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Abstract: In an era of smart cities, artificial intelligence and machine learning, data is purported to
be the ‘new oil’, fuelling increasingly complex analytics and assisting us to craft and invent future
cities. This paper outlines the role of what we know today as big data in understanding the city and
includes a summary of its evolution. Through a critical reflective case study approach, the research
examines the application of urban transport big data for informing planning of the city of Sydney.
Specifically, transport smart card data, with its diverse constraints, was used to understand mobility
patterns through the lens of the 30 min city concept. The paper concludes by offering reflections
on the opportunities and challenges of big data and the promise it holds in supporting data-driven
approaches to planning future cities.
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1. Introduction

Clive Humby (2008) [1]—of Tesco Clubcard fame once declared that ‘data is the new
oil’, broadly connecting the digital collection and analysis of ‘big’ data—and behavioural
data generated by human activity in particular—to a nascent Fourth Industrial Revolu-
tion [2]. In an urban context, big data has been linked to the smart city, the Internet of
Things (IoT), and, more recently, to the revival of the ‘Digital Twin” [3]. This ‘new oil” has
fuelled increasingly complex and dynamic city analytics, as well as displacing survey data
historically collected to understand demographic change and human behaviour. In its
progress, there is promise of big data to better support management of existing infrastruc-
tures and, in theory, the planning and sustainable development of the cities of tomorrow.
Of course, a more nuanced understanding of the strengths and limitations of big data point
to the essential ongoing role of purposive data collection, such as via the national census
and household travel survey, in providing insights that underpin a rich tapestry of urban
research and real-world policy and decision-making.

In this research, we trace a number of opportunities and challenges in the exploitation
of big data within a land-use and transportation planning context. We take a long view
of ‘big data’, considering a number of definitions, and developing a “potted history” of
the co-evolution of data, tools, methods, and research inquiries. We then introduce a case
study using public smartcard transport data and explore its application to the ‘30-min city’
concept as a cornerstone of Sydney’s Metropolitan Planning Strategy. Lastly, we provide a
critical reflection on the promise of big data, and on the opportunity and challenges in its
access and its use in planning our future cities.

2. Defining Big Data and Its Role in the City

Batty (2013) [4] once defined big data as ‘any data that cannot fit into an Excel spread-
sheet’. In this new age, this tongue-in-cheek definition now seems feels very much like
saying the definition of an ocean is that it does not fit into a teacup. However, it is clear
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that data volumes have grown disproportionately to the progress made by commercial and
consumer software tools, and now require the development of novel analytical approaches
in order to be collected, processed, and analysed. Gantz and Reinsel (2011, p.6) [5], as
such, define big data as ‘a new generation of technologies and architecture, designed to
economically extract value from very large volumes of a wide variety of data by enabling
the high velocity capture, discover and/or analysis’.

Early big data research used the 3Vs model: volume, velocity, and variety [6]. Addition-
ally, since then, a host of new alliterative additions have been made, including Variability,
Value [7] and Veracity [8]. From a planning perspective, Kitchin and McArdle (2016) [9]
added to these: exhaustivity (striving to capture entire populations), resolution (aiming
to be as detailed as possible), indexicality (uniquely identifying), relationality (containing
common fields that enable the conjoining of different datasets), and extensionality (adding
new fields easily). These are variable definitions that encapsulate the link between data, the
available hardware and software, and their value in appending new, relevant information
as they are generated to existing structures.

This ease in which data is now generated, processed and restructured has been crucial
in describing and understanding a multiplicity of processes. It has shifted us t towards a
‘network society’, which has already been signposted by the embedding of low-powered,
network-ready digital sensors in almost everything and its impact on the fields of geography
and planning (see, for example, discussion in [10]. Importantly, the ‘Internet of Things’
heralds an age in which data produced as a by-product of machines interacting with other
machines dwarfs the volume of data generated by people talking to people. Additionally,
while most of such data is accidental [11] or, perhaps, incidental in the sense of being little
more than ‘data exhaust’ [12], the fact that this is everywhere leads many to hope for new
insights into city form and function, as well as a wide range of daily activities undertaken
by its residents and visitors.

These trends therefore connect to the notion of an emerging ‘fourth paradigm’ of data-
intensive scientific discovery [13] and this idea is, in turn, often linked to the emergence
of machine-learning and other novel analytical approaches in urban management [14].
There is, in other words, a quasi-Kuhnian presumption [15]—pace Aral (in Cukier, 2010,
p-2) [16]—that a revolution in our ability to measure the city will bring about a revolution
in our ability to understand it. What is less clear, however, is whether this approach is
applicable when complex trade-offs are called for and ‘optimisation’ subject of political,
not just technical, decision-making. As such, we turn towards history, and the evolution of
ideas about data-driven cities in order to inform thinking about the evolution of the smart
city and beyond.

