results. Other input parameters for the
case study are given in Table 5.

Table 5. Input parameters for the case study.

Parameter Unit Value for Example

Effective friction angle of base soil degree 30
Unit weight of base soil kN/m3 18

Young’s modulus MPa 35
Poisson’s ratio − 0.3
Vertical load kN 3480

Moment kN m 840
Concrete cover cm 7.0

Yield strength of reinforcing steel MPa 400
Compressive strength of concrete MPa 30

Factor of safety for bearing capacity − 3.0
Allowable settlement of footing m 0.04

The problem is solved by the presented procedure. In order to verify the efficiency
of the proposed method, the analysis results are compared with the standard RSO as well
as modified particle swarm optimization (MPSO). The best results of the analyses for the
minimum cost are presented in Table 6.

Table 6. Optimization result for spread footing optimization.

Design
Variable Unit Optimum Values

MRSO (Current Study)
Optimum Values

RSO (Current Study)
Optimum Values

MPSO [36]

X1 m 5.30 5.75 5.75
X2 m 1.90 1.82 1.70
X3 m 0.503 0.505 0.67
X4 m 1.90 1.82 1.70
X5 cm2 135 149.7 160
X6 cm2 25 23.1 23

Objective function Euros 2756 2845 2926

The findings presented in Table 6 show that the optimum design evaluated by the
proposed methodology in the current study using the ANN model and MRSO algorithm
is lower than those evaluated by standard RSO and MPSO techniques. According to the
results, the best price obtained by MRSO is 2756 USD, almost 3.2% lower than the best
price calculated by RSO, which means the new method could provide a better solution. In
addition, the difference between the best prices evaluated by the MRSO and MPSO is almost
6.2%, which indicates that the predicted ultimate bearing capacity using the proposed ANN
model can provide acceptable results compared with the traditional methods for bearing
capacity estimation.

8. Summary and Conclusions

In this research, an effective optimization method based on the rat swarm optimizer,
namely modified rat swarm optimization (MRSO), was developed and applied for neural
network training as well as optimal design of spread foundations. In the proposed modified
RSO, both the initial random solutions and their opposites were evaluated in the first
iteration of the algorithm, and if the opposite solution’s fitness was lower than the random
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one, the opposite solution would be selected. As a result, the algorithm begins with
better solutions instead of random ones. Furthermore, the new algorithm replaces the
worst solution with a better one at each iteration to improve the algorithm’s exploration
capabilities as well as its performance and convergence rate. In addition, efforts were made
to develop an ANN model that could be used to estimate the ultimate bearing capacity of
shallow foundations on granular soil. To prepare a suitable database for the development of
the ANN model, data was retrieved from 97 load tests on footings (with sizes that match to
actual footings and smaller model footings) from the literature. After preparing the training
database, the proposed MRSO algorithm was implemented for training the network model.
Based on the obtained results of this study, the following conclusions can be drawn:

• The performance comparison of the proposed MRSO algorithm on a set of benchmark
functions reveals that the MRSO outperforms the standard RSO and other algorithms.

• The most optimal network for qult estimation is a three-layer neural network with
10 neurons in the hidden layer.

• The developed ANN model can be applied for ultimate bearing capacity estimation
with RMSE equal to 0.0249 and a correlation coefficient equal to 0.9908.

• The new MRSO algorithm was successfully applied to a case study of spread footing
optimization from the literature.

• According to the numerical experiment, the MRSO algorithm outperforms the other
methods and may provide a cheaper design for spread foundations.
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Appendix A

Table A1. Database for Bearing Capacity Prediction.

Sources B (m) D (m) L/B γ(kN/m3) φ (deg) qult (kPa)

Muhs et al. [37] 0.6 0.3 2 9.85 34.9 270
0.6 0 2 10.2 37.7 200
0.6 0.3 2 10.2 37.7 570
0.6 0 2 10.85 44.8 860
0.6 0.3 2 10.85 44.8 1760

Weiß [38] 0.5 0 1 10.2 37.7 154
0.5 0 1 10.2 37.7 165
0.5 0 2 10.2 37.7 203
0.5 0 2 10.2 37.7 195
0.5 0 3 10.2 37.7 214
0.52 0 3.85 10.2 37.7 186
0.5 0.3 1 10.2 37.7 681
0.5 0.3 2 10.2 37.7 542
0.5 0.3 2 10.2 37.7 530
0.5 0.3 3 10.2 37.7 402
0.52 0.3 3.85 10.2 37.7 413
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Table A1. Cont.

