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Abstract: Among natural hazards, landslides are devastating in China. However, little is known
regarding potential landslide-prone areas in Maoxian County. The goal of this study was to apply
four deep learning algorithms, the convolutional neural network (CNN), deep neural network (DNN),
long short-term memory (LSTM) networks, and recurrent neural network (RNN) in evaluating the
possibility of landslides throughout Maoxian County, Sichuan, China. A total of 1290 landslide
records was developed using historical records, field observations, and remote sensing techniques.
The landslide susceptibility maps showed that most susceptible areas were along the Minjiang River
and in some parts of the southeastern portion of the study area. Slope, rainfall, and distance to faults
were the most influential factors affecting landslide occurrence. Results revealed that proportion of
landslide susceptible areas in Maoxian County was as follows: identified landslides (13.65–23.71%)
and non-landslides (76.29–86.35%). The resultant maps were tested against known landslide locations
using the area under the curve (AUC). This study indicated that the DNN algorithm performed better
than LSTM, CNN, and RNN in identifying landslides in Maoxian County, with AUC values (for
prediction accuracy) of 87.30%, 86.50%, 85.60%, and 82.90%, respectively. The results of this study are
useful for future landslide risk reduction along with devising sustainable land use planning in the
study area.

Keywords: landslides; deep learning algorithm; geographic information system; Sichuan; China

1. Introduction

Landslides are most devastating amongst natural disasters in many parts of the world.
They can result in serious problems, such as fatalities, significant injury, and widespread
harm to property and infrastructures, with a cost of billions of dollars, and can trigger
additional landslides [1]. According to a World Bank report, approximately 300 million
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people worldwide live in landslide-prone areas, and approximately 600 people are killed
annually by landslides [2]. The economic losses from landslides are estimated to be
US $20 billion at a global scale; annually, however, countries such as the United States, Italy,
India, China, and Germany experience significant losses [3].

Landslide occurrence is governed by multiple factors, i.e., heavy rainfall, earthquakes,
volcanic events, elevation, slope type, vegetation cover, soil properties, and human activ-
ities, such as construction of roads, buildings, and agricultural practices [4]. However,
in China, where this study was conducted (Maoxian County), landslide hazards are fre-
quently triggered by earthquakes and heavy rainfall [5]. Maoxian County lies within the
Longmenshan Belt, part of which is highly susceptible to landslides. As a result, Maoxian
County experiences considerable damage. The most devastating landslide in the study
area was the Xinmo landslide, that took place in the village of Xinmo, in the town of Diexi
in Maoxian County, at approximately 5:39 a.m. on Saturday, 24 June 2017 [6]. That event
reportedly killed 83 people and destroyed 103 housing units. A number of works related to
landslide in the area were conducted by several scholars but mainly focused on geometrical
features [7,8], triggering mechanisms [9,10], and motion processes [6,11]. The study area
also receives greater attention due to the following reasons: (i) It is a transition region from
a hilly and mountainous area around the Sichuan Basin to the Qinghai–Tibet Plateau. Thus,
geomorphological features, e.g., high elevations, steep valley walls, and large slopes are
widespread and believed to influence geological hazards [12]; (ii) the area is an uplift region
of Chinese topography and part of active Longmen Mountain tectonic belt [13]. These
tectonic movements resulted in strong earthquakes in the region (including, but not limited
to, the Diexi earthquake Ms 7.5 in 1933 and the Wenchuan earthquake Ms 8.0 in 2008),
which loosened surface material, damaged deep rocks and soil masses, and reduced water
saturation rate [14]. These factors increased vulnerability of the study area to recurrent
mountain disasters i.e., landslides and debris flows; and (iii) Maoxian has been selected by
the government as one of two case study sites for undertaking geological hazard warning
systems. With these motivations, it is apparent that Maoxian could be a useful site for
assessing landslide susceptibility.

Nevertheless, existing studies in Maoxian have made significant contributions to the
understanding of geological processes specific to landslides, but they focused on partic-
ular events. As noted above, due to its location in an active tectonic region, devastating
landslides could occur in the days ahead. Moreover, the study area lacks research on
landslide susceptibility. At present, no study appears to have investigated areas prone to
landslides for the entire county. Therefore, to understand governing processes and support
policy-makers with scientific- information, this study was conducted. The findings of the
work could help save life and properties associated with landslides in Maoxian.

A geographic information system (GIS) is an effective tool for landslide assessment.
GIS-based qualitative and quantitative models are commonly used to generate landslide
susceptibility maps [15]. Qualitative models largely depend on experts’ observations (ex-
pert knowledge-driven models) [16–19]. On the other hand, quantitative methods depend
on statistical models to produce landslide propensity maps [20–22]. Machine learning
algorithms (MLAs) and artificial intelligence methods have become popular for various
applications in multiple fields in recent years. MLAs can be used to design self-improving
models in order to obtain desired results [15,22–26]. Each of the models has its advantages
and disadvantages. However, although many researchers have utilized different models to
produce landslide susceptibility maps (LSMs) in different regions globally, there is little
consensus about the best model to be considered in landslide susceptibility modeling. In
addition, widely utilized traditional MLAs have a comparatively shallow model structure,
which renders it impossible to thoroughly investigate dynamic linear and non-linear inter-
actions between landslides and predisposing factors [27]. In recent years, deep learning
algorithms have shown substantial progress, particularly in image-based analysis [28,29].
Additionally, it has a deeper algorithmic structure, and this might be useful to examine
its performance in landslide susceptibility modeling. Hence, this study compares the
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performance of four deep learning algorithms (i.e., CNN, convolutional neural network;
LSTM, long short-term memory; DNN, deep neural network; and RNN, recurrent neural
network) by concentrating on their main distinct features. The key distinction between the
algorithms proposed and the studies that have been revealed earlier is that the four deep
learning algorithms are for the first-hand application for landslide susceptibility assessment.
A detailed comparative analysis between multiple algorithms is required to define the
problem better, assert innovative solutions, and review the effectiveness of algorithms to
improve landslides prediction. Hence, this study can advance the knowledge base to better
predict landslide. In addition, the main motivation to propose deep learning algorithms is
that these have yielded highly accurate results in landslide susceptibility assessments in
recent years. Alternatively, these algorithms determine the most appropriate mathematical
transformation to use to turn the input into the output (whether the transformation is
based on linear or nonlinear associations). Contrary to conventional wisdom, deep learning
algorithms outperform the traditional machine learning algorithms in many instances. A
deep learning approach is thus developed here to assess landslide risk in the study area.