3. A History of Big Data in Understanding Cities

The application of data to the governance of cities and regions can be traced back far
beyond the origins of computers: Van Rijmenam (2014) [17] highlights the earliest use of
written records, dating back more than 7000 years, as part of the administration of ancient
Mesopotamia. The Romans too are well known for their administrative acumen, with the
census perhaps best known for its role in Christianity’s origin story. Around the same
time, in 2CE, the Han Dynasty were performing their own census recording data about
a Chinese population of more than 57 million in 12 million households, larger than the
current Australian census, without the benefit of computers [18,19].

The modern census—with its goal of recording every member of the population
at regular intervals—is often associated with the rise of the nation state and the use of
statistical tables for the purpose of governance and planning [20]. We suggest, however,
that it is perhaps more relevant to trace the modern idea of ‘big data” back to the US Census
of 1896 and the use of Herman Hollerith’s punch card tabulation machines [21]. These
machines, the precursor to IBM’s mainframes, were central to the development of modern
computers [22] and marked a radical shift towards the use of ‘machines’-mechanical,
electrical, and, finally, digital-in the processing of data.
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Barnes (2013) [23] noted that big data research and analytics are often divorced from
the past, suggesting that ‘big data has little history’. We suggest instead that these early
examples of data collection and analytics were accompanied by methodological advances:
Arribas-Bel and Reades (2018) [10] have also noted a close, though not causal, connection
between computing infrastructures and the objects of geographical enquiry. In other words,
new data, applied to new questions, has stimulated the development of new analytical
methods and tools for planning and managing our cities.

4. Urban Modelling and Big Data

The history of Large-Scale Urban Models (LSUM) reflects the linkage of new data and
new tools to new planning approaches. Rooted in the premise that computer models of
urban land use and transportation could contribute to more rational urban planning, early
LSUM improved our understanding of model building, its limitations, and its relationship
to policy. Strong contemporary criticism by Lee (1973) [24] stressed that these efforts largely
failed to deliver: they were too ‘hungry’ for disaggregated data and, at the same time, too
coarse in their results to be useful in addressing issues that they were intended to solve.
Lee also noted that too much emphasis was put on data and rationality, and that this was
not supported by the theoretical underpinnings of such models.

Twenty years later, considering changes in society, information technologies, and com-
puting, researchers began to revisit LSUMs [25,26]. The desktop computer gave planners
ready access to more data, greater computational power, and dramatically better graphics,
all accompanied by new software tools. Wegener (1994) [27] emphasised that by the mid-
1990s many LSUMs were being applied to real-life metropolitan regions for the purpose
of research and/or policy analysis. Batty (1994) [28] argued that the evolution of urban
modelling, integrating theory and method, was an essential element of the movement
towards a ‘science of planning’. New paradigms, such as complexity, started affecting
the way urban systems were conceptualised and were accompanied by new modelling
techniques such as cellular automata (CAs) and agent-based modelling (ABMs), used to
understand the complex interplay between land use and transport dynamics and flows
across the city.

A further twenty years later, Batty (2014) [29] revisited this theme in the light of the
smart cities concept (see also Townsend 2013 [30]), noting the same kind of ‘euphoria’ as
was associated with LSUMs in the 1960s, and stressing the need to learn from history and
to recognise the limits of such approaches. Yes, computational and sensing devices—both
fixed and mobile—are now distributed across the city fabric and are connected to one
another by digital networks; however, much of the data generated via these interactions
is unstructured and the analyst must either discover order, or impose it, using other data
and/or theory for guidance.

The ‘Digital Twin’ initiative can be seen as a way to reintegrate the concept of LSUMs
in the current context and it and embodiment of urban big data. At its most basic, the
digital twin is a virtual model of physical assets that can be used for predictive maintenance.
Crucially, through the use of big data generated by IoT devices, high resolution city imagery
of building and real-time traffic feeds the model is no longer really distinct from the city that
it represents. The data generated by this infrastructure enables the model to continuously
adapt to changes in its environment and the model can, in turn, inform the environment
and its infrastructures. In other words, through feedback effects the distinction between the
physical world and its digital simulacrum is breaking down. This might not be a new idea
for readers of post-modern theorists such as Baudrillard (1994) [31], but the convergence of
IoT, big data, and machine learning puts planning on a very different footing (again) and
holds out the promise of predicting and shaping the future [32], even if the event horizon
is measured in minutes, hours, or days, rather than the more usual planning horizon of
years or decades [33].
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5. Data for Future Cities