Sources B (m) D (m) L/B γ(kN/m3) φ (deg) qult (kPa)

Muhs and Weiß [39] 0.5 0 1 11.7 37 111
0.5 0 1 11.7 37 132
0.5 0 2 11.7 37 143
0.5 0.013 1 11.7 37 137
0.5 0.029 4 11.7 37 109
0.5 0.127 4 11.7 37 187
0.5 0.3 1 11.7 37 406
0.5 0.3 1 11.7 37 446
0.5 0.3 4 11.7 37 322
0.5 0.5 2 11.7 37 565
0.5 0.5 4 11.7 37 425
0.5 0 1 12.41 44 782
0.5 0 4 12.41 44 797
0.5 0.3 1 12.41 44 1940
0.5 0.3 1 12.41 44 2266
0.5 0.5 2 12.41 44 2847
0.5 0.5 4 12.41 44 2033
0.5 0.49 4 12.27 42 1492
0.5 0 1 11.77 37 123
0.5 0 2 11.77 37 134
0.5 0.3 1 11.77 37 370
0.5 0.5 2 11.77 37 464
0.5 0 4 12 40 461
0.5 0.5 4 12 40 1140

Muhs and Weiß [40] 1 0.2 3 11.97 39 710
1 0 3 11.93 40 630

Briaud and Gibben[41] 0.991 0.711 1 15.8 32 1773.7
3.004 0.762 1 15.8 32 1019.4
2.489 0.762 1 15.8 32 1158
1.492 0.762 1 15.8 32 1540
3.016 0.889 1 15.8 32 1161.2

Gandhi [42] 0.0585 0.029 5.95 15.7 34 58.5
0.0585 0.058 5.95 15.7 34 70.91
0.0585 0.029 5.95 16.1 37 82.5
0.0585 0.058 5.95 16.1 37 98.93
0.0585 0.029 5.95 16.5 39.5 121.5
0.0585 0.058 5.95 16.5 39.5 142.9
0.0585 0.029 5.95 16.8 41.5 157.5
0.0585 0.058 5.95 16.8 41.5 184.9
0.0585 0.029 5.95 17.1 42.5 180.5
0.0585 0.058 5.95 17.1 42.5 211
0.094 0.047 6 15.7 34 74.7
0.094 0.094 6 15.7 34 91.5
0.094 0.047 6 16.1 37 104.8
0.094 0.094 6 16.1 37 127.5
0.094 0.047 6 16.5 39.5 155.8
0.094 0.094 6 16.5 39.5 185.6
0.094 0.047 6 16.8 41.5 206.8
0.094 0.094 6 16.8 41.5 244.6
0.094 0.047 6 17.1 42.5 235.6
0.094 0.094 6 17.1 42.5 279.6
0.152 0.075 5.95 15.7 34 98.2
0.152 0.15 5.95 15.7 34 122.3
0.152 0.075 5.95 16.1 37 143.3
0.152 0.15 5.95 16.1 37 176.4
0.152 0.075 5.95 16.5 39.5 211.2
0.152 0.15 5.95 16.5 39.5 254.5
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Table A1. Cont.

Sources B (m) D (m) L/B γ(kN/m3) φ (deg) qult (kPa)

0.152 0.075 5.95 16.8 41.5 285.3
0.152 0.15 5.95 16.8 41.5 342.5
0.152 0.075 5.95 17.1 42.5 335.3
0.152 0.15 5.95 17.1 42.5 400.6
0.094 0.047 1 15.7 34 67.7
0.094 0.094 1 15.7 34 90.5
0.094 0.047 1 16.1 37 98.8
0.094 0.094 1 16.1 37 131.5
0.094 0.047 1 16.5 39.5 147.8
0.094 0.094 1 16.5 39.5 191.6
0.094 0.047 1 16.8 41.5 196.8
0.094 0.094 1 16.8 41.5 253.6
0.094 0.047 1 17.1 42.5 228.8
0.094 0.094 1 17.1 42.5 295.6
0.152 0.075 1 15.7 34 91.2
0.152 0.15 1 15.7 34 124.4
0.152 0.075 1 16.1 37 135.2
0.152 0.15 1 16.1 37 182.4
0.152 0.075 1 16.5 39.5 201.2
0.152 0.15 1 16.5 39.5 264.5
0.152 0.075 1 16.8 41.5 276.3
0.152 0.15 1 16.8 41.5 361.5
0.152 0.075 1 17.1 42.5 325.3
0.152 0.15 1 17.1 42.5 423.6
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