The objectives of this study are to: (i) compare precision of different deep learning
algorithms through the area under the curve (AUC) to select the best algorithm for landslide
susceptibility mapping, (ii) develop a landslide susceptibility map, and (iii) identify critical
conditioning factors, influencing landslide occurrences in the study area. This insight is
essential to construct precise and consistent landslide susceptibility maps from which rigor-
ous conclusions can be drawn about deep learning algorithms. The findings can be valuable
to local authorities in sustainable land development. Precisely, landslides usually pose
great threats to the environment and socioeconomic development. Therefore, it is crucial to
evaluate areas susceptible to landslide events; this can help in the landslide disaster control
and contribute to environmental sustainability and protect lives and properties. This can
be achieved through appropriate planning based on valuable information obtained from
landslide susceptibility study.

2. Materials and Methods
2.1. Description of the Study Area

Maoxian County is located in the northwest part of Sichuan Province, China. It lies
between 31◦24′–32◦17′ N and 102◦56′–104◦10′ E (Figure 1), covers approximately 3793 km2

and is characterized by a complex geological structure (i.e., rocky hills and high mountain
territories covered by thick forests and deep valleys). The elevation of Moaxian ranges
from 887 to 5163 m above sea level (a.s.l). The difference in surface height from the bottom
of the valley to the peak of the mountain can be between 1500 and 2500 m. Approximately
1% of total area of the county is characterized by flat topography [30], whereas the rest,
99% comprises hilly and steep topography. As of 2020, the estimated population of Maoxian
was 111,452 persons [12].

Maoxian County has a temperate climate with an average annual rainfall of approxi-
mately 491 mm, and 70–90% rain occurs during the rainy season (June to September) [31].
The climate is generally influenced by westerlies and the Tibetan Plateau monsoon, result-
ing in dry valleys and humid high mountains [32]. Average annual temperature of the
county is 11.2 ◦C [30,33], and annual average relative humidity is 72% [33].

With a mean monthly temperature of 20.8 ◦C, July is the warmest month. January,
with a mean temperature of 0.4 ◦C, is the coldest month [33]. The main river in Maoxian is
the Minjiang, which flows from north to south but crisscrosses the entire territory. It has
several tributaries, including the Heishui, Chi-Bu-Su, Songping, and Tumen Rivers.

The landslide incident in the study area is attributable to the area’s proximity to a
seismic belt, steep terrain mantled with a layer of superficial deposits, and the recurrent
long-duration rainfall. As mentioned above, Maoxian is located in the Longmen Moun-
tain seismic belt, hence prone to landslides. Therefore, many studies have shown that
landslide occurrences in Moaxian are closely related to historical earthquakes. The Diexi
Ms 7.5 earthquake in 1933 had the highest seismic effect on the rock mass over the past
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100 years [11], and it is regarded as the most devastating historic incident in Maoxian
because it resulted in numerous landslides that blocked rivers, such as the Mingjiang River
and Songpinggou River [34]. The blockage of these rivers resulted in the formation of
dammed lakes. For instance, two dammed lakes, Dahaizi and Xiaohaizi, are situated along
Minjiang River, and three lakes were created along the Songpinggou River, which is a tribu-
tary of the Minjiang [35]. Figure 2 illustrates topographies of previous landslides, including
the Xinmo landslide. Based on the field investigation of June 2020, the Xinmo landslide has
the following three zones: source area, transport area, and deposition area (Figure 2c).

Figure 1. Location of the study area.

Figure 2. Landslides in Maoxian: (a) antecedent landslides (source: Google Earth); (b) some landslides
in the study area (source: field visit); (c) geometric structure of the Xinmo landslide [The background
image was obtained from http://www.scgis.net/mxxy/ (accessed on 12 August 2020), and detail of
the image is from [36]]; and (d) image of the Xinmo landslide. Photographs were taken during the
field visit on 2 June 2020.

http://www.scgis.net/mxxy/
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In Maoxian, there are three main groups of active fault zones; the Longmenshan fault,
trending northeast, Songpinggou fault, trending northwest, and the Minjiang fault, which
trends north-south [36]. Geology of the area consists of sedimentary and metamorphic
rocks of the Neoproterozoic, Mesoproterozoic, Cambrian, Ordovician, Carboniferous,
Permian, Triassic, and Cretaceous eras (Table 1), and lithologies of Maoxian consist of
dark-gray slate with interbeds of quartzose metamorphic sandstone and grayish-black
grayish-green, and gray slate with interbeds of carbonaceous limestone and quartzose
metamorphic siltstone [37].

Table 1. Geologic units and lithologies of Maoxian County [38].