This trend towards more real-time data and analytics seems to point to the ultimate
emergence of a ‘smart’ city in which individuals and instrumentation serve as the eyes, ears,
and actuators of a kind of city-scale artificial intelligence (Al). If we consider Townsend’s
(2013) [30] definition of smart cities as being ‘where information technology is wielded to
address the myriad problems facing society through the collection and analysis of data
about the behaviour of people, precincts, and infrastructure’, the promise here is of ‘better’
decision-making and the realisation of more liveable cities where citizens spend less time
commuting and have more time for work and leisure. However, as more critical scholars
have pointed out, this can strip plan-making of its political features and reframe it as
a purely technocratic problem that is centred on simply selecting the most appropriate
optimisation criteria.

Regardless, data-driven approaches to urban management are unquestionably be-
coming more common. Engin et al. (2019) [14] mapped this landscape and highlighted
three categories of application: (i) real-time management; (ii) evidence-based planning
decisions; and (iii) framing the future. The data required to support these data-driven
approaches are captured through combination of traditional government and industry
data capture programs coupled with volunteered geographic information [34],which Ratti
and Claudel (2016) [35] term ‘opportunistic sensing” and with data from authoritative data
capture programs.

However, the ethics of such (re)use of VGI and opportunistic data is of considerable
interest to government and citizens; most notable and controversial has been the use of
harvested Facebook profiles by Cambridge Analytica [36]. Nevertheless, the approach
seems here to stay and will likely play a significant role in future collection and curation of
urban big data: even Mastercard has become an urban mobiilty solutiona provider through
theirr City Possible programme, partnering with Cubic to delivering a contactless payment
system for both ‘open loop” and ‘closed loop” systems in cities such as Sydney and London.
s. Such urban mobility data products are made possible through the collection and aggre-
gation of individual transactions which can be considered as digital traces consumers leave
in daily activity. In the last two decades alone, data from providers, such as Mastercard,
have uncovered previously unrealised patterns of activities (e.g., in e-commerce), which
taken as a whole, has challenged what was previously understood of land-use planning,
urban mobility, and other demographic and location connections [37].

Owing to this, questions of data ownership and access for a variety of purposes—
commercial, academic, and governmental—have been widely debated in relation to online
services, but similar notions can also be applied to data on the built-environment itself.
Valuable information, ranging from property values and building characteristics, to the
demographic make-up of their residents and users are often still held tightly by institu-
tions, but alternative systems of data collection, such as Colouring London [38], have
sought to ‘open’ big data by leveraging on crowdsourcing and participatory mapping. The
democratisation of urban data by such platforms heralds a new evolution of informed
decision-making, replacing outdated legacy systems with novel connected and accessi-
ble models that have the potential to reshape administrative and municipal functions.
Indeed, if used judiciously, we believe the availability of such data might address some
of the complex problems facing our cities by enabling an informed approach towards
tackling congestion and realising more integrated public transport solutions for our rapidly
urbanising planet.

6. Urban Data for Transport Planning

Indeed, urbanisation generates no shortage of complex problems: it has been estimated
that in Australian cities alone, the cost of avoidable congestion was $12.8 billion in 2015.
This figure is expected to more than double to approximately $30 billion by 2030, driven by
the rapid growth of Sydney, Melbourne, Brisbane, and Perth [39]. Getting commuters off
roads and using public transport has also been reported to have significant environmental
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benefits in realising more sustainable cities [40] However, this is not a new problem. As
early as the 1970s, the Sydney Coordinated Adaptive Traffic System (SCATS) was deployed
sensors at each traffic signal to detect vehicle and pedestrian presence. The system—
operating in real time—adjusts traffic signals in response to variations in demand and
system capacity. SCATS is now the leading traffic management system in the world, which
is used to quietly monitor and control over 37,000 intersections across 27 countries [41]. In
this sense, it may perhaps be fair to frame SCATS as a big data, smart city ‘solution’ that
predates the existence of these terms.

7. Rise of the Mobile Phone

A step change in the availability of data about urban mobility came with the matu-
ration of the GPS system. It then became possible not just to count, but to track, vehicles
including private cars, freight, and public transport. Following suit, the uptake of GPS- and
data- enabled smartphones has since furthered this process. The inherently personal nature
of such devices holds out promise of understanding individual behaviours through their
movement. Certainly, smartphone applications, such as Riderlog [42] and SafetiPin [43]
has enabled the collection, analysis, and visualisation of individual movement at scale; and,
collectively, these apps point towards the possibility of a ‘cellular census’ [44].

Social media is another frequently used source of big data for urban analytics with
the analysis of geographically encoded ‘tweets” as one research pathway [45]. These
novel datasets have seen applications in the quantification of transport- and demographic
migration models, often exhibiting more relevance to planning than traditional models
hinging on cyclical data collection [46,47]. Volunteered geographic data, in tandem with the
widespread use of mobile phones has, more than ever before, enabled researchers to begin to
make sense of this unpredictability. Following this line of thinking, other investigators have
also incorporated natural language processing techniques such as sentiment analyses [48]
and topic modelling [49] to provide a level of rationalisation of the complexity associated
with big data.

In the context of transport, the role of big data consumers in the standardisation of
data about urban mobility has often been overlooked. Principal amongst these has been
Google and its role in the development of the General Transit Feed Specification (GTFS)
in collaboration with Portland’s TriMet public transport operator [50]. Designed with
multi-modal journey planning in mind, GTFS has become the de facto standard for sharing
data about subway;, rail, and bus schedules because of Google’s pre-eminence in end-user
mapping and trip planning.

The standard has, of course, made Google Maps more useful to its customers, rein-
forced the value of the standard to the operators and encouraged yet more of them to
converge on this format as the means for publishing their own timetables. Google can, in
turn, combine journey planner requests with real-time location data from phones to prompt
a user to input valuable real-time information on the crowdedness of the train or bus and
any delays impacting the service. This is an unusually virtuous circle: the phone serves
both to access and generate data, yielding ever-more nuanced and exhaustive insights into
city-scale mobility and, in turn, allowing users and planners to make ever-better use of a
limited resource though few outside of Google are ever likely to see this data ‘in full’.

Not all data aggregators have approached this in quite the same way: Strava collects
and provides data—for a price—to help cities understand people’s cycling patterns and
drive new research into active travel behaviour [51,52]. Their data has, for instance, assisted
with cycle infrastructure planning by Miami-Dade County, Florida [53]. Of course, the
degree to which an exercise app’s user base can substitute for the population of pedestrians
or cyclists in an urban area is very much an open question, and one to which we will
return below.
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8. The Mixed Value of Smartcard Data

A source of (relatively) more accessible data on urban mobility, particularly in a public
transport context, has been the Smart Card Automated Fare Collection (SCAFC) systems
such as Hong Kong’s Octopus, London’s Oyster, Sydney’s Opal, and Singapore’s EZ-link
cards (see, for example, Zhong et al., 2016 [54]; Reades et al., 2016 [55]). Unlike app and
network data, SCAFC data is often ultimately owned by the transport operator, although
in the early days of the smart ticketing ‘revolution’ not all operators negotiated with their
suppliers the right to exploit their ‘own’ data.

The contractual structures governing smart card ticketing create new opportunities for
data sharing and re-use for planning, research, and even commercial, purposes. Transport
for London was one of the first movers in this area, making some aggregated data available
through the London Data Store and other tranches of disaggregated data available to
research partners in academia to support modelling of multi-modal journeys, the analysis
of variability at the individual level [56], and the behavioural changes induced by mega-
events such as the London Olympics [57].

A recurrent challenge in such analysis, however, is that these systems were designed
to bill users correctly—potentially with a bias towards under- or over-billing them de-
pending on political judgements about their acceptability—not to support fine-grained
origin/destination (O/D) analysis. It might seem obvious that users of smart card systems
‘tap in” at one location and ‘tap out’ at another, but real life is rarely so simple: London does
not require users to tap out of buses but does for trains. New York, meanwhile, has not
normally collected data about destinations because the system was designed with a fixed
charge in mind. Intermediate validations, re-entries, re-exits, automatic termination, and
charge-free transfers add to the complexity. Each infrastructure is unique and, consequently,
each carries its own set of limitations and qualifications.

This complexity is a challenge often overlooked by proponents of ‘open data” and
the provision of such data to researchers can carry substantial costs: the maintenance
and validation of data feeds, and the costs associated with ad hoc requests for support
documents or updated feeds, are far from inconsequential. It is imporant to note that many
open data sites also have a disclaimer about the veracity and timeliness of the data, asking
users “to use at their own risk”.

The proliferation of ‘curiosity-driven research’ by academics and the lack of obvious
planning or efficiency return benefits to operators can lead to the creation of gatekeepers
who filter out requests not seen as directly contributing to the operator’s bottom line.
This approach reduces costs but also the range of actors working with these data and
organisations. However, operators are beginning to release new products that are much
more relevant to researchers than anything previously available.