Eon Era Geological Unit Lithological Description

Phanerozoic

Mesozoic

Cretaceous (K) Clastic rock, argillaceous rock

Triassic (T) Gray limestone, gray and sandy mudstones, thick feldspathic
quartzose sandstone interlayered with shale

Paleozoic

Permian (P) Thick limestone intercalated with slate, carbonate-rich shale,
and claystone

Carboniferous (C) Epimetamorphic carbonate rock intercalated with clastic rock

Ordovician (O) Thin–medium-thick argillaceous limestone

Cambrian (ε) Black siliceous phyllite, black silicalite intercalated with
siliceous slate

Precambrian Proterozoic
Neoproterozoic (Z) Volcanic and pyroclastic rock formation, tilly clastic

rock formation

Mesoproterozoic (Y) Clastic rock formation and carbonate rock formation

2.2. Data Acquisition
2.2.1. Landslide Inventory Map

To perform a landslide susceptibility assessment, we generate a landslide inventory
map that can be used for reference. A landslide inventory map may also provide infor-
mation necessary to evaluate types of landslides, locations, frequencies, and triggering
factors [39]. Many methods, including satellite imagery, and field investigations, have been
used to identify landslides to develop a landslide inventory map [40]. In this study, data on
previous landslide locations used for a preparing landslide inventory map was acquired
from the Sichuan Provincial Administration Office. In addition, remote sensing techniques
(Google Earth Pro) and field observations were employed to compile and update landslide
locations to employ for a comprehensive inventory.

In total, 1290 landslide locational points, 1248 obtained from Sichuan provincial
officials, and 42 based on satellite interpretation supported by field visits, were included in
the inventory data. These points were divided randomly into two groups: training points
(70%) and validation points (30%) [41,42]. Thus, 903 training points were employed for
modeling, and the rest (387) was for validation. We also collected 1290 points representing
non-landslide areas, which were then merged with the landslide points to validate the
models. More specifically, the non-landslide points were compiled using remote sensing
technique (Google Earth Pro) and field observations. First of all, landslide points acquired
from the Sichuan Provincial Administration Office were imported into Google Earth Pro in
order to easily find non-landslide occurrence locations and to avoid overlapping between
landslide and non-landslide points. After this, non-landslide points were spatially and
temporally compiled with the use of Google Earth Pro, and later, the data were extracted
and imported to ArcGIS for further assessment.

2.2.2. Landslide Predisposing Factors

In this study, 13 different predisposing factors were considered and used to assess
landslide susceptibility. The factors were chosen based on field visits and literature. Input
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data for these factors were obtained from different sources and subsequently processed
and analyzed. All 13 factors were then transformed into raster format and harmonized to
30 × 30 m cell size. The maps of factors, such as slope angle, elevation, aspect, topographic
wetness index (TWI), plan curvature, and stream power index (SPI), were determined using
a Digital Elevation Model (DEM), acquired from Earth Explorer (https://earthexplorer.
usgs.gov/ accessed on 12 August 2020). The DEM has a resolution of 30 m. Details of
influencing factors are described in Table 2.

Table 2. Description of data used in this study.

Factor Classes Source of Data Reference

Slope angle (degrees)
(i) 0–15, (ii) 15–30, (iii) 30–45, (iv) 45–60,
and (v) >60
Method: manual classification

Extracted from DEM: 30 m × 30 m Moharrami et al. [17],
Tang et al. [43]

Elevation (m)
(i) <1750, (ii) 1750–2600, (iii) 2600–3450,
(iv) 3450–4300, and (v) >4300
Method: manual classification

https://earthexplorer.usgs.gov/
(accessed on 12 August 2020)
DEM: 30 m × 30 m

Intarawichian and Dasananda [44]

Aspect
(i) Flat, (ii) North, (iii) Northeast, (iv) East,
(v) Southeast, (vi) South, (vii) Southwest,
(viii)West, and (ix) Northwest

Extracted from DEM: 30 m × 30 m Vijith and Madhu [45],
Kayastha [46]

Plan curvature (i) Concave, (ii) Flat, and (iii) Convex
Method: manual classification Extracted from DEM: 30 m × 30 m Nefeslioglu et al. [47],

Yilmaz et al. [48]

SPI
(i) 0–5, (ii) 5–10, (iii) 10–15, (iv) 15–20,
and (v) >20
Method: manual classification

Equation (1)
Source from DEM: 30 m × 30 m Mind’je et al. [42]

TWI (i) <4, (ii) 4–6, (iii) 6–8, (iv) 8–10, and (v) >10
Method: manual classification

Equation (2)
Source from DEM: 30 m × 30 m Sørensen et al. [49]

Distance
to roads (m)

(i) 0–1000, (ii) 1000–2000, (iii) 2000–3000,
(iv) 3000–4000, (v) 4000–6000, (vi) 6000–8000,
and (vii) >8000
Method: manual classification

Extracted from Google earth Acharya and Lee [50]

Distance
to rivers (m)

(i) 0–1000, (ii) 1000–2000, (iii) 2000–3000,
(iv) 3000–4000, (v) 4000–6000, (vi) 6000–8000,
and (vii) >8000
Method: manual classification

Extracted from Google earth Myronidis et al. [51]

Distance
to faults (m)

(i) 0–2000, (ii) 2000–4000, (iii) 4000–6000,
(iv) 6000–8000, and (v) >8000
Method: manual classification

Digitizing a geological map:
Scale-1:100,000 Fan et al. [10], Meng et al. [52]

Normalized Difference
Vegetation Index (NDVI)

(i) −0.20–0.27, (ii) 0.27–0.44, (iii) 0.44–0.59,
(iv) 0.59–0.70, and (v) 0.70–0.91
Method: manual classification

https://ladsweb.modaps.eosdis.
nasa.gov/ (accessed on
12 August 2020)

Mind’je et al. [42]

Annual mean
rainfall (mm/y)

(i) <700, (ii) 700–750, (iii) 750–800,
(iv) 800–850, and (v) >850
Method: manual classification

chg.geog.ucsb.edu/data/chirps:
(accessed on 12 August 2020)

Nahayo et al. [4],
Mind’je et al. [42]

Geology

(i) Triassic, (ii) Mesoproterozoic,
(iii) Permian, (iv) Cretaceous,
(v) Carboniferous, (vi) Ordovician,
(vii) Cambrian, and (viii) Neoproterozoic
Method: manual classification

Digitizing a geological map:
Scale-1:100,000 Meng et al. [52]

Land Cover (LC)

(i) Built area, (ii) Cropland, (iii) Grassland,
(iv) Shrubland, (v) Snow and ice, (vi) Tree
cover, and (vii) Water bodies
Method: manual classification

https://earthexplorer.usgs.gov/
(accessed on 12 August 2020)

Vijith and Madhu [45],
Mind’je et al. [42]

All 13 landslide predisposing factors are briefly described below:
The slope angle expresses a change in elevation over distance. Steeper slopes are

potentially prone to failure [17]. Thus, slope angle is deemed an important factor in
landslide susceptibility modeling. This factor was manually divided into five different
classes (Figure 3a) [43]. Variability in climate and weather conditions at different elevations
can cause changes in vegetation and soil [17]. Therefore, elevation factor was taken into

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://earthexplorer.usgs.gov/
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consideration due to its influence on topographic characteristics and vegetation distribution.
It was also classified into five categories (Figure 3b) [44].