Historically, transport studies—such as those of individual travel budgets—were
based on sample surveys using travel diaries [58], but big data cover larger areas of the
city and proportions of the population and typically capture date, time and location with
greater accuracy than self-reporting methods [59]. With these benefits in mind, it’s easy to
see why transport has become one of the most significant components of the contemporary
smart city. Some recent examples include the work of Rashidi et al. (2017) [60] using social
media data, Kung et al. (2014) [61] applying mobile phone data, and Leao et al. (2021) [59]
using public transport smart card data to better understand travel behaviour through cities.
At the same time, such work has also highlighted the limits of big data, and the challenges
that need to be addressed to overcome these.

9. Big Data Applications in Practice

We here present a case study focussed on Sydney’s SCAFC, Opal, introduced in 2012
and made compulsory in 2016. Between 2016 and 2020, a series of planning exercises
underpinned by Opal Smart Card and other datasets were undertaken to better understand
accessibility to jobs and services as part of the Greater Sydney Commission’s vision of a
30 min city. A standard analytical workflow developed by Pettit et al. (2017) [62] frames
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the case study from the perspective of a big data user/urban researcher (ref. Figure 1). This
enables critical reflection and the researchers’ experiential insights to be systematically and
logically documented.

[ Define research/ policy question

!

Data discovery
!

J
]
Data acquisition |
]
]
]

|

Data preparation
1)

Data analysis
y

Data visualisation

|

[ Policy / Planning Support ]

Figure 1. Urban analytical workflow, Reprinted with permission from [62]. 2017, Elsevier.

10. Research/Policy Question

The first step of this approach is to define a research and policy question. The city’s
vision builds on the idea that people aim to optimise their travel, budgeting for no more
than one hour per day (see for example Marchetti, 1994 [63]); this figure has become a cor-
nerstone of the Sydney Metropolitan Plan [64] and Sydney’s Future Transport Strategy [65].
Essentially, the idea is that that anyone within the city should be able to reach essential
services and opportunities, such as employment, healthcare, recreational activities and
education, within 30 min’ travel time (see Figure 2). As defined by the Greater Sydney
Commission’s 30 min city indicator, their policy purpose is to measure: ‘the proportion of
residents able to reach their nearest metropolitan centre/cluster or strategic centre using
public transport and /or walking within 30 min’ [66]. This policy has inherent sustainability
drivers too, in focusing on reducing travel time to within 30 min and thereby reducing the
carbon footprint of a city induced by travel.

Schools Hospitals

Time (minutes)

5 >30
Figure 2. Illustrative visualisation of estimated drive-times in Sydney.

Sydney’s 30 min city puts forth the notion of planning by time [59], which brings
to the forefront the relationships between mobility accessibility, and the city’s locational
attributes, built structures, and transport networks. Critically, however, these relation-
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ships are complex, and the requisite data to describe these relationships may yet still be
fragmented and may not display any discernible patterns. As such, it can be argued how
big data, facilitated by current technological advancements, may bridge the gap in data
collection and analysis of these dimensions still remains to be seen—particularly in the
realms of land-use planning, transport planning, and service delivery.

However, as opined by Moreno et al. (2021) [67], there may perhaps still be value in
understanding many different outcomes of such chrono-urban models in these spheres as
is the case of Sydney. Further work is therefore required to understand such complexities in
the city in light of the city’s ambitious planning futures; thus, indicating the opportunities
for big data to better aid and disentangle these uncertainties, in this vein, the present paper
provides a critical reflection of the use of big data for urban planning and policy-making
with a case study of the 30 min city to support the NSW Government in understanding
and planning for these. In particular, this research sought to identify to what extent current
infrastructure was encouraging and enabling the policy objective. For an in-depth analysis
of the 30 min city methodology and data, refer to the paper by Leao et al., (2021) [59].

11. Data Discovery

For big data to be used, it needs to be found (or ‘discovered’) in the first place, and
this requires an infrastructure to support data storage, search functionalities, metadata
records, and tools to remotely access to data, including APIs (Application Programming
Interfaces). Examples of such infrastructure at a national level in Australia include the
Data Gov Portal (https://data.gov.au/data/) (accessed on 15 November 2021) and AURIN,
the Australian Urban Research Information Network (https:/ /aurin.org.au/) (accessed on
15 November 2021). The AURIN online workbench provides access to over 5000 urban
datasets to support data-driven urban studies [68]. While supporting the open data policies
by providing easy access to published data, AURIN also works as a catalyst triggering the
publication of more and better-quality data.

Opal data is discoverable and accessible in one form through the Transport for NSW
Open Data Gov Portal (https://opendata.transport.nsw.gov.au/) (accessed on 15 Novem-
ber 2021). To protect the privacy of travellers, the raw data collected through the ticketing
system is simplified and aggregated to stop-based rather than trip-based, giving non-
identifiable metrics in reduced sample time bins. The ‘raw’ Opal Card data is also available
through ‘human’ access via a data request process, which is assessed by the Department.
Data provided through the "human’ rather than ‘automated” channel provides a richer
source of trip-based data and is the basis of the urban analysis discussed in the ensuing
sections of this paper.

12. Data Acquisition

Both the open and closed versions of the Opal card data is supplied as a cross-sectional
output, rather than as a live data stream for specific stops, routes, or areas of the city. For
this work, an agreement was reached between the research teams at the University and
the NSW Government. The initial data license provided access to an anonymised dataset
spanning a three-month period in 2016 and retained the origin-destination link. The data
license was established over a two-week period and data was provided on a secure USB
stick for the research team to access.

A further request in 2018 for an update to this data for time-series analysis resulted
in a much longer processes for data acquisition. Securing this next license took nearly six
months of negotiation and documentation. Due to more strict data privacy policies, further
aggregation and simplification of the data were required, even for licensed data, and more
recent releases obtained for the project did not provide the same level of resolution as the
2016 data cut. This presented challenges in undertaking temporal analysis. In short, the
absence of an agreed format for the life of a project can potentially hamper research, even
though the government itself supports the research. As data privacy concerns continue to
escalate, access to consistent urban big data, such as the Opal Card data, is not necessarily
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possible. This limits the spatial-temporal resolution of research analysis and its potential to
support the collective planning and policymaking of more sustainable future cities.

13. Data Preparation

A survey by Forbes in 2016 reported that data scientists typically spend 80% of
their time on preparing data, before analysing it [69]. As Opal Card data is an official
government system used in the whole State of NSW, it has several advantages: it is a
structured, complete, and maintained dataset. The Opal Card data required relatively
little cleaning but did include more tap-ons than tap-offs (potentially due to the traveller
forgetting to tap-off or to malfunction of the Opal reader), and a few outliers with short
distance trips taking a very long travel time (potentially due to disruption of the transport
system, or malfunction of the card system). In contrast, crowd sourced mobility data from
fitness apps, for example, is intrinsically incomplete, often as a result of recruitment biases.

This does not mean that Opal Card data are without their challenges: there was only
a limited period of time period during which Opal was the primary form of payment for
public transport in Sydney. When Opal was rolled out in 2012, it did not immediately
become the only method of payment, magnetic stripe tickets were still in wide circulation
until August 2016. Since mid-2019 American Express, Mastercard and Visa credit or debit
card users—as well those with phones supporting Near Field Communications—have
been able to pay for their travel without an Opal Card, further complicating the analysis.
The fragmentation of payment technologies and vendors can create access and ownership
issues, reducing the utility of big data as a replacement for traditional survey instruments.

Balancing the desire for recency and completeness, we chose to use August 2016
data since it captured the most complete record of the public transport system though,
of course, it did not capture annual cycles in transport use. Additional considerations
include whether to suppress special event or weather conditions. Data linkage to generate
O/D matrices, incorporating different levels of resource access, also included allowance for
transfer times in multi-modal journeys (e.g., bus + train or ferry + bus). An additional step
was the association of Opal data with Census information by assigning an ‘SA1 area’—a
standard Census unit—to each public transport trip. The costs of data preparation are high
and sometimes prohibitive: our study required a highly skilled team of data scientists and
used a range of specialist software including R studio and ESRI’s ArcGIS.

It is important to note some limitations of the data preparation process. First, the
calculated travel time based on Opal Card data is indeed an underestimation, as walking
or driving time to and from train/bus stations was not included. Further, ‘tapping on’
happens on entering a train station, usually well before boarding, but when a bus arrives-
potentially making bus trips seem shorter relative to trains. The simplification of using a
weekday and morning peak as reference for commuting does not account for weekend or
night-shift workers, and may also include non-commuters.

14. Data Analysis

Data analysis is the process of extracting ‘value’ from the data, producing meaningful
insights or assisting in decision-making by individuals or organisations. In this study,
we first calculated the traditional ‘mean travel time budget’ as an aggregated indicator
for Greater Sydney, as a way to ensure comparability with conventional travel budget
methodologies. The literature, however, indicates that although results are robust at the
aggregate level, the idea of a stable travel budget has not been as strongly confirmed in
disaggregated studies in contemporary cities [61]. We therefore proposed and calculated
five new travel time related indicators for the 30 min city [59] in the hopes of bringing to the
surface spatial variations and inequalities which were, prior to access to big data, hidden
inside the aggregated travel budget. For each destination, among 15 strategic town centres
across Greater Sydney, the five new indicators included: (1) median travel time budget;
(2) interquartile range of the travel time budget; (3) percentage of workers with travel time
shorter or equal to 30 min; (4) percentage of workers with travel time shorter or equal to
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30 min by range of worker’s income; and (5) correlation coefficient between workers’ travel
time and mean income. Together, these indicators provided a rich picture of geographic
differences and inequalities in urban accessibility.