Figure 3. Landslide predisposing factors used in this study area: (a) slope angle [◦], (b) elevation
[m], (c) aspect, (d) plan curvature, (e) SPI, (f) TWI, (g) distance to roads [m], (h) distance to rivers
[m], (i) distance to faults [m], (j) NDVI, (k) average annual rainfall [mm/year], (l) geology, and
(m) land cover (LC).
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Aspect is also one of the most significant factors for landslide susceptibility. It indicates
the direction in which a slope faces [53] and controls the amount of water on hillsides,
which can cause slope instability [43]. In the current study, aspect was classified into nine
classes based on the manual classification (Figure 3c) [45,46]. Plan curvature is a measure
of the concavity or convexity of a slope. It is related to landslide events because it controls
the direction (convergence or divergence) of water during downhill flow [47,48]. In this
study, based on the manual classification method, plan curvature was divided into three
classes (Figure 3d). The stream power index (SPI) is one of the significant factors for
landslide occurrence in the study area [43]. It is a hydrological factor that can influence the
distribution of landslides in a region. The SPI was used to measure the erosive force of the
streams or catchments [42]. Based on the DEM, the SPI was derived using Equation (1):

SPI = AS × tanβ, (1)

where, AS is defined as the specific catchment area (m2/m) and tanβ is the tangent
of the slope. We divided the SPI map into five classes using the manual classification
method (Figure 3e).

The topographic wetness index (TWI) is a steady-state wetness index that is used
to study the effects on hydrological processes [49]. In this study, the TWI was used to
quantify topography control of hydrological processes related to landslide occurrence. It
was calculated based on Equation (2):

TWI = ln(
a

tan b
) (2)

where, ‘a’ is the local upslope area draining through a certain point per unit contour
length and ‘tan b’ is the local slope in radians. The TWI map was classified into five
groups (Figure 3f). Among the factors contributing to the landslide occurrence in the
study area, distance to roads was considered to be important as the slope cut-off for road
construction in mountainous areas causes slope instability, which can lead to landslide
incidence. The distance to roads was generated by computing the Euclidean distance [42]
and then dividing it into seven classes (Figure 3g). Distance to rivers was computed using
the Euclidean distance [4] and then classified into seven classes (Figure 3h). Active faults
can be considered to be a factor in landslide events because the strength of rock is lower
along faults, which can increase the likelihood of slope failure. We generated faults by
digitizing a 1:100,000 scale geological map [10,52] and then produced the distance to faults
map using ArcGIS software with the aid of a Euclidean distance tool [42]. Subsequently,
we grouped distances into five classes using the manual classification method (Figure 3i).

The normalized difference vegetation index (NDVI) is a measure of greenness and thus
biomass. NDVI values range from −1 to 1, which denote low to high vegetation cover in an
image, respectively. Alteration in vegetated areas may lead to slope failures [54]. The NDVI
data (from May to September 2019) were extracted on 25 May 2020, from the Moderate
Resolution Imaging Spectroradiometer (MODIS, 250 m resolution) dataset available at
https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 12 August 2020). It was calculated
in the study area using the near-infrared and red bands (Equation (3)). Thus, a map of
NDVI (Figure 3j) was derived in ArcGIS software (version 10.5: ESRI, Redlands, CA, USA).

NDVI =
NIR− Red
NIR + Red

=
Band4− Band3
Band4 + Band3

(3)

Rainfall is one of the major triggering factors of landslide hazards. It increases pore
water pressure and soil moisture content, which reduces soil cohesion, and thus, leads
to landslide events [55]. Therefore, rainfall was also considered as a predisposing factor
for landslide occurrence. However, because of the lack of rain-gauge station data in the
study area, we employed onsite station data obtained from the Climate Hazards Group
Infrared Precipitation (CHIRPS), which provided long-term mean annual rainfall (mm) for

https://ladsweb.modaps.eosdis.nasa.gov/
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the 18-year period ranging from 2000 to 2018. After this, a rainfall map was prepared using
the kriging interpolation method in ArcGIS [4,42]. The rainfall map was divided into five
classes (Figure 3k). Geology is used in landslide susceptibility evaluation because different
geological units (rock strata) have different susceptibility levels [17,56]. A geological map
was generated by digitizing the available 1:100,000-scale geological map [52], and the strata
were classified into eight geological units (Figure 3l). Because of its spatial effect on the
predisposition to landslide occurrence, land cover (LC) (Figure 3m) was also considered
as one of the key factors influencing landslide susceptibility in Maoxian County. The LC
map was produced from multispectral Landsat-8 Operational Land Imager (OLI) images
for 14 April 2019, through the USGS Earth Explorer (https://earthexplorer.usgs.gov/
(accessed on 12 August 2020) extracted on 23 May 2020. The map was produced based on
the supervised maximum classification method, and it was classified into seven classes
(Figure 3m): built-up area, cropland, grassland, shrub land, snow and ice cover, tree cover,
and waterbodies.

2.3. Multicollinearity Analysis

Multicollinearity analysis can facilitate selecting suitable landslide predisposing fac-
tors. In this study, multicollinearity among the 13 selected factors was tested based
on training data using the tolerance (TOL) and variance inflation factor (VIF) [42]. A
VIF value ≥ 5 and a TOL value < 0.1 shows a multicollinearity problem and should
exclude during [57].

2.4. Feature Selection

To improve the performance of the proposed algorithms, we considered Pearson’s
correlations to check appropriate attributes among independent variables. Attributes
with a strong correlation coefficient are deemed redundant [58]. Pearson’s correlation
coefficient ≤ 0.70 was considered as the threshold for appropriate features [59].

2.5. Correlation between Landslides Occurrence and Predisposing Factors

To evaluate spatial association between occurrence of landslide and predisposing
factors, the frequency ratio (FR) model was used. An advantage of FR model is that spatial
correlation between landslide occurrence and its factors per class can be revealed under the
principle of basic data collection to classify susceptibility of landslides [42]. The FR model
defines ratio of the likelihood of occurrence to the likelihood of non-occurrence in a given
situation. If FR is >1, correlation between a landslide and the factor’s range is high. On
the contrary, if FR is <1, correlation is low. Thus, as the value of FR becomes higher, the
likelihood of occurrence becomes larger and vice versa. In this study, FR was calculated
using Equation (4) [42]:

FR =

Wpix(LXi)

∑m
i=1 LXi

Wpix(Xj)
∑m

j=1 Wpix(Xj)

=
%Ni
%Mj

(4)

where, Wpix (LXi) is the number of pixels with landslides within class i of factor variable
X, Wpix (Xj) is the number of pixels within factor variable Xj, m is the number of classes in
the parameter variable Xi, and n is the number of factors in the study area. Ni denotes the
number of landslides in a factor class as a percentage of all landslides, and Mj indicates the
class area as a percentage of the entire map.

2.6. Spatial Modeling
2.6.1. Convolutional Neural Network (CNN)

CNN is one of the most influential and significant algorithms in deep learning with
multiple network architectures, i.e., 1D, 2D, and 3D-CNN [60]. In this study, 1D-CNN
architectures, consisting of one convolution layer, one pooling layer (maximum), one
flattening layer, and two fully connected dense layers [61], were used. The dropout layer

https://earthexplorer.usgs.gov/
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was also connected to avoid overfitting. The random search method of the Keras tuner
library was used to select the number of filters, kernel size, activation function, number of
neurons in fully connected layers [62]. The hyper-parameters were used for random search
for number of convolution filters, kernel size, activation function, learning rate, and number
of neurons are as follows: (32, 48, 64, 80, 96, 112, 128), (2, 4, 6, 8), (ReLU, eLU), (1 × 102,
1 × 103), and (32, 48, 64, 80, 96, 112, 128), respectively. The dense layer used ‘Sigmoid’
as an activation function, and the ‘Adam’ optimization algorithm was used to train the
algorithm [62]. For details regarding CNN, readers refer to the works of Matsugu et al. [63],
Simard et al. [64], Cecotti [65], and Rohit and Chakravarthy [66].

2.6.2. Deep Neural Network (DNN)

DNN is a widely used method in assessing various natural hazards [67]. In this
study, the algorithm consists of five fully connected layers and dropout layers. The hyper-
parameters used for the random search method for the number of neurons in fully con-
nected layers and dropout rate are as follows: (32, 48, 64, 80, 96, 112, 128) and (0.01, 0.02),
respectively. The layer used the ‘Sigmoid’ function as an activation function [68]. The
‘Adam’ optimization algorithm was used to train the algorithm [68]. Further details of
DNN can be found in Cireşan et al. [69], Yu et al. [70], Kang et al. [71], and Sharma et al. [72].

2.6.3. Long Short-Term Memory Networks (LSTM)

LSTM algorithm has a significant predictive ability [73]. The bi-directional LSTM
was used in this study using the Keras library. The architecture of LSTM here consists
of one bi-directional layer, a dropout layer, followed by two fully coupled layers. The
hyper-parameters used for random search method for number of units, activation function,
dropout rate, and number of neurons in fully connected layers are as follows: (32, 48, 64,
80, 96, 112, 128), (ReLU, eLU), (0.01, 0.02), and (32, 48, 64, 80, 96, 112, 128), respectively.
The dense layer used ‘Sigmoid’ as an activation function [68]. The ‘Adam’ optimization
algorithm was used to train the LSTM algorithm [68]. Further details of LSTM are discussed
in Portegys [74], Wöllmer et al. [75], and Rivest et al. [76].

2.6.4. Recurrent Neural Network (RNN)

As a deep learning algorithm, the RNN has succeeded greatly in temporal data
processing [77,78]. In this study, RNN was implemented using the simple RNN layer of the
Keras library. The architecture of it consists of one simple RNN layer, the dropout layer,
followed by two fully connected layers. The hyper-parameters used for random search
method for number of units, activation function, dropout rate, and number of neurons
in fully connected layers are as follows: (32, 48, 64, 80, 96, 112, 128), (ReLU, eLU), (0.01,
0.02), and (32, 48, 64, 80, 96, 112, 128), respectively. The dense layer used ‘Sigmoid’ as an
activation function, and the ‘Adam’ optimization algorithm was used to train the RNN
algorithm [79]. Further details on RNN are available in Chang et al. [80].

2.7. Model Validation

In this study, derived LSMs were validated using landslide locational points. The
AUC approach was adopted to evaluate the performance of the four algorithms used. An
AUC graph of sensitivity and 1-specificity was prepared [21]. We further calculated the
performance matrices, i.e., recall, F1-score, and log-loss, to evaluate prediction accuracy of
deep learning algorithms [81].

3. Results and Discussion
3.1. Multicollinearity Assessment

Multicollinearity among 13 landslide influential factors (Figure 4) was tested using
TOL and VIF. For all of these factors, results showed that VIF values are less than 5, and
TOL values are higher than 0.1, which is in accordance with the work of O’Brien [57]. The
maximum VIF and minimum TOL values were 4.128 and 0.984, respectively. Hence, our
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results are free from multicollinearity. Therefore, all of the factors were considered in the
feature selection process.