One challenge was the storage and computing power required: although not enormous
in terms of length, the complete data for a single day in Greater Sydney nonetheless spanned
5 million rows (individual trips), each with 60 columns of ‘width’ (the attributes of each trip,
including date, time, card type, locations, lines, operators, area codes, etc.). This certainly
passed Batty’s ‘Excel test” and also required a balance between subject knowledge and
advanced digital skills for meaningful interpretation along the data analysis pipeline.

Moreover, understanding the limits of individual datasets, and how data integration
processes can overcome some of these limitations, is an important dimension in big data
analytics. Enrichment with survey instruments is one way to add other dimensions or
resolve challenges. For example, in an area with low frequency services a customer may
wait 15 min at the start of their supposed 30 min journey. This can be ameliorated by
combining O/D data with scheduling or frequency data (such as GTFS, mentioned earlier).
Data on weather conditions, public transport disruptions, major sporting or cultural events,
school holidays, and so on can provide analytical context and interpretive depth.

The potential of big data is endless, within the capabilities, goals, skills and analytical
maturity of the organisation as a consumer, ranging from descriptive, inquisitive, predictive
and prescriptive, to pre-emptive analytics [70]. We have focused mostly on a descriptive
analysis (identifying travel times across the region for selected employment hubs), and
slowly moved towards more inquisitive approaches (How do social spatial inequalities
relate to accessibility across the region?).

Interestingly, we found a large variation of travel time, and also a geographic divide,
in Greater Sydney. In the East/Centre region, the higher the income of the commuter, the
shorter their travel time; while in the West, the opposite was found, with higher income
commuters leading having longer commuting times [59]. This divide reflects complex
socio-economic inequalities, that manifest geographically in the city shape, and should be
taken into consideration in future plans for urban growth and accessibility.

15. Data Visualisation

In the early stages of an analysis, data visualisation can assist in the identification of
missing, erroneous or duplicate values. In intermediate stages, it can assist users in ‘sense-
making’ through querying of the data and assessing the results through visual outputs. In
the final stages, it can be a means to organise the data to best communicate insights. In
short, although we’ve positioned it as the penultimate stage in the pipeline for simplicity,
data visualisation can be integral to many of the stages in this workflow.

Agrawal et al. (2015) [71] divide the challenges of big data visualisation in three
categories: perceptual scalability (associated with the human eye’s perceptual limits and
also the limited screen sizes of some of our ubiquitous devices); real-time scalability (related
to limits of computational memory, query, and processing for big real-time data streams);
and interactive scalability (associated with the computation limits of complex algorithms
being interactively applied by multiple simultaneous, potentially mobile, users). Additional
data visualisation complexities include privacy protection of subjects illustrated graphically,
and security against hacking of the datasets behind visualisation dashboards.

Using the ‘semi-interactive’ ESRI StoryMap platform, we developed a visualisation
allowing users to select specific job destinations in Greater Sydney and review a series
of related data analyses through graphs and maps. Visualising every origin-destination
data point of the study area would lead to over-plotting, overlapping lines, and would
overwhelm users’ perceptual and cognitive capacities. We therefore combined nearby
stations and stops into the standard Travel Zone geography used for Census analysis
and eliminated origins within Greater Sydney with less than five trips. The minimum
threshold serves to reinforce the key findings while also acting to protect individual user
privacy. Presenting the results of the 30 min city analysis in this aggregated form makes it
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possible to communicate the results via an online urban dashboard to government, industry
and citizens. Such dashboards potentially encourage and support greater participation of
citizens in the planning process [72].

16. Policy and Planning Support

The full cycle of big data analytics is completed when the insights from the analytical
process are used to inform policy and planning decision-making. The literature on big
data suggests abundant potential for better decision-making. In the private sector, big data
analytics for decision making have significantly increased (4—6%) productivity [73]. In the
public sector, big data’s potential for rational decision-making has been both advocated and
criticized in the public administration debate [74]. City planning can be very complex, due
to the mix between technical and political contexts, and the multiple actors with different
roles and goals. In cities, what is generally sought is not simply an optimised solution, but
a compromise that generates the best possible overall ‘good’ for a varied society, subject
to existing built stock and infrastructure, socio-economic context, and limited resources.
Beyond the goal of increased revenues or reduced costs pursued by businesses, the public
sector needs to deal with goals related to sustainability, equity, productivity, and liveability,
while incorporating participation and transparency.