Figure 4. Multicollinearity indices for landslide predisposing factors.

3.2. Pearson Correlation Assessment

Results of the feature selection analysis indicate that among 13 factors, distance
to rivers (Ri) has a correlation coefficient of 0.81 (Figure 5) that exceeded the thresh-
old of appropriate feature/attribute (>0.70). Therefore, Ri is excluded from landslide
susceptibility modeling.

3.3. Correlation between Landslide Occurrence and Predisposing Factors

The FR model was used to evaluate predisposing factors in order to assess the relation-
ship between distribution of landslides and their influential factors (Table 3). The findings
show that landslide frequency increases with an increase of slope values. For instance,
areas with a slope less than 30◦ and a ratio <1 indicate a low possibility of landslide occur-
rence. However, areas with slopes greater than 30◦ and a ratio >1 show a high landslide
possibility. Furthermore, landslide frequency decreases with an increase in elevation. At
elevation <2600 m, the frequency ratio was >1, indicating a high possibility of landslide, but
at elevations >2600 m, the ratio was <1, showing low possibility. With regard to distance
from roads, at distances <6000 m, the FR was >1, exhibiting high possibility, but at distances
>6000 m, FR was <1, showing low possibility of landslide. This implies that when prox-
imity between a road and slope is greater, possibility of landslide incident is higher. This
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relationship is primarily due to improper cutting of a slope during road construction [82].
A higher value of SPI demonstrates a greater possibility of landslide. High SPI values
reveal areas with a high potential for erosion and their association with a great possibility
of landslide occurrence [83]. A higher possibility of landslide incident was found for NDVI,
ranging between 0.59 and 0.91, with an FR of 1.03 and 1.26, respectively. The lowest value
of FR (0.39) was found for an NDVI between −0.2 and 0.27. High susceptibility was found
in highly vegetated areas, probably due to thick vegetation occurring in areas with steep
slopes and higher elevations [42]. Faults control rock mass in a given area. Correlation
between landslide occurrence and distance to faults suggests that landslide occurrence is
higher in the close proximity to faults. The reason for this relationship is that both rock frac-
tures and the degree of weathering increase near faults. These processes weaken the rocks
and thus increase the likelihood of landslide [84]. Rainfall is a significant factor controlling
landslide distribution in the study area. Our analysis reveals that the highest possibility
of landslide occurrence was in areas with rainfall ranging between 700 and 750 mm/year,
with higher FR values (2.89). To the best of our knowledge, this is attributable to many
faults coupled with the effects of the Minjiang River and high elevation [7]. Three geology
categories, i.e., Cambrian, Triassic, and Carboniferous, are dominated by high landslide
susceptibility, as the frequency ratio of these subclasses exhibits 1.80, 1.12, and 1.10, re-
spectively. The correlation between the distribution of landslide and land cover was
higher in cropland and shrubland areas, as they indicate higher FR values of 2.55 and 1.08,
respectively. These LC results may be attributable to poor land-use planning [42].

Figure 5. Feature selection results for landslide predisposing factors. (Slp: slope angle, Ele: elevation,
Asp: aspect, Pln: plan curvature, SPI: stream power index, TWI: topographic wetness index, Ro:
distance to roads, Ri: distance to rivers, Falt: distance to faults, NDVI: normalized difference
vegetation index, Rain: rainfall, Geol: geology, and Land: land cover).
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Table 3. The relationship between landslide occurrence and each predisposing factor.

Factor Factor Class No. of Pixels
in Domain

% of
Domain

No. of
Landslides

% of
Landslides FR RF PR

Slope
(degrees)

0–15
15–30
30–45
45–60
>60

327,792
1,494,388
1,876,163
491,562
24,476

7.78
35.46
44.52
11.66
0.58

307
2344
6644
3366
270

2.37
18.13
51.38
26.03
2.09

0.31
0.51
1.15
2.23
3.60

0.04
0.07
0.15
0.29
0.46

8.45

Elevation (m)

<1750
1750–2600
2600–3450
3450–4300
>4300

261,623
1,039,419
1,566,899
1,194,877
151,563

6.21
24.66
37.18
28.35
3.60

2461
6128
4096
246
0

19.00
47.40
31.70
1.90
0.00

3.07
1.92
0.85
0.07
0.00

0.52
0.33
0.14
0.01
0.00

10.40

Aspect

Flat
North
Northeast
East
Southeast
South
Southwest
West
Northwest

2586
489,205
545,870
570,251
554,519
485,600
491,043
526,368
548,572

0.06
11.61
12.95
13.53
13.16
11.52
11.65
12.49
13.02

9
834
1056
1456
2412
2229
2260
1805
870

0.10
6.40
8.20
11.30
18.70
17.20
17.50
14.00
6.70

1.13
0.56
0.63
0.83
1.42
1.50
1.50
1.12
0.50

0.12
0.06
0.07
0.09
0.15
0.16
0.16
0.12
0.06

2.14

Plan
curvature

<−1(concave)
0
>1(Convex)

649,075
1,474,554
2,090,752

15.40
34.99
49.61

2174
4251
6506

16.80
32.90
50.30

1.09
0.94
1.01

0.36
0.31
0.33

1.00

SPI

0–5
5–10
10–15
15–20
>20

1,159,179
44,171
113,106
165,664
2,732,261

27.51
1.05
2.68
3.93
64.83

3061
51
134
302
9383

23.70
0.40
1.00
2.30
72.60

0.86
0.38
0.39
0.59
1.12

0.26
0.11
0.12
0.18
0.34

4.46

TWI

<4
4–6
6–8
8–10
>10

657,487
2,290,162
913,555
253,173
100,004

15.60
54.34
21.68
6.01
2.37

2873
6515
2790
623
130

22.20
50.40
21.60
4.80
1.00

1.42
0.93
1.00
0.80
0.42

0.31
0.20
0.22
0.18
0.09

4.38

Distance to
roads (m)

0−1000
1000−2000
2000–3000
3000–4000
4000–6000
6000–8000
>8000

352,201
320,976
311,409
301,292
559,651
4,558,441
1,913,007

8.36
7.62
7.39
7.15
13.28
10.82
45.39

4238
2698
1310
979
1973
835
898

32.80
20.90
10.10
7.60
15.30
6.50
6.90

3.92
2.74
1.37
1.06
1.15
0.60
0.15

0.38
0.27
0.13
0.10
0.11
0.06
0.01

5.60

Distance to
faults (m)

0−20002000−4000
4000−6000
6000−8000
> 8000

859,855
660,187
516,426
383,974
1,793,939

20.40
15.67
12.25
9.11
42.57

9337
2282
570
252
490

72.20
17.60
4.40
1.90
3.80

3.54
1.13
0.36
0.21
0.09

0.66
0.21
0.07
0.04
0.02

12.97

NDVI

−0.20–0.27
0.27–0.44
0.44–0.59
0.59–0.70
0.70–0.91

115,241
275,557
822,723
1,385,952
1,614,908

2.73
6.54
19.52
32.89
38.32

138
574
1612
4376
6231

1.07
4.44
12.47
33.84
48.19

0.39
0.68
0.64
1.03
1.26

0.10
0.17
0.16
0.26
0.31

4.34

Rainfall

<700
700−750
750−800
800−850
>850

178,320
668,284
1,096,458
1,905,695
365,624

4.23
15.86
26.02
45.22
8.68

252
5935
1457
4659
628

1.95
45.90
11.27
36.03
4.86

0.46
2.89
0.43
0.80
0.56

0.09
0.56
0.08
0.15
0.11

9.58
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Table 3. Cont.

Factor Factor Class No. of Pixels
in Domain

% of
Domain

No. of
Landslides

% of
Landslides FR RF PR

Geology

Triassic
Mesoproterozoic
Permian
Cretaceous
Carboniferous
Ordovician
Cambrian
Neoproterozoic

1,875,665
41,842
100,055
606,215
1,206,402
176,153
144,813
63,705

44.50
0.99
2.37
14.38
28.62
4.18
3.44
1.51

6428
0
300
923
4057
391
801
31

49.71
0.00
2.32
7.14
31.37
3.02
6.19
0.24

1.12
0.00
0.98
0.50
1.10
0.72
1.80
0.16

0.18
0.00
0.15
0.08
0.17
0.11
0.28
0.02

5.67

Land cover

Cropland
Shrub land
Tree cover
Grassland
Built-up area
Waterbodies
Snow and ice
cover

186,651
229,970
3,318,735
471,725
3181
3558
547

4.43
5.46
78.75
11.19
0.08
0.08
0.01

1460
761
9601
1105
3
1
0

11.29
5.89
74.25
8.55
0.02
0.01
0.00

2.55
1.08
0.94
0.76
0.31
0.09
0.00

0.45
0.19
0.16
0.13
0.05
0.02
0.00

8.91

3.4. Landslide Susceptibility Map

Four landslide susceptibility maps are constructed, based on a combination of the
12 predisposing factors, using four deep learning algorithms. The resultant maps are then
manually categorized, as shown in Figure 6. Figure 6 illustrates those areas along the rivers,
mainly the Minjiang River and southeastern portions of the study area are most vulnerable
to landslides. The percentage of specific landslide susceptibility classes is summarized
in Figure 7.

Based on historical meteorological data and information recorded during field visits,
landslides in Maoxian most commonly occur during the rainy season (May to September).
For instance, on 24 June 2017, the “Xinmo landslide” occurred in the village of Xinmo
in the town of Diexi, caused 83 fatalities, and destroyed 67 houses [85]. In addition, on
25 July 2020, a flash landslide debris flow killed two people and destroyed houses in
Jiaoyuan village of Weimen town. These landslides occurred in the rainy season, indicating
that rainfall is one of the main factors contributing to the occurrence of landslides in the
area under investigation. According to major predisposing factors results, distribution of
landslides in the most highly susceptible areas was attributable to historical earthquakes,
expansion of the Minjiang River and its tributaries due to flooding associated with heavy
rainfall, inappropriate land-use practices such as farming, and road construction, which
contribute to slope failure and eventually result in a landslide event. Unsustainable human
activities, such as those listed above, accelerate the risk of landslides and can lead to
extensive property damage and loss of life. Therefore, mitigation measures have to be
taken for areas with very high levels of landslide susceptibility. In addition, public should
be informed about the susceptibility of future landslide occurrence to help them safeguard
their lives and properties. Significantly early warning systems must be strengthened and
distributed to the areas highly prone to landslides.

3.5. Model Validation of the Landslide Susceptibility Maps

Based on the training dataset, the success rates for the CNN, DNN, LSTM, and RNN
algorithms were 0.866, 0.877, 0.883, and 0.845, respectively (Figure 8a). By employing
the testing datasets, prediction rates for the CNN, DNN, LSTM, and RNN algorithms are
found to be 0.856, 0.873, 0.865, and 0.829, respectively (Figure 8b). This explains why the
prediction accuracy of the DNN algorithm (87.30%) is higher than that of CNN (85.60%),
LSTM (86.50%), and RNN (82.90%). Therefore, it is reasonable to conclude that the DNN
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algorithm is a better predictive model for mapping landslide susceptibility and can be
useful in other areas of similar environments.

Figure 6. Landslide susceptibility maps of the study area produced via (a) CNN, (b) DNN, (c) LSTM,
and (d) RNN.

Figure 7. Model-wise landslide percentage in the study area.
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Figure 8. AUC for LSMs of the FR and LR models: (a) success rate curves and (b) prediction
rate curves.