The adoption of digital planning tools to support evidence-based policy and decision
making thus remains a challenge [75]. The analysis of the Opal card data characterised
Greater Sydney as a 32 min city. However, based on the proposed five indicators for indi-
vidual destinations, accessibility varied from a maximum in which % of the public transport
commuters reached work in less than 30 min, to a minimum in which only % of the workers
could do the same. Moreover, a distinctive pattern dividing Sydney in two halves was
found when analysing the disaggregated correlation between workers’ travel time and
mean income. In the East/Centre region, the higher the income of the commuter, the shorter
their travel time; while in the West, the opposite was found, with higher-income commuters
having longer-duration commuting trips. In other words, Sydney is a ‘somewhat 30-min
city’ on the west region only for the lower-income workers, and on the centre/ eastern
regions only for the higher-income workers. This divide found in Sydney reflects the com-
plex socio-economic inequalities that manifest geographically in the city shape. The 30 min
city dashboard is a digital planning tool developed with the specific aim of providing data-
driven insights into the planning of Future Sydney, communicating the findings described
above, see Figure 3. The dashboard has provided insights to many planners and policy-
makers who have interacted with the dashboard, both in co-design workshops hosted in
the City Analytics Lab [76] and through the ability of individuals to directly explore the
visualisations via the publicly accessible online dashboard in their own time. Furthermore,
the findings from the 30 min analysis has informed the formulation of district level strategic
planning by the Greater Sydney Commission. The District Plans, later publicly published
(https:/ /www.greater.sydney /western-city-district-plan) (accessed on 30 November 2021),
reference the goal of increasing 30 min access to key employment clusters, as incorporated
into the 30 min city dashboard. Further, the dashboard has been published for open online
access, since the release of the District Plans, accompanied by the support of the government
and media coverage (https://www.smh.com.au/national /nsw/opal-card-data-turns-up-
surprise-for-sydneysiders-wanting-30minute-commute-20170215-gudakb.html) (accessed
on 30 November 2021). It remains a resource for government, industry and citizens to use.

The study summarised here was an early attempt to utilise new, big data (Opal card) to
approach a new government goal (30 min city). Since then, multiple dashboards, analytics
and interpretations on the same theme have been developed, making it challenging to
provide a clear and definitive message. These include ARUP’s 30 min city analytics and
visualisation work, based on accessibility modelling using GTFS data [77], and many others.
In fact, one of the opportunities and challenges in providing access to open city data is that
a ‘thousand flowers’ may bloom with different results prevailing. In relation to big data,
this is a key challenge-ensuring quality control, cross-validation, and scalability [78].
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Figure 3. ‘“The 30 min city/Sydney Employment Clusters” online visualisation (see: https:/ /cityfutures.
ada.unsw.edu.au/cityviz/30-min-city/) (accessed on 30 November 2021).

17. Conclusions

As we plan for more liveable, productive, sustainable and resilient cities the power
of urban big data should help politicians, planners and the community work together to
address the myriad of ‘complex problems’ facing our cities: including congestion, social
inequality, an ageing population and the impacts of a changing climate. However, one
of the challenges is that significant big data repositories are driven by strong commercial
interests. Social media data from companies such as Twitter, Facebook and WeChat have
not been created to solve the challenges facing our cities, rather they have arisen to connect
people and generate profit through advertising and selling products. Likewise, Smart Card
systems have not been devised specifically to assist city planners in shaping future cities,
rather as an efficiency mechanism to reduce friction and people costs in public transport
systems. Nevertheless, it is the ability to access and analyse such repositories of big data
that can potentially provide new insights into the form and function of our cities. The

‘opportunistic” use of such data is an engine to power our future cities. Yet, the growth of

data as a commodity through e-commerce and social media platforms is creating a digital
divide for those who cannot afford to access such data. Thus, there is an opportunity,
and somewhat of an imperative, for government and industry to address this rising social
inequality and to forge new partnerships with communities and researchers to inclusively
and collaboratively work on solving urban problems.

In this paper we have considered the evolution of data sources and analytics towards
the so called ‘Smart City’. This is fuelled by rapidly increasing data volumes from an
eclectic array of sensors. In this research, we have taken a critical reflective approach
focusing on Sydney as a case study. Specifically, we examined how big data, derived from
the Opal Smart Card, is being used in planning for a 30 min city, which is a cornerstone of
the Greater Sydney Commission’s and Transport for NSW’s Metropolitan Plan. The paper
documents several important insights and lessons from this Sydney case study including
the increasingly important and complex problem of accessing big data and deriving new
insights without comprising the privacy of individuals. There remain many opportunities
and challenges arising from urban big data; only time will tell how these unfold as the
divide between the digital and real world continues to diminish.
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