Recall, F1-score, and log-loss statistical indices were used to evaluate the performance
of four deep learning methods (Table 4). Results revealed that DNN algorithm predicted
the possibility of landslide event better than the other methods.

Table 4. Statistical indices for algorithm evaluation.

Algorithm
Training Dataset Testing Dataset

Recall F1 Score AUC Log-Loss Recall F1 Score AUC Log-Loss

CNN 0.790 0.788 0.866 0.449 0.803 0.789 0.856 0.496
DNN 0.943 0.828 0.877 0.440 0.838 0.805 0.873 0.438
LSTM 0.856 0.826 0.883 0.423 0.888 0.801 0.865 0.491
RNN 0.921 0.804 0.845 0.479 0.833 0.777 0.829 0.848
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3.6. Validation of the Landslide Susceptibility Map

The resulting LSM (Figure 6b) is further compared with photographs taken during
field visits. Figure 9 displays landslides observed along the Minjiang River. This result is in
accordance with the produced susceptibility map as both show that areas along the rivers
are most susceptible to landslides.

Figure 9. Comparison of DNN-based landslide susceptibility map with a field visit.

3.7. Identifying Most Important Factors

The results indicated that slope was the most important factor (β = 0.252), followed by
rainfall (β = 0.110) and distance to faults (β = 0.102) (Table 5). In contrast, TWI and NDVI
showed no significant contribution (β = 0.00) in influencing landslides distribution in the
study area.

Table 5. Regression result, showing most effective predisposing factors.

Factor Regression
Coefficient, β

Standard
Error t Pr > |t| Lower

Bound (95%)
Upper

Bound (95%) Rank

Slope angle 0.252 0.017 14.902 <0.0001 0.218 0.285 1

Rainfall 0.110 0.019 5.859 <0.0001 0.073 0.147 2

Distance to faults 0.102 0.020 4.995 <0.0001 0.062 0.141 3

Plan curvature 0.034 0.018 1.924 0.054 −0.001 0.069 4

Aspect −0.027 0.016 −1.726 0.085 −0.058 0.004 5

Distance to roads −0.079 0.023 −3.500 0.000 −0.124 −0.035 6

Geology −0.110 0.021 −5.345 <0.0001 −0.150 −0.070 7

SPI −0.112 0.020 −5.576 <0.0001 −0.151 −0.072 8

Land cover −0.134 0.017 −8.104 <0.0001 −0.167 −0.102 9

Elevation −0.521 0.024 −22.060 <0.0001 −0.567 −0.475 1

TWI 0.000 0.000 - - - - 11

NDVI 0.000 0.000 - - - - 12
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3.8. Trigger Mechanisms of Landslides in Moaxian County

Rainfall is one of the key factors triggering landslides in China [5]. Analysis in this
study shows that slope, rainfall, and distance to faults are the main triggering factors
in Maoxian. These results are in accordance with those of a previous study [36], which
indicates that dynamic faults (fault motion) are the most significant factors of landslide
formation in Moaxian and that rainfall acts as an inducing factor. In fact, Maoxian is
situated in the Longmenshan faults belt, which is an area that is highly susceptible to
landslide occurrence [5]. Both rock fractures and the degree of weathering increase closer
to the faults, weakening the rocks nearby faults [84]. This damage leads to a reduction
in rock strength due to the build-up of cracks and slipped surfaces [35]. Moreover, when
rainfall exceeds groundwater drainage, pore water pressure develops within the cracks
governed by the discontinuities, triggering landslide events. In addition, erosion caused by
rainfall and seismic effects contributes to the extension of fractures and slope instability [9].

In the study area, active faults and intensive tectonic processes control rock mass
aspects and rock mass discontinuities [11]. Based on these explanations, the triggering
mechanism of landslides in the study area may be explained as: rainfall first softens the
sliding zone, then penetrates the cracks of the rock mass, and finally increases the weight of
the rock mass, which leads to slope failure. The weight of the rock mass probably increases
through the development of a perched water table and the build-up of pore water pressure,
which are hydrological processes resulting from rainfall. This has been corroborated by
Kasim et al. [86], who show that rainfall increases water content and pore water pressures
within a soil or rock mass, which can trigger landslide occurrence. We observed open
cracks on some slopes during the field visits, indicating these hillslopes may transform into
landslides in the future as faults or rainfall events are dynamic in nature.

4. Conclusions and Future Work

This study assessed landslide susceptibility in Maoxian County, Sichuan, China, based
on CNN, DNN, LSTM, and RNN deep learning algorithms. A landslide inventory map of
the study area was generated on the basis of historical data, remote sensing techniques, and
field observations. Furthermore, 12 different conditioning factors were considered. The
results revealed that slope, rainfall, and distance to faults are the most significant factors
controlling landslide distribution in Maoxian. The maps produced here indicated that high
landslide susceptibility zones are located in low-elevation river channel areas (mainly those
of the Minjiang River and its tributaries), where soil is saturated and surface is exposed,
and also in the southeastern part of the study area.

The susceptibility maps developed by four deep learning algorithms were validated
and proven to have a high accuracy as AUC showed >82.00% agreement. Prediction sug-
gested that the DNN (AUC > 87.30% with training and testing datasets) model performed
better than the other three algorithms. However, the other three algorithms, i.e., CNN,
LSTM, and RNN can be used in predicting landslide susceptibility as they are performing
quite similar with DNN. Although the resultant maps indicated the spatial dissemination
of landslides, one limitation of this study was that they could not predict time, degree, or
frequency of landslide occurrences. Moreover, a hybrid assembled deep learning algorithm
should be tested and applied in future work in the study area for LSM.

The resultant LSMs can provide essential and valuable information to policy-makers,
and engineers for slope stability analysis, sustainable land-use plan, infrastructure develop-
ment (to stop the growth of certain projects, i.e., towns, roads, and tourist sites in the future
in the highly susceptible areas), and establishment of landslide mitigation measures in the
studied area.
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